微带传输
- 格式:ppt
- 大小:204.00 KB
- 文档页数:14
论微带天线传输宽频化设计摘要:本文基于微带天线宽频化技术的特点,首先对于微带天线进行了细致的阐述,包括其基本形式、分析方法和参数等;接着又对其工作辐射机理进行分析;然后有详细的介绍了微带天线宽频化处理的具体方法,主要有参数修改、等效多谐振点产生等方式;最后通过一种圆极化微带天线具体实例的宽频化处理来阐述这些方法的可行性,包括馈电方式展宽、多谐振展宽以及引入耗损展宽等,并得到了很好的展宽效果。
同时也提供了一种微带天线宽频化的方法。
关键词:微带天线宽频化设计方法随着无线通信技术的发展与无线产品的普及与应用,尤其是近年来超宽带无线通信技术的进步,促使人们对于宽带天线的研究更加的趋于大范围、小体积、高效率和便捷安装的要求,实际上,这就是提出了微带天线的发展与研究。
对于微带天线来说,具有诸多优点而得到人们的广泛关注。
在过去的50多年中,微带天线技术得到了长足的进展,也渐渐的成为一个理论成熟和实用的天线领域的学科:早在20世纪50年代,G.A.Decamps教授就提出可以利用微带线辐射效应来制造微带微波天线;到了70年代,随着单片机技术的发展,以及各种新型材料的出现,使得微带天线在全世界范围内的重视;到了80年代,微带天线在理论方面与应用方面都得到了进一步的提升……至此,微带天线技术已经形成了天线领域一支独立的学科,被广泛的应用于全球定位系统、直播卫星、个人通讯、无线局域网以及智能高速公路交通系统等方面。
尽管微带天线技术在今天发展迅速,应用广泛,然而其也有一定的缺陷,即阻抗带宽较窄。
一般来说,微带单贴片的带宽只在百分之零点几到百分之几。
因此可以说,微带天线的频带展宽技术意义重大。
1 微带天线概述1.1 概述自20世纪50年代Decamps教授提出微带天线以来,针对各种微带天线产品和各种优缺点的研究蓬勃发展起来,目前已广泛应用于航空航天、国防、通讯等方面。
与其他天线形式相比,微带天线主要有以下的优点:(1)体积小、重量轻、携带特别方便;(2)成本低廉,能够实现批量生产;(3)微带天线能够与一些受隐蔽性或空气动力学限制的载体达到共型的目的;(4)对微带天线贴片稍许加工,再加之合适的馈电系统,可以实现双频和双极化天线;(5)能够满足线性极化波与圆极化波的要求;(6)微带天线从本质上来讲,属于微波电路范畴,因此,可与亏点网络以及微波电路系统共同被制造出来,这样大大减少了制造成本,同时还可以提高效率。
《射频电路》课程设计题目:微带传输线概述系部电子信息工程学院学科门类工学专业电子信息工程学号1108211042姓名杨越2012年06月30日微带传输线概述摘要本课程设计主要介绍了微带传输线在实际应用中比较基础且较重要的几个知识点,并没有详细的对微带线的各个参数及特性作细致的说明。
例如微带线的近似静态解法、微带线的谱域分析等在本设计中都未曾提及,这与此课程设计的制作人本身的理解能力有着千丝万缕的关系。
在后续的微带线设计中,此处所提到准TEM特性、微带线的特性阻抗以及有效介电常数等参数,对于整个微带线系统的确立与实现都有着很重要的关系。
例如在设计微带线低通滤波器的时候,当通过低通滤波器原型的电路多次变换计算得到最终的电路时,这时就需要面对将电路图实现微带线的问题,而此时需要的就是特性阻抗的知识。
首先,根据特性阻抗值与相对介电常数确定w/h的范围(假设t=0),再由范围选择w/h的具体计算公式,从而求得微带线的宽度。
由有效介电常数求出相速度,再求出波导波长,由此可算出微带传输线的长度,等等。
关键词:微带线准TEM特性特性阻抗有效介电常数相速度波导波长前 言微带线是(Microstrip Line )是20世纪50年代发展起来的一种微波传输线,是目前混合微波集成电路(hybird microwave integrated circuit ,缩写为HMIC )和单片微波集成电路(monolithic microwave integrated circuit ,缩写为MMIC )使用最多的一种平面传输线。
其优点是体积小、重量轻、频带宽、可集成化;缺点是损耗大,Q 值低,功率容量低。
由于微波系统正向小型化和固态化方向发展,因此微带线得到了广泛的应用。
一 微带线的结构微带线是在金属化厚度为h 的介质基片的一面制作宽度为W 、厚度为t 的导体带,另一面作接地金属平板而构成的,如图1-1所示。
其中,r ε为介质基片的相对介电常数。
微带天线的工作原理
微带天线的工作原理是基于一种被称为微带传输线的技术。
微带传输线是一块细长的金属带(称为微带)通过一块绝缘基板与地面之间连接。
当电流在微带上流动时,产生的电磁场会引发辐射,这种辐射效应使得微带传输线可以作为天线使用。
微带天线的主要原理包括以下几个方面:
1. 辐射模式:微带天线的辐射模式取决于微带的几何形状和尺寸。
通过调整微带的长度、宽度和形状,可以实现不同的辐射模式,例如方向性的、全向的或者扇形的辐射。
2. 地平面:微带天线的底部通常需要一个地平面(通常是金属板),以提供一个反射面来增强天线的辐射效果。
地平面的大小和形状对天线的性能有很大影响。
3. 驻波效应:微带天线在工作频率附近会形成驻波,即在天线上引起电流分布不均匀的现象。
通过调整微带的尺寸和结构,可以控制驻波的频率和幅度。
4. 互耦效应:在一些特殊的微带天线结构中,微带之间存在一定的电磁耦合效应。
这种互耦效应可以实现一些特殊的功能,例如宽带天线、多频段天线或者极化转换器。
总之,微带天线的工作原理是利用微带传输线的结构和辐射效
应来实现无线电频段的信号接收和辐射。
通过调整微带尺寸、形状和结构,可以实现不同的辐射模式和性能。
微带线的辐射损耗和导体损耗
微带线是一种常用的微波传输线,广泛应用于各种微波、毫米波系统。
然而,微带线在传输信号时也会产生一些损耗,主要包括辐射损耗和导体损耗。
辐射损耗主要是由于微带线的电磁场与周围介质和空间发生相互作用而产生的能量散失。
当微带线中的电场和磁场向周围空间辐射时,会有一部分能量转化为周围介质或自由空间的能量,从而导致能量的损失。
辐射损耗的大小与微带线的几何尺寸、介质材料、工作频率等因素有关。
导体损耗主要是由于微带线中导体的电阻而引起的能量损失。
当电流在微带线中传输时,会有一部分电能转化为热能,从而产生能量损失。
导体损耗的大小与导体的电阻率、电流密度、工作频率等因素有关。
为了减小微带线的损耗,可以采用以下几种方法:
选择低电阻率的导体材料,如金、银等。
减小微带线的宽度和厚度,以减小电流密度和电阻。
使用低损耗的介质材料,如聚乙烯、聚四氟乙烯等。
优化微带线的结构和设计,以减小辐射损耗和导体损耗。
在实际应用中,需要根据具体的应用场景和性能要求来选择合适的微带线结构和材料,以获得最佳的传输效果和最小的能量损失。
同时,也需要综合考虑微带线的其他性能指标,如传输速度、带宽、阻抗匹配等,以确保整个系统的稳定性和可靠性。
一、概述行波电极微带线是一种常用的电磁波传输线路结构,广泛应用于微波集成电路、天线阵列、射频系统等领域。
行波电极微带线的传输abcd 矩阵是描述其传输特性的重要参数,对于设计和分析微带线电路具有重要的意义。
二、行波电极微带线的基本原理行波电极微带线是由微带线和两根电极组成的,电极分布沿微带线的方向呈周期性分布,利用电磁波在微带线和电极之间的耦合传输信号。
微带线部分起到传输电磁波的作用,而电极部分起到了调制电波和传输电波的作用。
行波电极微带线的传输abcd矩阵描述了其在不同频率下对电磁波的传输特性。
三、行波电极微带线的传输abcd矩阵计算方法行波电极微带线的传输abcd矩阵可以利用多种方法来进行计算,主要包括理论分析、仿真计算和实验测试。
其中理论分析是基于电磁场方程和原理进行推导和计算,仿真计算是利用电磁场仿真软件进行数值模拟和计算,实验测试是通过实际的电路板搭建和测试获得。
四、行波电极微带线的传输abcd矩阵的影响因素行波电极微带线的传输abcd矩阵是受到多种因素影响的,主要包括微带线的几何结构、材料特性、电极的设计参数等。
其中微带线的介质常数、电导率和电极结构的尺寸是影响传输abcd矩阵的重要因素。
五、行波电极微带线的传输abcd矩阵在电路设计中的应用行波电极微带线的传输abcd矩阵在电路设计中具有重要的应用价值,可以用于分析电磁波在微带线中的传输特性、设计微带线的匹配网络、优化电路性能等方面。
通过对传输abcd矩阵的分析和计算,可以指导实际电路设计中的优化和改进。
六、结论行波电极微带线的传输abcd矩阵是描述其传输特性的重要参数,对于设计和分析微带线电路具有重要的意义。
通过深入研究行波电极微带线的传输abcd矩阵,可以指导微带线的设计和优化,推动微波集成电路、天线阵列、射频系统等领域的发展。
希望通过本文的介绍,读者对行波电极微带线的传输abcd矩阵有更深入的理解,为相关领域的研究和应用提供参考和指导。
微带天线传输线模型等效电路微带天线是一种常用于无线通信系统中的天线设计,其结构简单、易于制作和安装。
为了更好地理解微带天线的工作原理和性能,我们可以使用等效电路模型来描述和分析微带天线的传输线特性。
在微带天线的等效电路模型中,通常包含以下几个主要元素:1. 传输线部分:微带天线的传输线主要由一根导体和一片介质组成。
传输线的宽度和长度决定了天线的频率响应和辐射特性。
通过调整传输线的尺寸,可以实现对天线的谐振频率和辐射方向的控制。
2. 辐射元件:微带天线的传输线的末端通常会连接一个辐射元件,用于将电磁能量转化为电磁辐射。
常见的辐射元件包括微带贴片、微带环形和微带缝隙等。
这些辐射元件的选择和设计将直接影响天线的辐射效率和方向性。
3. 匹配网络:为了实现微带天线的最佳性能,通常需要在传输线和辐射元件之间添加匹配网络。
匹配网络的作用是调整天线的输入阻抗,以便与无线电设备的输出阻抗匹配,从而实现最大功率传输。
在微带天线的等效电路模型中,我们可以通过参数化建模的方法来表示上述元素的特性。
例如,可以使用电感和电容来表示传输线的电感和电容,使用电阻来表示辐射元件的电阻损耗,使用变压器来表示匹配网络的阻抗变换等。
通过建立微带天线的等效电路模型,我们可以使用电路仿真工具进行分析和优化。
例如,可以通过改变传输线宽度、长度和辐射元件的尺寸来调整天线的工作频率和辐射特性。
还可以利用仿真工具来优化匹配网络的设计,以实现最佳的功率传输效果。
总之,微带天线的等效电路模型为我们理解和设计微带天线提供了一个有力的工具。
通过建立和分析该模型,我们可以更好地理解微带天线的工作原理,优化其性能,并满足不同无线通信系统对天线的需求。
微带传输线微带电容微带电感设计微带传输线是一种常见的高频电路元件,常用于微波和射频电路中。
在设计微带传输线时,需要考虑微带电容和微带电感对电路性能的影响。
在本文中,将介绍微带传输线、微带电容和微带电感的基本原理,并讨论如何设计微带传输线的电容和电感。
1.微带传输线的基本原理微带传输线是一种平面传输线,在板上制成,由导体铜箔和绝缘基板组成。
它通常由一层导体(称为信号层)和一层绝缘层(称为介质层)构成。
微带传输线的信号层上的导体用来传输电信号,绝缘层用来隔离导体和其他层。
微带传输线通常用来传输高频信号,因此需要考虑其高频特性,如阻抗匹配、耦合和传输损耗等。
2.微带电容的设计一种常用的微带电容设计方法是通过改变绝缘层的介电常数来调节。
介电常数较大的材料可以减小微带电容,增大信号速度和带宽。
常用的介电材料包括FR4和PTFE等。
使用FR4材料时,微带电容约为0.009pF/mm²,使用PTFE材料时,微带电容约为0.0009 pF/mm²。
另一种方法是通过改变微带的宽度来调节微带电容。
微带的宽度与微带电容成反比,宽度越小,电容越大。
设计时可以根据需求调整微带的宽度。
3.微带电感的设计微带电感可以通过改变导体的长度和宽度来调节。
导体的长度越大,电感越大。
通常,微带传输线的长度为电磁波波长的1/4或者1/2、导体的宽度越大,电感越小。
设计时可以根据需求调整导体的长度和宽度,以达到所需的电感值。
4.微带传输线微带电容和微带电感的综合设计微带传输线的微带电容和微带电感是相互独立的,但在实际设计中需要综合考虑它们的影响。
例如,当微带电容增大时,信号速度和带宽增大,但串扰也可能增加。
因此,在设计微带传输线时,需要根据具体应用要求,综合考虑微带电容和微带电感的影响。
在微带传输线的设计中,使用计算机辅助设计(CAD)工具可以帮助自动计算微带电容和微带电感的值,并快速优化设计参数,以满足特定的电路性能要求。
实验二微带传输线实验一实验目的1.了解微带传输线的基本理论和特性。
2.掌握用网络分析仪测量微带传输线接不同负载时工作参量的值。
3.通过测量认知1/4波长传输线阻抗变换特性。
二实验原理1.微带传输线的基本原理微带线目前是混合微波集成电路和单片微波集成电路使用最多的一种平面型传输线。
它可用作光刻程序制作,且容易与其它无源微波电路和有源微波电路器件集成,实现微波部件和系统的集成化。
微带线可以看作是由双导线传输线演变而成的,如图2—1所示。
在两根导线之间插入极薄的理想导体平板,它并不影响原来的场分布,而去掉板下的一根导线,并将留下的另一根导线“压扁”,即构成了微带传输线。
实际的微带线结构如图2-1所示。
导体带(其宽度为的厚度为力和接地板均由导电良好的金属材料(如银,铜,金)构成,导体带与接地板之间填充以介质基片,导体带与接地板的间距为h o有时为了能使导体带,接地板与介质基片牢固地结合在一起,还要使用一些黏附性较好的铭,铝等材料。
介质基片应采用损耗小,黏附性,均匀性和热传导性较好的材料,并要求其介电常数随频率和温度的变化也较小。
图2—1双导线演变成微带线图2—2微带线的结构及其场分布2.微带线的技术参数2.1特性阻抗若微带线是被一种相对介电常数为名的均匀介质所完全包围着,并把准TEM模当作纯TEM模看待,并设£和C分别为微带线单位长度上的电感和电容,则特性阻抗为相速以为_1_Vovp"√Zc-X但实际上的微带线是含有介质和空气的混合介质系统,因此不能直接套用上面的公式求特性阻抗。
为了求出实际的微带线的特性阻抗Zc和相速度),而引入了等效相对介电常数的概念。
如果微带线的结构现状和尺寸不变,当它被单一的空气介质所包围着时,其分布电容为C。
实际微带线是由空气和相对介电常数为益的介质所填充,它的电容为G,那么,等效相对介电常数册的定义为这样,实际微带线的特性阻抗即可表示为Z :为在同样形状和结构尺寸的情况下,填充介质全部是空气时微带线的特性阻抗我们假定已成形的导体的厚度t 与基片厚度h 相比可以忽略h(t/h<0.005)0这种情况下,我们能够利用只与线路尺寸(w 和h)和介电常数名有关的经验公式。
射频/微波传输线微波传输线是用来传输微波信号和微波能量的传输线。
微波传输线种类很多,按其传输电磁波的性质可分为三类:TEM模传输线(包括准TEM模传输线),如图3―1―1(1)所示的平行双线、同轴线、带状线及微带线等双导线传输线;TE模和TM模传输线,如图3―1―1(2)所示的矩形波导,圆波导、椭圆波导、脊波导等金属波导传输线;表面波传输线,其传输模式一般为混合模,如图3―1―1(3)所示的介质波导,介质镜像线等。
在射频/微波的低频段,可以用平行双线来传输微波能量和信号;而当频率提高到其波长和两根导线间的距离可以相比时,电磁能量会通过导线向空间辐射出去,损耗随之增加,频率愈高,损耗愈大,因此在微波的高频段,平行双线不能用来作为传输线。
为了避免辐射损耗,可以将传输线做成封闭形式,像同轴线那样电磁能量被限制在内外导体之间,从而消除了辐射损耗。
因此,同轴线传输线所传输的电磁波频率范围可以提高,是目前常用的微波传输线。
但随频率的继续提高,同轴线的横截面尺寸必须相应减小,才能保证它只传输TEM模,这样会导致同轴线的导体损耗增加,尤其内导体引起损耗更大,传输功率容量降低。
因此同轴线又不能传输更高频率的电磁波,一般只适用于厘米波段。
一微带传输线结构微带传输线应用于低电平射频微波技术中。
它的优点是制造费用省,尺寸特别小,重量特别轻,工作频带宽,以及具有与固体器件的良好配合性;其主要缺点是损耗较大,不能在高电平的情况下使用。
由于微带线结构简单,便于器件的安装和电路调试,产品化程度高,使得微带线已成为射频/微波电路中首选的电路结构。
微带线的结构如图3―3―1所示。
它是由介质基片的一边为中心导带,另一边为接地板所构成,其基片厚度为h,中心导带的宽度为w。
其制作工艺是先将基片(最常用的是氧化铝)研磨、抛光和清洗,然后放在真空镀膜机中形成一层铬-金层,再利用光刻技术制成所需要的电路,最后采用电镀的办法加厚金属层的厚度,并装接上所需要的有源器件和其它元件,形成微带电路。