中考数学考点三角形讲解
- 格式:doc
- 大小:13.00 KB
- 文档页数:2
专题16 全等三角形的核心知识点精讲1.熟悉全等三角形常考5种模型2.掌握全等三角形性质,并运用全等三角形性质解答。
考点1:全等三角形的概念及性质考点2:全等三角形的判定模型一:平移型模型分析:此模型特征是有一组边共线或部分重合,另两组边分别平行,常要在移动的方向上加(减)公共线段,构造线段相等,或利用平行线性质找到对应角相等.模型示例概念两个能完全重合的三角形叫做全等三角形.性质1.两全等三角形的对应边相等,对应角相等.2.全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.3.全等三角形的周长、面积相等.模型二:轴对称模型模型分析:所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点,解题时要注意隐含条件,即公共边或公共角相等.模型三:旋转型模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.旋转后的图形与原图形存在两种情况:①无重叠:两个三角形有公共顶点,无重叠部分,一般有一对隐含的等角②有重叠:两个三角形含有一部分公共角,运用角的和差可得到等角.模型四:一线三垂直型模型解读:一线:经过直角顶点的直线;三垂直:直角两边互相垂直,过直角的两边向直线作垂直,利用“同角的余角相等”转化找等角【题型1:平移型】【典例1】(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.1.(2022•淮安)已知:如图,点A、D、C、F在一条直线上,且AD=CF,AB=DE,∠BAC=∠EDF.求证:∠B=∠E.2.(2022•柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=D F,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【题型2:对称型】【典例2】(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.1.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AE=6,CD=8,求BD的长.2.(2022•西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.【题型3:旋转型】【典例3】(2023•大连)如图,AC=AE,BC=DE,BC的延长线与DE相交于点F,∠ACF+∠AED=180°.求证:AB=AD.1.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.2.(2023•泸州)如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.3.(2023•西藏)如图,已知AB=DE,AC=DC,CE=CB.求证:∠1=∠2.【题型4:一线三等角】【典例4】(2023•陕西)如图,在△ABC中,∠B=90°,作CD⊥AC,且使CD=AC,作DE⊥BC,交BC 的延长线于点E.求证:CE=AB.1.(2021•南充)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥A D于点F.求证:AF=BE.一.选择题(共8小题)1.下列各组图案中,不是全等形的是()A.B.C.D.2.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°3.如图,△ABC≌△DEC,点E在AB边上,∠B=70°,则∠ACD的度数为()A.30°B.40°C.45°D.50°4.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10B.6C.4D.25.如图,点B、F、C、E在一条直线上,∠A=∠D=90°,AB=DE,添加下列选项中的条件,能用HL 判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠ACB=∠DFE D.BC=EF6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE7.如图,BE⊥AC于点E,CF⊥AB于点F,若BE=CF,则Rt△BCF≌Rt△CBE的理由是()A.AAS B.HL C.SAS D.ASA8.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.填空题(共4小题)9.如图是两个全等三角形,图中的字母表示三角形的边长,那么∠1的度数为.10.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC ≌△BAD.11.请仔细观察用直尺和圆规作一个角∠A'O'B'等于已知角∠AOB的示意图.请你根据所学的三角形全等的有关知识,说明画出∠A'O'B'=∠AOB的依据是.12.如图,若AC平分∠BCD,∠B+∠D=180°,AE⊥BC于点E,BC=13cm,CD=7cm,则BE=.三.解答题(共4小题)13.如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)若∠D=45°,求∠EGC的大小.14.如图,∠ACB=90°,∠BAC=45°,AD⊥CE,BE⊥CE,垂足分别是D,E,BE=0.8,DE=1.7,求AD的长.15.如图,点A,B,C在一条直线上,△ABD、△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q.(1)求证:△ABE≌△DBC;(2)求∠DMA的度数.16.如图,AC=DC,E为AB上一点,EC=BC,并且∠1=∠2.(1)求证:△ABC≌△DEC;(2)若∠B=75°,求∠3的度数.一.选择题(共7小题)1.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBA:S△PCA=AB:AC,其中正确的个数是()个.A.5B.4C.3D.22.如图,在△ABC中,∠BAC=60°,BE、CD为△ABC的角平分线.BE与CD相交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=CE;③BC=BD+CE;④若BE⊥AC,△BDF≌△CE F.其中正确的是()A.①③B.②③④C.①③④D.①②③④3.如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接A F,下列结论:①BD=CE②∠AEF=∠ADF③BD⊥CE④AF平分∠CAD⑤∠AFE=45°其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤4.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠F AB.有下列结论:①∠B=∠C;②ED=FD;③AC=BE;④△ACN≌△ABM.其中正确结论的个数是()A.1个B.2个C.3个D.4个5.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+2S2+2S3+S4=()A.6B.8C.10D.126.如图,△ABC和△CDE都是等边三角形,B,C,D三点在一条直线上,AD与BE相交于点P,AC、B E相交于点M,AD、CE相交于点N,则下列四个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④CP平分∠MCN.其中,一定正确的结论的个数是()A.1B.2C.3D.47.如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB 交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③MD平分∠E DF;④若AE=3,则AB+AC=6.其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共5小题)8.如图,以△ABC的每一条边为边,在边AB的同侧作三个正三角形△ABD、△BCE和△ACF.已知这三个正三角形构成的图形中,甲、乙阴影部分的面积和等于丙、丁阴影部分的面积和.则∠FCE=°.9.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣8,3),点B的坐标是.10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,则下列结论中,正确的是(填序号).①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.11.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③A C=AO+AP;④S△ABC=S四边形AOCP,其中正确的是.(填序号)12.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,点D是AB的中点,E、F在射线AC 与射线CB上运动,且满足AE=CF,则在运动过程中△DEF面积的最小值为.三.解答题(共4小题)13.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°,求证:AD=BE;(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.14.如图所示,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:AP=AQ;(2)试判断△APQ是什么形状的三角形?并说明你的理由.15.(1)【模型启迪】如图1,在△ABC中,D为BC边的中点,连接AD并延长至点H,使DH=AD,连接BH,则AC与BH的数量关系为,位置关系为.(2)【模型探索】如图2,在△ABC中,D为BC边的中点,连接AD,E为AC边上一点,连接BE交A D于点F,且BF=AC.求证:AE=EF.16.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.1.(2023•甘孜州)如图,AB与CD相交于点O,AC∥BD,只添加一个条件,能判定△AOC≌△BOD的是()A.∠A=∠D B.AO=BO C.AC=BO D.AB=CD2.(2023•北京)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC同侧,AB <BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③3.(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件,使△AOB≌△COD.4.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.5.(2023•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连接AD.过点B 作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为3.6.(2023•南通)如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是.7.(2023•淮安)已知:如图,点D为线段BC上一点,BD=AC,∠E=∠ABC,DE∥AC.求证:DE=B C.8.(2023•吉林)如图,点C在线段BD上,△ABC和△DEC中,∠A=∠D,AB=DE,∠B=∠E.求证:AC=DC.9.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠B AD=∠EAC,∠C=50°,求∠D的大小.10.(2022•安顺)如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.。
考点08 全等三角形全等三角形主要包括全等图形、全等三角形的概念与性质,全等三角形的判定和角平分线的性质。
在中考中,全等三角形的直接考查主要以选择和填空为主,有时也会以证明的形式考查,难度一般较小;但大多数情况下,全等三角形的知识多作为工具性质与其他几何知识结合,用于辅助证明线段相等、角相等,考查面较广,难度较大,需要考生能够熟练运用全等三角形的性质和判定定理。
一、全等三角形的性质;二、全等三角形的判定;三、角平分线的线的性质。
考向一:全等三角形的性质1.全等三角形的对应边相等,对应角相等;2.全等三角形的周长相等,面积相等;3.全等三角形对应的中线、高线、角平分线、中位线都相等.1.下列四个图形中,属于全等图形的是( )A .③和④B .②和③C .①和③D .①和②2.下图所示的图形分割成两个全等的图形,正确的是( )A .B .C .D .3.如图,ABC DBC ∆∆≌,45A ∠=︒,86ACD ∠=︒,则ABC ∠的度数为( )A .102︒B .92︒C .100︒D .98︒4.如图,将ABC 沿着BC 方向平移6cm 得到DEF △,若AB BC ⊥,10cm AB =,4cm DH =,则四边形HCFD 的面积为( )2cm .A.40B.24C.48D.645.如图,△ABC≌△ADE,若∠B=80°,∠E=30°,则∠C的度数为()A.80°B.35°C.70°D.30°考向二:全等三角形的判定(一)三角形全等的判定定理:1.边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);2.边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);3.角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);4.角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS”);5.对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).(二)灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:①遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”; ②遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”; ⑤截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.1.在如图所示33⨯的小正方形组成的网格中,ABC 的三个顶点分别在小正方形的顶点(格点)上.这样的三角形叫做格点三角形,图中能画出( )个与ABC 全等的格点三角形(不含ABC ).A .3B .4C .7D .82.如图,B C ∠=∠,要使ABE ACD △△≌.则添加的一个条件不能是( )A .ADC AEB ∠=∠ B .AD AE =C .AB AC =D .BE CD =3.一块三角形玻璃不慎被小明摔成了四片碎片(如图所示),小明经过仔细的考虑认为只要带其中的两块碎片去玻璃店,就可以让师傅配一块与原玻璃一样的玻璃.你认为下列四个答案中考虑最全面的是( )A .带其中的任意两块去都可以B .带1、4或2、3去就可以了C .带1、4或3、4去就可以了D .带1、2或2、4去就可以了4.数学课上,同学们探讨利用不同画图工具画角的平分线的方法.小旭说:我用两块含30°的直角三角板就可以画角平分线.如图,取OM =ON ,把直角三角板按如图所示的位置放置,两直角边交于点P ,则射线OP 是∠AOB 的平分线,小旭这样画的理论依据是( )A .SSAB .HLC .ASAD .SSS5.如图,△ABC ≌△EBD ,∠E =50°,∠D =62°,则∠ABC 的度数是( )A .68°B .62°C .60°D .50°考向三:角平分线的线的性质1.角的平分线的性质定理:角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理:角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线:三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线:在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.1.(2022·重庆八中模拟)下列命题是真命题的是( )A .三角形的外心到这个三角形三边的距离相等B .三角形的重心是这个三角形的三条角平分线的交点C .三角形的三条高线所在的直线一定相交于三角形的内部D .三角形的任意两边之和大于第三边2.如图,在ABC 中,ABC ∠,ACB ∠的平分线交于点O ,OD BC ⊥于D ,如果25cm AB =,20cm BC =,15cm AC =,且2150cm =ABC S △,那么OD 的长度是( )A .2cmB .3cmC .4cmD .5cm3.(2022·上海徐汇·二模)如图,两把完全相同的长方形直尺按如图方式摆放,记两把尺的接触点为点P .其中一把直尺边缘恰好和射线OA 重合,而另一把直尺的下边缘与射线OB 重合,上边缘与射线OA 于点M ,联结OP .若∠BOP =28°,则∠AMP 的大小为( )A .62°B .56°C .52°D .46°4.工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知AOB ∠是一个任意角,在边,OA OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与点M N ,重合,则过角尺顶点C 的射线OC 便是AOB ∠的平分线.在证明MOC NOC ≌时运用的判定定理是( )A .SSSB .SASC .ASAD .AAS5.如图,Rt △ABC 中,∠C =90°,用尺规作图法作出射线AE ,AE 交BC 于点D ,CD =5,P 为AB 上一动点,则PD 的最小值为( )A .2B .3C .4D .51.下列命题错误的是( )A .三角形的三条高交于一点B .三角形的三条中线都在三角形内部C .直角三角形的三条高交于一点,且交点在直角顶点处D .三角形的三条角平分线交于一点,且这个交点到三角形三边的距离相等2.如图,已知ABC A BC ''≌,A C BC ''∥,∠C =25°,则ABA '∠的度数是( )A .15°B .20°C .25°D .30°3.(2022·福建·模拟)如图,AD 是AEC △的角平分线,2AC AB =,若4ACD S =,则ABD △的面积为( )A .3B .2C .32D .14.如图,在Rt ABC 中,90,C BAC ∠=︒∠的平分线交BC 于点D ,DE //AB ,交AC 于点E ,DF AB ⊥于点F ,5,3DE DF ==,则下列结论错误的是( )A .1BF =B .3DC = C .5AE =D .9AC =5.(2022·河北·石家庄市第四十一中学模拟)如图,已知ABC ,90C ∠=︒,按以下步骤作图:①以点A为圆心,以适当长为半径画弧,分别交边AB ,AC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在ABC 的内部相交于点P ;③作射线AP 交BC 于点D .下列说法一定成立的是( )A .BD AD =B .BD CD >C .>BD AC D .2BD CD =6.(2022·河南·一模)在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是( )A .图2B .图1与图2C .图1与图3D .图2与图37.(2022·山东威海·一模)如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为M .若∠ABC =30°,∠C =38°,则∠CDE 的度数为( )A .68°B .70°C .71°D .74°8.(2022·福建三明·模拟)如图,BD 平分∠ABC ,F ,G 分别是BA ,BC 上的点(BF BG ≠),EF EG =,则∠BFE 与∠BGE 的数量关系一定满足的是( )A .90BFE BGE ∠+∠=B .180BFE BGE ∠+∠=C .2BFE BGE ∠=∠D .90BFE BGE ∠-∠=9.(2022·重庆十八中两江实验中学一模)如图,在ABC 中,AD BC ⊥,垂足为点D .下列条件中,不一定能推得ABD △与ACD 全等的条件是( )A .AB AC = B .BD CD =C .B DAC ∠=∠D .BAD CAD ∠=∠ 10.(2022·安徽滁州·二模)如图,OC 为∠AOB 的角平分线,点P 是OC 上的一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 为OC 上另一点,连接DF ,EF ,则下列结论:①OD =OE ;②DF =FE ; ③∠DFO =∠EFO ;④S △DFP =S △EFP ,正确的个数为( )A .1个B .2个C .3个D .4个11.如图,D 为Rt ABC △中斜边BC 上的一点,且BD AB =,过D 作BC 的垂线,交AC 于E .若6cm AE =,则DE 的长为 __cm .12.如图,ABC ∆中,90,6,8ACB AC BC ︒∠===.点P 从A 点出发沿A →C →B 路径向终点B 点运动;点Q 从B 点出发沿B →C →A 路径向终点A 点运动.点P 和Q 分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动.在某时刻,分别过P 和Q 作PE l ⊥于E ,QF l ⊥于F .点P 运动________秒时,PEC ∆与QFC ∆全等.13.如图,在ABC 中,∠BAC =90°,AD 是BC 边上的高,BE 是AC 边的中线,CF 是∠ACB 的角平分线,CF 交AD 于点G ,交BE 于点H ,①ABE 的面积=BCE 的面积;②∠F AG =∠FCB ;③AF =AG ;④BH =CH .以上说法正确的是_____.14.如图,小虎用10块高度都是4cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ∠=︒),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离为______.15.如图,E ABC AD ≅∆∆,BC 的延长线经过点E ,交AD 于F ,105AED ∠=︒,10CAD ∠=︒,50B ∠=︒,则EAB ∠=__︒.16.(2022·黑龙江哈尔滨·三模)如图,在△ABC 中,高AE 交BC 于点E ,若1452ABE C ∠+∠=︒,5CE =,△ABC 的面积为10,则AB 的长为___________.17.(2022·山东济南·三模)如图,正方形ABCD 的边长为3,P 、Q 分别在AB ,BC 的延长线上,且BP=CQ ,连接AQ 和DP 交于点O ,分别与边CD 和BC 交于点F 和E ,连接AE ,以下结论:①AQ ⊥DP ;②AOD S =OECF S 四边形;③OA 2=OE•OP ;④当BP =1时,tan ∠OAE =1316,其中正确的是______.(写出所有正确结论的序号)18.(2022·贵州铜仁·一模)如图,在ABC 中,8BC =,6AC =按下列步骤作图:步骤1:以点C 为圆心,小于AC 的长为半径作弧分别交BC 、AC 于点D 、E ;步骤2:分别以点D 、E 为圆心,大于12DE 的长为半径作弧,两弧交于点M ; 步骤3:作射线CM 交AB 于点F ,若 4.5AF =,则AB =______.19.(2022·湖北襄阳·一模)如图,已知AC BD =,A D ∠=∠,添加一个条件______,使AFC DEB △≌△(写出一个即可).20.如图,在△ABC 中,90ACB ∠=︒,AC =8cm ,BC =10cm .点C 在直线l 上,动点P 从A 点出发沿A →C 的路径向终点C 运动;动点Q 从B 点出发沿B →C →A 路径向终点A 运动.点P 和点Q 分别以每秒1cm 和2cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P 和Q 作PM ⊥直线l 于M ,QN ⊥直线l 于N .则点P 运动时间为____秒时,△PMC 与△QNC 全等.21.已知:如图所示,PC PD C D =∠=∠,.求证:PCB PDA ≌.22.如图所示,点E 在线段BC 上,12∠=∠,AD AB AE AC ==,,求证:DE BC =23.(2022·江苏淮安·中考真题)已知:如图,点A 、D 、C 、F 在一条直线上,且AD CF =,AB DE =,BAC EDF ∠=∠.求证:B E ∠=∠.24.如图,己知正方形ABCD,点E是BC边上的一点,连接DE.(1)请用尺规作图法,在CD的延长线上截取线段DF,使=DF CE;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接AF.求证:△AFD≌△DEC.25.(2022·陕西延安·二模)如图,已知ABC,请用尺规作图法在BC上求作一点E,使得点E到、的距离相等.(保留作图痕迹,不写作法)AB AC26.如图,已知等边ABC,AD是BC边上的高,请用尺规作图法,在AD上求作一点O,使∠=︒.(保留作图痕迹,不写作法)60BOD,,,与MN分别交于点27.如图,已知直线MN与▱ABCD的对角线AC平行,延长DA DC AB CB,,,.E H G F(1)求证:EF GH =;(2)若FG AC =,试判断AE 与AD 之间的数量关系,并说明理由.28.如图(1)所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.29.如图,已知EB CF ∥,OA =OD ,AE =DF .求证:(1)OB=OC ;(2)AB ∥CD .30.如图,在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到①的位置时,求证:①ADC △≌CEB ;②DE AD BE =+;(2)当直线MN 绕点C 旋转到②的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到③的位置时,试问DE 、AD 、BE 具有怎样的数量关系?请直接写出这个等量关系,不需要证明.1.(2022·江苏扬州·中考真题)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ABC ∆,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A .,,AB BC CA B .,,AB BC B ∠ C .,,AB AC B ∠D .,,∠∠A B BC4.(2021·江苏盐城·中考真题)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在AOB ∠的两边OA 、OB 上分别在取OC OD =,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是AOB ∠的平分线.这里构造全等三角形的依据是( )A .SASB .ASAC .AASD .SSS5.(2022·江苏南通·中考真题)如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,要使△ABC ≌△DEF ,还需添加一个..条件是________.(只需添一个)6.(2020·江苏扬州·中考真题)如图,在ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交AB 、BC 于点D 、E .②分别以点D 、E 为圆心,大于12DE 的同样长为半径作弧,两弧交于点F . ③作射线BF 交AC 于点G .如果8AB =,12BC =,ABG 的面积为18,则CBG 的面积为________.7.(2022·江苏扬州·中考真题)如图,在ABCD 中,BE 、DG 分别平分ABC ADC ∠∠、,交AC 于点E G 、.(1)求证:,BE DG BE DG =∥;(2)过点E 作EF AB ⊥,垂足为F .若ABCD 的周长为56,6EF =,求ABC ∆的面积.8.(2020·江苏南京·中考真题)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C ,求证:BD =CE9.(2020·江苏镇江·中考真题)如图,AC 是四边形ABCD 的对角线,∠1=∠B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF .(1)求证:∠D =∠2;(2)若EF ∥AC ,∠D =78°,求∠BAC 的度数.1.(2022·江苏南京·二模)如图,在ABC 中,点D 在AC 上,BD 平分ABC ∠,延长BA 到点E ,使得BE BC =,连接DE .若38ADE ∠=︒,则ADB ∠的度数是( )A .68°B .69°C .71°D .72°2.(2022·江苏常州·一模)如图,已知四边形ABCD 的对角互补,且BAC DAC ∠=∠,15AB =,12AD =.过顶点C 作CE AB ⊥于E ,则AE BE的值为( )A B .9 C .6 D .7.23.(2022·江苏·南通市陈桥中学一模)如图,在锐角三角形ABC 中,AB =4,△ABC 的面积为10,BD 平分∠ABC ,若M 、N 分别是BD 、BC 上的动点,则CM +MN 的最小值为( )A .4B .5C .4.5D .64.(2022·江苏盐城·一模)如图,点E ,F 在AC 上,AD =BC ,DF =BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是( )A .∠A =∠CB .∠D =∠BC .AD ∥BC D .DF ∥BE5.(2022·江苏南通·二模)如图,在ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交AB ,BC 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在ABC ∠的内部交于点F ; ③作射线BF ,交AC 于点G .如果6AB =,9BC =,ABG 的面积为9,则ABC 的面积为______.6.(2022·江苏·模拟)如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线AD 交BC 于点D ,CD =2,则点D 到AB 的距离是_________.7.(2022·江苏·南通市陈桥中学一模)如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心、适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,5AB =,则ABD △的面积是________.8.(2022·江苏·苏州市振华中学校二模)已知:如图,AC BD =,AD BC =,AD ,BC 相交于点O ,过点O 作OE AB ⊥,垂足为E .求证:(1)ABC BAD ≌.(2)AE BE =.9.(2022·江苏镇江·模拟)如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.10.(2022·江苏·宜兴市实验中学二模)如图,在△ABC 中,O 为BC 中点,BD ∥AC ,直线OD 交AC 于点E .(1)求证:△BDO≌△CEO;(2)若AC=6,BD=4,求AE的长.11.(2022·江苏徐州·模拟)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=1∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)2(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF ∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并=12证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=1∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关2系,并证明.12.(2022·江苏盐城·一模)【提出问题】如图1,在等边三角形ABC内一点P,P A=3,PB=4,PC=5.求∠APB的度数?小明提供了如下思路:如图2,将△APC绕A点顺时针旋转60°至△AP'B ,则AP'=AP=3,P'C=PB=4,∠P'AC=∠P AB ,所以∠P'AC+∠CAP=∠P AC+∠BAP ,即∠P'AP=∠BAC=60° ,所以△AP'P为等边三角形,所以∠A P'P=60° ,……按照小明的解题思路,易求得∠APB= ;【尝试应用】如图3,在等边三角形ABC外一点P,P A=6,PB=10,PC=8.求∠APC的度数?【解决问题】如图4,平面直角坐标系xoy中,直线AB的解析式为y=-x+b(b>0),在第一象限内一点P,满足PB:PO:P A=1:2:3,则∠BPO= 度(直接写出答案)1.下列四个图形中,属于全等图形的是( )A .③和④B .②和③C .①和③D .①和②【答案】D【分析】根据全等图形的定义逐一判断即可.【详解】①和②,是全等图形,将①顺时针旋转180°即可和②完全重合,其它两个图形不符合 故选D .2.下图所示的图形分割成两个全等的图形,正确的是( )A .B .C .D .【答案】B【分析】直接利用全等图形的概念进而得出答案. 【详解】解:图形分割成两个全等的图形,如图所示:故选B .3.如图,ABC DBC ∆∆≌,45A ∠=︒,86ACD ∠=︒,则ABC ∠的度数为( )A .102︒B .92︒C .100︒D .98︒【答案】B【分析】根据全等三角形的性质得出ACB DCB ∠=∠,求出ACB ∠,根据三角形内角和定理求出即可. 【详解】解:ABC DBC ∆∆≌,ACB DCB ∴∠=∠,86ACD ∠=︒, 43ACB ︒∴∠=,45A ∠=︒,18092ABC A ACB ∴︒--∠︒∠=∠=;故选:B .4.如图,将ABC 沿着BC 方向平移6cm 得到DEF △,若AB BC ⊥,10cm AB =,4cm DH =,则四边形HCFD 的面积为( )2cm .A .40B .24C .48D .64【答案】C【分析】根据平移的性质可得ABC ≌DEF △,则四边形HCFD 的面积等于DEFEHCABCEHCABEH SSSSS -=-=梯形即可求解.【详解】解:∵将ABC 沿着BC 方向平移6cm 得到DEF △, ∴ABC ≌DEF △,6BE =cm , ∴ABC 的面积等于DEF △的面积, 又AB BC ⊥,10cm AB =,4cm DH =, ∴1046HE DE DH AB DH =-=-=-=(cm ), ∴四边形HCFD 的面积等于DEFEHCABCEHCABEH S SSSS -=-=梯形()12AB HE BE =+⋅ ()11066482=+⨯=(2cm ) 故选C .5.如图,△ABC ≌△ADE ,若∠B =80°,∠E =30°,则∠C 的度数为( )A.80°B.35°C.70°D.30°【答案】D【分析】根据全等三角形的性质即可得到结论.【详解】解:△ABC≌△ADE,∠E=30°,∠C=∠E=30°,故选:D.考向二:全等三角形的判定(一)三角形全等的判定定理:1.边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);2.边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);3.角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);4.角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS”);5.对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).(二)灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:①遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”;②遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;⑤截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.的小正方形组成的网格中,ABC的三个顶点分别在小正方形的顶点(格点)上.这样1.在如图所示33的三角形叫做格点三角形,图中能画出()个与ABC全等的格点三角形(不含ABC).A.3B.4C.7D.8【答案】C【分析】根据SSS判定两三角形全等.认真观察图形可得答案.【详解】如图所示大正方形上都可作两个全等的三角形,所以共有八个全等三角形,除去ABC 外有7个与ABC 全等的三角形. 故选C .2.如图,B C ∠=∠,要使ABE ACD △△≌.则添加的一个条件不能是( )A .ADC AEB ∠=∠ B .AD AE =C .AB AC =D .BE CD =【答案】A【分析】根据全等三角形的判定进行解答即可得. 【详解】解:在ABE 和ACD 中,AEB ADC A BB C ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩∴无法证明ABE ACD △△≌, 选项A 说法错误,符合题意; 在ABE 和ACD 中, A AB C AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABE ACD △△≌(AAS ),选项B 说法正确,不符合题意; 在ABE 和ACD 中,A A AB AC BD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABE ACD △△≌(ASA ),选项C 说法正确,不符合题意; 在ABE 和ACD 中, A AB C BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABE ACD △△≌(AAS ),选项D 说法正确,不符合题意; 故选A .3.一块三角形玻璃不慎被小明摔成了四片碎片(如图所示),小明经过仔细的考虑认为只要带其中的两块碎片去玻璃店,就可以让师傅配一块与原玻璃一样的玻璃.你认为下列四个答案中考虑最全面的是( )A .带其中的任意两块去都可以B .带1、4或2、3去就可以了C .带1、4或3、4去就可以了D .带1、2或2、4去就可以了【答案】C【分析】带1、3去,只有两角,没有完整边不能确定三角形,带1、2或2、3去,只有一角,没有完整边,不能确定三角形,带2、4去,有一角,可以延长边还原出原三角形,带3、4可以用“角边角”确定三角形,带1、4可以用“角边角”确定三角形.即可得出答案【详解】解:带1、3去,只有两角,没有完整边不能确定三角形,带1、2或2、3去,只有一角,不能确定三角形,带2、4去,有一角,可以延长边还原出原三角形,带3、4可以用“角边角”确定三角形,带1、4可以用“角边角”确定三角形,所以A 、B 、D 不符合题意,C 符合题, 故选:C .4.数学课上,同学们探讨利用不同画图工具画角的平分线的方法.小旭说:我用两块含30°的直角三角板就可以画角平分线.如图,取OM =ON ,把直角三角板按如图所示的位置放置,两直角边交于点P ,则射线OP 是∠AOB 的平分线,小旭这样画的理论依据是( )A .SSAB .HLC .ASAD .SSS【答案】B【分析】根据题意可得OP OP =,OM ON =,90PMO PNO ∠=∠=︒,根据全等三角形的判定方法,即可求解.【详解】解:根据题意可得OP OP =,OM ON =,90PMO PNO ∠=∠=︒, 根据全等三角形的判定方法可得()POM PON HL △≌△ 故选B5.如图,△ABC ≌△EBD ,∠E =50°,∠D =62°,则∠ABC 的度数是( )A .68°B .62°C .60°D .50°【答案】A【分析】根据三角形内角和定理求出∠EBD ,根据全等三角形的性质解答. 【详解】∵∠E =50°,∠D =62°, ∴∠EBD =180°−50°−62°=68°, ∵△ABC ≌△EBD , ∴∠ABC =∠EBD =68°, 故选:A .考向三:角平分线的线的性质1.角的平分线的性质定理:角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理:角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线:三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线:在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.1.(2022·重庆八中模拟)下列命题是真命题的是( ) A .三角形的外心到这个三角形三边的距离相等 B .三角形的重心是这个三角形的三条角平分线的交点 C .三角形的三条高线所在的直线一定相交于三角形的内部 D .三角形的任意两边之和大于第三边 【答案】D【分析】根据三角形的外心、重心等有关性质,对选项逐个判断即可.【详解】解:A 、三角形的内心到这个三角形三边的距离相等,为假命题,不符合题意; B 、三角形的重心是这个三角形的三条中线的交点,为假命题,不符合题意;C 、只有锐角三角形的三条高线所在的直线相交于三角形的内部,为假命题,不符合题意;D 、三角形的任意两边之和大于第三边,为真命题,符合题意; 故选:D2.如图,在ABC 中,ABC ∠,ACB ∠的平分线交于点O ,OD BC ⊥于D ,如果25cm AB =,20cm BC =,15cm AC =,且2150cm =ABC S △,那么OD 的长度是( )A .2cmB .3cmC .4cmD .5cm【答案】D【分析】作OE AC ⊥交于点E ,作OF AB ⊥交于点F ,连接OA ,证明OD OE OF ==,再利用2150cm =++=ABC BOC AOB AOC S S S S △△△△即可求出OD 的长度.【详解】解:作OE AC ⊥交于点E ,作OF AB ⊥交于点F ,连接OA ,。
中考考点三角形中角度与边长的关系的计算与应用中考考点:三角形中角度与边长的关系的计算与应用一、引言三角形是几何学中的重要概念,其角度与边长之间的关系是中考数学题中的常见考点。
掌握三角形中角度与边长的计算与应用,对于解题具有重要意义。
本文将介绍三角形中角度与边长的关系的计算方法和实际应用。
二、角度的计算方法1. 直角三角形的角度关系在直角三角形中,有一个直角(90°)和两个锐角(小于90°)。
根据三角形的内角和为180°,可以计算得出直角三角形中两个锐角之和为90°。
例如,已知一个角度为30°,则另一个角度为90°-30°=60°。
2. 一般三角形的角度关系对于一般三角形,角度的计算可以通过以下方法进行:(1) 已知两个角度,求第三个角度:三角形的内角和为180°,所以可以通过已知的两个角度求得第三个角度。
(2) 已知两边长度及夹角,求第三边的长度:可以利用余弦定理、正弦定理或正切定理进行计算。
三、边长的计算方法1. 直角三角形的边长关系在直角三角形中,有一个直角和两个锐角。
根据勾股定理,直角边的平方等于两个锐角边的平方和。
例如,在一个直角三角形中,已知两个锐角边的长度分别为3和4,可以通过计算得知直角边的长度为√(3^2+4^2)=5。
2. 一般三角形的边长关系对于一般三角形,可以利用余弦定理、正弦定理或正切定理来计算边长:(1) 余弦定理:在一个三角形中,已知两边长度及夹角,可以利用余弦定理计算第三边的长度。
根据余弦定理,第三边的平方等于已知两边的平方和减去两倍已知两边的长度乘以夹角的余弦值。
(2) 正弦定理:在一个三角形中,已知一个角度和该角度对应的边长以及另外两边的长度,可以利用正弦定理计算未知边长。
(3) 正切定理:在一个三角形中,已知一个角度和该角度对应的边长以及另外一条边的长度,可以利用正切定理计算未知边长。
中考数学三角形考点和易错点总结
易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。
易错点2:三角形三边之间的不等关系,注意其中的“任何两边”。
求最短间隔的方法。
易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。
易错点4:全等形,全等三角形及其性质,三角形全等判定。
着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。
根据边边角不能得到两个三角形全等。
易错点5:两个角相等和平行经常是相似的根本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方。
易错点6:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。
易错点7:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。
易错点8:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用探究各种解题方法。
易错点9:中点,中线,中位线,一半定理的归纳以及各自的性质。
易错点10:直角三角形判定方法:三角形面积确实定与底上的高(特别是钝角三角形)。
易错点11:三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。
【中考高分指南】数学(选择+填空)【备战2024年中考·数学考点总复习】(全国通用)三角形与多边形的有关概念及性质一、三角形有关概念及性质1.三角形的分类(1)三角形按角分类:锐角三角形、直角三角形、钝角三角形.(2)三角形按边分类:①一般三角形:三边都不等的三角形;②等腰三角形:两边相等的三角形;③等边三角形:三边都相等的三角形2.三角形的边的关系(1)三角形任意两边之和大于第三边.(2)三角形任意两边之差小于第三边3.三角形的角的关系(1)三角形三个内角的和等于180°;特别地,当有一个内角是90° 时,其余的两个内角互余.(2)三角形的外角和等于360°.(3)三角形的任意一个外角等于和它不相邻的两个内角的和,三角形的任意一个外角大于任意一个和它不相邻的内角4.三角形的中线(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线.(2)一个三角形有三条中线,都在三角形的内部,三条中线交于一点,这点叫做三角形的重心.(3)三角形的一条中线把原三角形分成面积相等的两部分5.三角形的高(1)从三角形的一个顶点向它的对边所在直线作垂线,顶点与垂足之间的线段叫做三角形的高.(2)一个三角形有三条高,可能在三角形内部,也可能在三角形上,还可能在三角形的外部6.三角形的角平分线(1)在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线. 它区别于一个角的平分线在于它是线段,而一个角的平分线是射线.(2)三角形的内心:三角形的三条角平分线相交于一点,这个点叫做三角形的内心.这个点也是这个三角形内切圆的圆心.三角形的内心到三角形三条边的距离相等7.三角形的中位线(1)连接三角形两边的中点的线段叫做三角形的中位线.(2)一个三角形有3条中位线,都在三角形的内部.(3)三角形的中位线平行于第三边,且等于第三边的一半二、多边形1.多边形的内角和、外角和n边形的内角和为(n-2)·180°,外角和为360°.2.正多边形:在平面内,各内角都相等,各边也都相等的多边形叫做正多边形.3.多边形的对角线:在多边形中,连接互不相邻的两个顶点的线段.【考点1】三角形的相关概念与计算【例1】(2024·山东模拟)一位同学用三根木棒两两相交拼成如下图形,则其中符合三角形概念的是( )A. B.C. D.【答案】D【解析】A.三条线段没有首尾顺次相接,不合题意B.三条线段没有首尾顺次相接,不合题意C.三条线段没有首尾顺次相接,不合题意D.不在同一直线上的三条线段首尾顺次相接,是三角形,符合题意【例2】(2024·山东模拟)下列图形中具备稳定性的是( )A. B. C. D.【答案】B【解析】解:A、图形不具备稳定性,不符合题意;B、图形具备稳定性,符合题意;C、图形不具备稳定性,不符合题意;D、图形不具备稳定性,不符合题意;故选:B.根据三角形具有稳定性解答即可.本题考查的是三角形的性质,熟记三角形具有稳定性是解题的关键.【例3】(2023·湖南)下列长度的三条线段,能组成三角形的是( )A. 1,3,4B. 2,2,7C. 4,5,7D. 3,3,6【答案】C【解析】解:∵1+3=4,∴1,3,4不能组成三角形,故A选项不符合题意;∵2+2<7,∴2,2,7不能组成三角形,故B不符合题意;∵4+5>7,∴4,5,7能组成三角形,故C符合题意;∵3+3=6,∴3,3,6不能组成三角形,故D不符合题意,故选:C.根据三角形的三边关系分别判断即可.本题考查了三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.【例4】(2023·天津)如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是( )A. BCB. CEC. ADD. AC【答案】B【分析】连接PC,由已知可得AD垂直平分BC,所以PB=PC,从而BP+EP=PC+PE,显然E,P,C三点共线时取得最小值.【解析】解:如图,连接PC,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PB+PE=PC+PE,∵PE+PC≥CE,∴当P、C、E三点共线时,PB+PE的值最小,最小值为CE,故选B.【例5】(2024·四川模拟)如图,△ABC≌△ADE,∠BAC=40°,∠E=115°,则∠B的度数是( )A. 40°B. 30°C. 45°D. 25°【答案】D【分析】【分析】由全等三角形的性质可得∠C=∠E=115°,再利用三角形的内角和定理即可求解.【解析】解:∵△ABC≌△ADE,∠E=115°,∴∠C=∠E=115°,∵∠BAC=40°,∴∠B=180°−∠C−∠BAC=25°.故选:D.【点评】本题主要考查全等三角形的性质,解答的关键是熟记全等三角形的性质:全等三角形的对应角相等.三角形三边关系“三角形两边之和大于第三边,两边之差小于第三边”的应用(1)在实际应用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形.(2)在实际应用中,已知两边,则第三边的取值范围为:两边之差<第三边<两边之和.(3)所有通过周长相加减求三角形的边,求出两个答案的,要注意检查每个答案能否组成三角形.1.(2023·湖南)下列长度的各组线段能组成一个三角形的是( )A. 1cm,2cm,3cmB. 3cm,8cm,5cmC. 4cm,5cm,10cmD. 4cm,5cm,6cm【答案】D【解析】解:A、∵1+2=3,∴长度为1cm,2cm,3cm的三条线段不能组成三角形,本选项不符合题意;B、∵3+5=8,∴长度为3cm,8cm,5cm的三条线段不能组成三角形,本选项不符合题意;C、∵4+5<10,∴长度为4cm,5cm,10cm的三条线段不能组成三角形,本选项不符合题意;D、∵4+5>6,∴长度为4cm,5cm,6cm的三条线段能组成三角形,本选项符合题意;故选:D.根据两边之和大于第三边判断即可.本题考查的是三角形的三边关系,熟记三角形两边之和大于第三边是解题的关键.2.(2024·全国模拟)已知a,b为等腰三角形的两边长,且a,b满足√ 2a−3b+5+(2a+3b−13)2=0,则此等腰三角形的周长为( )A. 8B. 6或8C. 7D. 7或8【答案】D【解析】解:∵√ 2a−3b+5+(2a+3b−13)2=0,∴{2a−3b+5=02a+3b−13=0,解得:{a=2b=3,当b 为底时,三角形的三边长为2,2,3,周长为7;当a 为底时,三角形的三边长为2,3,3,则周长为8,∴等腰三角形的周长为7或8,故选:D .首先根据√ 2a −3b +5+(2a +3b −13)2=0,并根据非负数的性质列方程求得a 、b 的值,然后求得等腰三角形的周长即可.本题考查了等腰三角形的性质,三角形三边关系定理,二元一次方程方程组,关键是根据2,3分别作为腰,由三边关系定理,分类讨论.3.(2024·河北模拟)设等腰三角形的一边长为5,另一边长为10,则其周长为( )A. 15B. 20C. 25D. 20或25【答案】C【分析】题目给出等腰三角形有两条边长为5和10,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.【解析】解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25.故选C .【考点2】三角形的角平分线、中线、高【例1】(2023·四川)如图,在△ABC 中,∠CAD =90°,AD =3,AC =4,BD =DE =EC ,点F 是AB 边的中点,则DF =( )A. 54B. 52C. 2D. 1【答案】A【解析】解:∵∠CAD =90°,AD =3,AC =4,∴DC =√ AD 2+AC 2=√ 32+42=5,∵DE =EC ,DE +EC =DC =5,∴DE =EC =AE =52,∵BD =DE ,点F 是AB 边的中点,∴DF =12AE =54.故选:A .先在直角△CAD中利用勾股定理求出DC=5,再根据直角三角形斜边上的中线等于斜边的一半得出AE=52,最后利用三角形的中位线定理求出DF=12AE=54.本题考查了勾股定理,直角三角形斜边上的中线的性质,三角形的中位线定理,准确识图并且熟记相关定理与性质是解题的关键.【例2】(2024·陕西模拟)如图,AD是△ABC的中线,AB=5,AC=4.若△ACD的周长为10,则△ABD的周长为( )A. 8B. 9C. 10D. 11【答案】D【分析】本题考查了三角形的中线,解题关键是求出AD+DC的长.根据三角形的中线的定义可得BD=CD,先求得AD+DC=6,然后求出△ABD的周长为AB+AD+DC,进而即可得到答案.【解析】解:△ACD的周长=AD+DC+AC=AD+DC+4=10,∴AD+DC=6,∵AD是ΔABC的中线,∴BD=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=5+6=11.故选:D.【例3】(2024·河南模拟)如图,CD⊥AB于点D,已知∠ABC是钝角,则( )A. 线段CD是△ABC的AC边上的高线B. 线段CD是△ABC的AB边上的高线C. 线段AD是△ABC的BC边上的高线D. 线段AD是△ABC的AC边上的高线【答案】B【分析】本题考查的是三角形的高的概念,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.根据三角形的高的概念判断即可.【解析】解:A.线段CD 是△ABC 的AB 边上的高线,故本选项说法错误,不符合题意;B .线段CD 是△ABC 的AB 边上的高线,本选项说法正确,符合题意;C .线段AD 不是△ABC 的边上高线,故本选项说法错误,不符合题意;D .线段AD 不是△ABC 的边上高线,故本选项说法错误,不符合题意;故选B .【例4】(2024·全国模拟)如图,AD ,CE 分别是△ABC 的中线和角平分线,若AB =AC ,∠CAD =20∘,则∠ACE 的度数是( )A. 20∘B. 35∘C. 40∘D. 70∘【答案】B 【分析】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB =70°是解题的关键.先根据等腰三角形的性质以及三角形内角和定理求出∠CAB =2∠CAD =40°,∠B =∠ACB =12(180°−∠CAB)=70°.再利用角平分线定义即可得出∠ACE =12∠ACB =35°.【解析】解:∵AD 是△ABC 的中线,AB =AC ,∠CAD =20°,∴∠CAB =2∠CAD =40°,∠B =∠ACB =12(180°−∠CAB)=70°.∵CE 是△ABC 的角平分线,∴∠ACE =12∠ACB =35°.故选B .三角形中的重要线段∠CAD ∠BAC EC=½BC∠AFC=90°1.(2024·河南模拟)若线段AM,AN分别是△ABC的BC边上的高线和中线,则( )A. AM>ANB. AM≥C. AM<AND. AM≤AN 【答案】D【分析】此题考查垂线段问题,关键是根据垂线段最短解答.【解析】解:因为线段AM,AN分别是△ABC的BC边上的高线和中线,所以AM≤AN,故选:D.2.(2024·河北模拟)如图,将△ABC折叠,使点C落在BC边上C′处,展开后得到折痕l,则l是△ABC的( )A. 高B. 中线C. 中位线D. 角平分线【答案】A【解析】解:∵将△ABC折叠,使点C落在BC边上C′处,展开后得到折痕l,∴l⊥BC,即l是△ABC的高,故选:A.根据折叠性质可知,l⊥BC,由三角形高的定义即可得到答案.本题考查折叠性质及三角形高的定义,熟记相关性质及定义是解决问题的关键.3.(2024·广东模拟)如图,△ABC中,CD是AB边上的中线,AC=9cm,BC=3cm,那么△ACD和△BCD的周长的差是( )A. 3cmB. 6cmC. 12cmD. 无法确定【答案】B【解析】解:∵CD是AB边上的中线,∴AD=DB,∴△ACD的周长−△BCD的周长=(AC+CD+AD)−(BC+CD+BD)=AC−BC=9−3=6(cm),故选:B.根据三角形的中线的概念得到AD=DB,根据三角形的周长公式计算,得到答案.本题考查的是三角形的中线的概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.4.(2024·福建模拟)如图所示,AD,AE分别为△ABC的高线和角平分线,且∠B=76°,∠C=36°,则∠DAE 的度数为( )A. 20°B. 18°C. 38°D. 40°【答案】A【分析】此题主要考查了高线以及角平分线的定义,得出∠BAE的度数是解题关键.根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠BAE=34°,进而得出∠DAE的度数,进而得出答案.【解析】解:∵AD,AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,∴∠BAC=180°−∠B−∠C=68°,∠BAD=90°−76°=14°,∴∠BAE=12∠BAC=12×68°=34°,∴∠DAE=34°−14°=20°.故选A.【考点3】三角形的内心、外心【例1】(2024·河南模拟)如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕AD,再将△ABC折叠,使BC边落在AB边上,展开后得到折痕BE,若AD与BE的交点为O,则点O是( )A. △ABC的外心B. △ABC的内心C. △ABC的重心D. △ABC的中心【答案】B【解析】解:由题意得:∠BAD=∠CAD,∠ABE=∠CBE,∴O为角平分线的交点,则点O是△ABC的内心.故选:B.根据折叠的性质可知点O为角平分线的交点,可得结论.本题考查了翻折变换以及角平分线的性质,解题的关键是根据翻折变换的性质得出O为角平分线的交点.【例2】(2024·全国模拟)如图,在△ABC中,点D和E分别是边AB和AC的中点,连接DE,DC与BE交于点O,若△DOE的面积为1,则△ABC的面积为( )A. 6B. 9C. 12D. 13.5【答案】C【解析】解:∵点D和E分别是边AB和AC的中点,∴O点为△ABC的重心,∴OB=2OE,∴S△BOD=2S△DOE=2×1=2,∴S△BDE=3,∵AD=BD,∴S△ABE=2S△BDE=6,∵AE=CE,∴S△ABC=2S△ABE=2×6=12.故选C.利用O点为△ABC的重心得到OB=2OE,利用三角形面积公式得到S△BOD=2S△DOE=2,再利用AD=BD得到S△ABE=2S△BDE=6,然后利用AE=CE得到S△ABC=2S△ABE=12.本题考查了三角形的重心的性质的运用,三角形的重心是三角形三边中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1.由△的三线组成的几个“心”:△三边中线交点—→重心—→性质:△的重心到一中线中点的距离=重心到这条中线定点距离的一半;△三条角平分线交点—→内心—→性质:△的内心到△三边的距离(垂线段)相等;△三边中垂线交点—→外心—→性质:△的外心到△三个顶点的距离(连接)相等;1.(2024·河北模拟)如图,在4×4的正方形格纸中,△ABC的顶点均在格点上,BC边与网格线交于点D,AC边过格点E,连接AD,BE相交于点O,则点O为△ABC的( )A. 重心B. 外心C. 内心D. 以上结果均不对【答案】A【解析】解:由图可知,点D、E是BC、AC的中点,∴AD、BE是△ABC的中线,∴点O是△ABC的重心,故选:A.根据三角形三条中线的交点是三角形的重心进行判断即可.本题考查了三角形的重心,熟练掌握三角形重心的定义是解题的关键.2.(2024·山东模拟)已知:如图1,在△ABC中,AB=AC.小明的作法如图2所示,则他作出的两条线的交点O是△ABC的( )A. 中心B. 内心C. 外心D. 重心【答案】C【解析】解:按如图作图痕迹可知,AD为∠BAC的角平分线,∵AB=AC,∴AD也是BC边的中线、高线,即BC边的垂直平分线,∵另一痕迹是AB边的垂直平分线,∴点O为边的垂直平分线的交点,∴点O为外心,故选:C.根据等腰三角形的“三线合一”定理可得,AD是垂直平分线,由另一痕迹是AB边的垂直平分线得点O为外心.本题考查了外心的判断,由痕迹判断尺规作图是解题关键.3.(2024·安徽模拟)下列说法中正确的是( )①等边三角形三条高的交点就是它的重心;②三角形的重心到一边的距离等于这边上中线长的三分之一;③三角形的重心到一边中点的距离等于这边上中线长的三分之一;④三角形的重心到一边的距离等于这边上高的三分之一A. ①③④B. ②③④C. ①②③D. ①②③④【答案】A【解析】解:①等边三角形三条高的交点既是它的垂心,也是重心,故正确;③三角形的重心到一边中点的距离等于这边上中线长的三分之一,故正确;如图,O为重心,过点O和点A分别作BC的垂线,垂足为E,F,则OE//AF,则△ODE∽△ADF,∴ODAD =OEAF=13,即三角形的重心到一边的距离等于这边上高的三分之一,故②错误,④正确;故选:A.根据三角形重心的性质分别判断,利用相似三角形的判定和性质判断相应推论.本题考查了三角形的重心,掌握相似三角形的判定和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.【考点4】三角形的中位线定理【例1】(2023·云南)如图,A,B两点被池塘隔开,A,B,C三点不共线.设AC,BC的中点分别为M,N.若MN=3米,则AB=( )A. 4米B. 6米C. 8米D. 10米【答案】B【解析】解:∵点M,N分别是AC和BC的中点,∴AB=2MN=6(m),故选:B.根据三角形中位线定理计算即可.本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.【例2】(2023·四川)如图,菱形ABCD的对角线AC与BD相交于点O,E为边BC的中点,连结OE.若AC=6,BD=8,则OE=( )A. 2B. 52C. 3D. 4【答案】B【解析】解:∵四边形ABCD是菱形,∴OC=12AC,OB=12BD,AC⊥BD,∵AC=6,BD=8,∴OC=3,OB=4,∴CB=√ OB2+OC2=5,∵E为边BC的中点,∴OE=12BC=52.故选:B.由菱形的性质得到OC=12AC=3,OB=12BD=4,AC⊥BD,由勾股定理求出BC的长,由直角三角形斜边中线的性质,即可求出OE的长.本题考查菱形的性质,直角三角形斜边的中线,勾股定理,关键是由菱形的性质求出OC,OB的长,由勾股定理求出BC的长,由直角三角形斜边的中线的性质即可求出OE的长.【例3】(2023·辽宁)如图,AC,BC为⊙O的两条弦,D、G分别为AC,BC的中点,⊙O的半径为2.若∠C=45°,则DG的长为( )A. 2B. √ 3C. 32D. √ 2【答案】D【解析】解:如图,连接AO、BO、AB,∵∠C=45°,∴∠AOB=2∠C=90°,∵⊙O的半径为2,∴AO=BO=2,∴AB=2√ 2,∵点D、E分别是AC、BC的中点,∴DE=12AB=√ 2.故选:D.先根据圆周角定理得到∠AOB=2∠ACB=90°,则可判断△OAB为等腰直角三角形,然后根据勾股定理可得AB=2√ 2,再根据三角形的中位线定理可得DE=√ 2.此题主要考查了三角形的中位线定理,以及勾股定理,圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.三角形的中位线平行于第三边且等于第三边的一半1.(2023·四川)如图,在Rt△ABC中,AB=6cm,BC=8cm,D、E分别为AC、BC中点,连接AE、BD相交于点F,点G在CD上,且DG:GC=1:2,则四边形DFEG的面积为( )A. 2cm2B. 4cm2C. 6cm2D. 8cm2【答案】B【解析】解:连接DE,如图:∵D、E分别为AC、BC中点,∴DE是△ABC的中位线,∴DE=12AB=3cm,DE//AB,∴△DEF∽△BAF,∴S△DEF S△ABF =(DEAB)2=14,EFAF=DEAB=12,∴S△BEF S△ABF =EFAF=12,∴S△ABF=23S△ABE=23×12AB⋅BE=23×12×6×12×8=8(cm2),∴S△DEF=14S△ABF=2(cm2),∵S△DEC=12DE⋅CE=12×3×4=6(cm2),DG:GC=1:2,∴S△DEG=13S△DEC=2(cm2),∴S四边形DFGE=S△DEF+S△DEG=4(cm2),∴四边形DFEG 的面积为4cm 2, 故选:B .连接DE ,由D 、E 分别为AC 、BC 中点,可得DE =12AB =3cm ,DE//AB ,即得△DEF ∽△BAF ,故S△DEF S △ABF=(DE AB)2=14,EF AF=DE AB=12,可得S △ABF =23S △ABE =23×12AB ⋅BE =8(cm 2),故S △DEF =14S △ABF =2(cm 2),又S △DEC =12DE ⋅CE =6(cm 2),DG :GC =1:2,可得S △DEG =13S △DEC =2(cm 2),从而S 四边形DFGE =S △DEF +S △DEG =4(cm 2),本题考查相似三角形判定与性质,三角形中位线及应用,解题的关键是掌握相似三角形的性质及应用. 2.(2023·内蒙古)如图,⊙O 是锐角三角形ABC 的外接圆,OD ⊥AB ,OE ⊥BC ,OF ⊥AC.垂足分别为D ,E ,F ,连接DE ,EF ,FD.若DE +DF =6.5,△ABC 的周长为21,则EF 的长为( ) A. 8 B. 4 C. 3.5 D. 3 【答案】B【解析】解:∵OD ⊥AB ,OE ⊥BC ,OF ⊥AC , ∴AD =BD ,AF =CF ,BE =CE , ∴DE ,DF ,EF 是△ABC 的中位线, ∴DE =12AC,DF =12BC,EF =12AB ,∴DE +DF +EF =12(AB +BC +AC)=12×21=10.5, ∵DE +DF =6.5, ∴EF =10.5−6.5=4, 故选:B .根据垂径定理得到AD =BD ,AF =CF ,BE =CE ,根据三角形的中位线定理得到DE +DF +EF =12(AB +BC +AC)=12×21=10.5,于是得到结论.本题考查了三角形外接圆与外心,三角形中位线定理,垂径定理,熟练掌握三角形中位线定理是解题的关键.【考点5】多边形的内角和与外角和【例1】(2023·湖南)七边形的内角和为( ) A. 540°B. 720°C. 900°D. 1 080°【答案】C【分析】本题考查了多边形的内角和定理.熟记“n边形的内角和为(n−2)·180°”是解题的关键.利用多边形的内角和=(n−2)·180°即可解决问题.【解析】解:根据多边形的内角和可得:(7−2)×180°=900°.故选C.【例2】(2023·甘肃)如图1是我国古建筑墙上采用的八角形空窗,其轮廓是一个正八边形,窗外之境如同镶嵌于一个画框之中,如图2是八角形空窗的示意图,它的一个外角∠1=( )A. 45°B. 60°C. 110°D. 135°【答案】A【解析】解:∵正八边形的外角和为360°,∴每一个外角为360°÷8=45°.故选:A.由多边形的外角和定理直接可求出结论.本题考查了多边形外角和定理,掌握外角和定理是解题的关键.【例3】(2023·北京)若正多边形的一个外角是60∘,则该正多边形的内角和为( )A. 360∘B. 540∘C. 720∘D. 900∘【答案】C【分析】本题主要考查的是多边形的内角和和外角和定理的有关知识,根据多边形的外角和等于360°,先求出这个多边形的边数,然后再利用多边形的内角和公式进行求解即可.【解析】解:由多边形的外角和为360∘可知,这个正多边形的边数为360∘÷60∘=6,由多边形内角和公式可知内角和为180∘×(6−2)=720∘.故选C.(1)多边形的内角和:n边形的内角和等于(n-2)·180°;(2)多边形的外角和:360°.1.(2023·湖北)五边形的外角和为( )A. 180°B. 360°C. 540°D. 720°【答案】B【分析】此题考查了多边形内角与外角,比较简单,只要识记多边形的外角和是360°即可.多边形外角和都等于360°,则四边形的外角和为360度.【解析】解:∵多边形外角和=360°,∴四边形的外角和为360°.故选:B.2.(2023·广东)如图,直线AB//CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的大小是.【答案】40°【解析】如图,延长PM、EG K,PM延长线交AB于点L.∵AB//CD,∴∠ALM=∠LND=∠CNP=50°,∴∠MKG=∠BFG+∠ALM=80°.∵∠HMN=30°,∴∠HMK=150°∵∠FGH=90°,∴∠KGH=90°,∴∠GHM=360°−∠HMK−∠MKG−∠KGH=360°−150°−80°−90°=40°.3.(2023·江苏)如图,五边形ABCDE是正五边形,l1//l2,若∠1=20°,则∠2=_____°.【答案】56【分析】本题主要考查了平行线的性质以及多边形的内角与外角,解题的关键是连接AC,利用内错角相等建立等量关系.连接AC,依据平行线的性质,即可得到等式∠2+∠ACB=∠1+∠CAE,据此可得∠2的度数.【解析】解:如图所示,连接AC,∵五边形ABCDE是正五边形,∴∠B=∠BAE=108°,∠ACB=∠CAB=36°,∴∠CAE=108°−36°=72°,∵l1//l2,∴∠2+∠ACB=∠1+∠CAE,即∠2+36°=20°+72°,解得∠2=56°,故答案为56.4.(2023·山东)已知一个多边形的内角和为540°,则这个多边形是边形.【答案】五【分析】本题考查了多边形的内角和定理,熟记公式是解题的关键.根据多边形的内角和公式求出边数即可.【解析】解:设多边形的边数是n,则(n−2)·180°=540°,解得n=5,故答案为五.。
中考重点三角形的垂直平分线定理中考重点:三角形的垂直平分线定理在中考数学考试中,三角形是一个常见的考点。
其中,三角形的垂直平分线定理是一个重要的概念。
下面,本文将详细介绍三角形的垂直平分线定理及其相关性质。
一、三角形的垂直平分线定理的定义垂直平分线定理是指:如果一条直线同时垂直于一条边且平分这条边,那么它一定与这个三角形的对角线相交于对角线的中点。
二、垂直平分线的性质1. 垂直平分线将边分成相等的两段。
根据垂直平分线定理,垂直平分线将三角形的一条边分成两段,并且这两段长度相等。
这是因为垂直平分线平分了边,同时也垂直于边,所以可以得出这个性质。
2. 垂直平分线的交点是对边的中点。
垂直平分线与三角形的对边相交于对边的中点。
这是由垂直平分线定理的定义得出的。
三、垂直平分线的应用1. 证明角平分线与垂直平分线的关系。
在三角形中,如果某条线段既是角的平分线又是相应边的垂直平分线,那么它必定是这个角的平分线,即它与对边的交点是角的平分线的中点。
2. 判断三角形相似的条件之一。
如果两个三角形有一个顶点相同,并且它们相对于这个顶点的两条边被一条直线所垂直平分,那么这两个三角形是相似的。
这是因为两个三角形的对应边被这条直线垂直平分,并且相等,符合三角形相似的条件之一。
3. 求解直角三角形的边长问题。
在求解直角三角形的边长问题中,垂直平分线的性质可以被充分利用。
根据垂直平分线将直角边分成相等的两段,可以通过已知条件求解未知边长。
四、三角形垂直平分线定理的应用举例例1:如图所示,ABC是一个等边三角形,AD是三角形ABC的一条边AB的垂直平分线,证明AD是边BC的垂直平分线。
解:由于ABC是一个等边三角形,所以AD是边AB的垂直平分线,则AD与弧BC的交点为弧BC的中点。
又因为BC = AC,所以AD也是边BC的垂直平分线。
例2:如图所示,ABCD是一个平行四边形,E是边AD的中点,证明BE是边CD的垂直平分线。
解:由于ABCD是一个平行四边形,所以AE = ED。
考点13 三角形一、三角形的基础知识1.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.2.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.3.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.二、全等三角形1.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(4)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.三、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.四、等边三角形1.定义:三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°.3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.五、直角三角形与勾股定理1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.2.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.(2)勾股定理的逆定理:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.六、锐角三角函数与解直角三角形1.锐角三角函数的定义在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b,正弦:sin A=∠的对边=斜边A ac;余弦:cos A=∠的邻边=斜边A bc;正切:tan A=∠的对边=邻边A ab.2.特殊角的三角函数值3.解直角三角形解直角三角形的常用关系:在Rt△ABC中,∠C=90°,则:(1)三边关系:a2+b2=c2;(2)两锐角关系:∠A+∠B=90°;(3)边与角关系:sin A=cos B=ac,cos A=sin B=bc,tan A=ab;(4)sin2A+cos2A=1.4.解直角三角形的应用常用知识(1)仰角和俯角仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角.俯角:在视线与水平线所成的角中,视线在水平线下方的角叫做俯角.(2)坡度和坡角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i=hl.坡角:坡面与水平面的夹角叫做坡角,记作α,i=tanα.坡度越大,α角越大,坡面越陡.(3)方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.考向一三角形的三边关系在判断三条线段能否组成一个三角形时,可以根据两条较短线段的长度之和是否大于第三条线段的长度来判断.典例1 下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是A.1 cm,2 cm,3 cm B.2 cm,2 cm,4 cm C.2 cm,3 cm,4 cm D.1 cm,2 cm,5 cm【答案】C1.若一个三角形的三条边长为别是2,2x-3,6,则x的取值范围是__________.考向二 三角形的内角和外角在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.典例2 如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD ∥BC ;②∠ACB =2∠ADB ;③∠ADC +∠ABD =90°;④∠BDC =∠BAC .其中正确的结论有A .1个B .2个C .3个D .4个【答案】C【解析】①∵AD 平分△ABC 的外角∠EAC ,∴∠EAD =∠DAC ,∵∠EAC =∠ACB +∠ABC ,且∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,故①正确;②由①可知AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC , ∴∠ABD =∠DBC ,∴∠ABC =2∠ADB ,∵∠ABC =∠ACB ,∴∠ACB =2∠ADB ,故②正确;③在△ADC 中,∠ADC +∠CAD +∠ACD =180°,∵CD 平分△ABC 的外角∠ACF ,∴∠ACD =∠DCF ,∵AD ∥BC ,∴∠ADC =∠DCF ,∠ADB =∠DBC ,∠CAD =∠ACB ,∴∠ACD =∠ADC ,∠CAD =∠ACB =∠ABC =2∠ABD ,∴∠ADC +∠CAD +∠ACD =∠ADC +2∠ABD +∠ADC =2∠ADC +2∠ABD =180°,∴∠ADC +∠ABD =90°,故③正确; ④∵∠BAC +∠ABC =∠ACF ,∴12∠BAC +12∠ABC =12∠ACF ,∵∠BDC +∠DBC =12∠ACF ,∴12∠BAC + 12∠ABC =∠BDC +∠DBC ,∵∠DBC =12∠ABC ,∴12∠BAC =∠BDC ,即∠BDC =12∠BAC ,故④错误,故选C .【名师点睛】本题主要考查了三角形的内角和、平行线的判定和性质、三角形外角的性质等知识,解题的关键是正确找各角的关系.2.如图,CE 是△ABC 的外角ACD ∠的平分线,若3560,B ACE ∠=︒∠=︒,则A ∠=__________.3.如图,在△ABC 中,∠ACB =68°,若P 为△ABC 内一点,且∠1=∠2,则∠BPC =__________.考向三 三角形中的重要线段三角形的一条中线将这个三角形分成面积相等的两个三角形.典例3 在△ABC 中,AB =3,BC =4,AC =2,D ,E ,F 分别为AB ,BC ,AC 中点,连接DF ,FE ,则四边形DBEF 的周长是A .5B .7C .9D .11【答案】B【名师点睛】三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 典例4 如图,点G 为△ABC 的重心,则S △ABG ∶S △ACG ∶S △BCG 的值是A .1∶2∶3B .2∶1∶2C .1∶1∶1D .无法确定【答案】C【解析】如图,分别延长AG 、CG 、BG ,交BC 、AB 、AC 于点D 、F 、E ,根据三角形重心的定理得到AD 、BE 、CF 是△ABC 的中线,根据三角形的中线把三角形分为面积相等的两个三角形可得,ABD ACD BDG CDG S S S S ∆∆∆==,即可得ABG ACG S S ∆∆=,同理可得ABG BCG S S ∆∆=,所以=ABG BCG ACG S S S ∆∆∆=,即S△ABG∶S△ACG∶S△BCG=1∶1∶1,故选C.4.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC交AC于D点,AB=4,BD=5,点P是线段BC上的一动点,则PD的最小值是__________.考向四全等三角形1.判定两个三角形全等一般可以从三个角度考虑:(1)从三边考虑;(2)从两边和它们的夹角考虑;(3)从两角和夹边考虑.2.轴对称、平移、旋转前后的两个图形全等.典例5 如图,已知∠ADB=∠CBD,下列所给条件不能证明△ABD≌△CDB的是A.∠A=∠C B.AD=BC C.∠ABD=∠CDB D.AB=CD【答案】D【名师点睛】本题考查了全等三角形的判定方法,①三边对应相等的两个三角形全等,简记为“SSS”;②两边及其夹角对应相等的两个三角形全等,简记为“SAS ”;③两角及其夹边对应相等的两个三角形全等,简记为“ASA ”;④两角及其中一角的对边对应相等的两个三角形全等,简记为“AAS ”;⑤斜边及一直角边对应相等的两个三角形全等,根据这几种判定方法解答即可.5.如图,正方形ABCD 中,BD 是对角线,将△DCB 绕点D 顺时针旋转45︒得到△DGH ,HG 交AB 于点E ,图中全等三角形共有A .2对B .3对C .4对D .5对6.如图,在△BCE 中,AC ⊥BE ,AB =AC ,点A 、点F 分别在BE 、CE 上,BF 、AC 相交于点D ,BD =CE .求证:AD =AE .考向五 等腰三角形1.等腰直角三角形的两个底角相等且等于45°.2.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). 3.等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a . 4.等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°-2∠B ,∠B =∠C =2180A∠-︒.典例6 等腰三角形的一个内角为70°,它的一腰上的高与底边所夹的角的度数是A.35°B.20°C.35°或20°D.无法确定【答案】C【解析】70°是顶角,它的一腰上的高与底边所夹的角的度数是35°,70°是底角,顶角是40°,它的一腰上的高与底边所夹的角的度数是20°,故选C.典例7 如图,等腰三角形ABC中,∠BAC=90°,在底边BC上截取BD=AB,过D作DE⊥BC交AC于E,连接AD,则图中等腰三角形的个数是A.1 B.2 C.3 D.4【答案】D【名师点睛】此题考查了等腰三角形的性质和判定以及三角形的内角和定理,由已知的条件利用相关的性质,求得各个角的度数是正确解题的关键.7.等腰三角形的周长为15 cm,其中一边长为3 cm.则该等腰三角形的腰长为A.3 cm B.6 cm C.3 cm或6 cm D.3 cm或9 cm考向六直角三角形与勾股定理在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.典例8 下列几组数:①6,8,10;②7,24,25;③9,12,15;④n2-1,2n,n2+1(n)(n是大于1的整数),其中是勾股数的有A.1组B.2组C.3组D.4组【答案】D【解析】①∵62+82=100=102,∴6、8、10是勾股数;②∵72+242=252,∴7,24,25是勾股数;③∵92+122=152,∴9,12,15是勾股数;④∵(n2-1)2+(2n)2=(n2+1)2,∴n2-1,2n,n2+1(n)(n是大于1的整数)是勾股数,故选D.【名师点睛】本题考查了勾股数的判断,解题的关键是根据勾股数的定义分别对每一组数进行分析.典例9 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若∠B=30°,BD=6,则CD的长为__________.【答案】3【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°.又AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠BAD=∠B=30°,∴AD=BD=6,∴CD=12AD=3,故答案为:3.8.如图,一圆柱高8 cm,底面半径为6πcm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是A.12 cm B.10 cmC.8 cm D.6 cm9.已知:如图,在Rt△ABC中,∠ACB=90°,BC3tan∠ABC=2,点D是AC的中点.(1)求线段BD的长;(2)点E在边AB上,且CE=CB,求△ACE的面积.考向七锐角三角函数与解直角三角形解直角三角形的应用可解决的问题(1)测量物体的高度;(2)测量河的宽度;(3)解决航海航空问题;(4)解决坡度问题;(5)解决实际生活中其他问题.典例10 在△ABC中,∠C=90°,sin A=1213,则tan A的值为A.1213B.513C.125D.1312【答案】C【解析】∵sin A=BCAB=1213,∴设BC=12x,AB=13x,由勾股定理得:AC=22AB BC=5x,∴tan A=BCAC=125,故选C.典例11 某山的山顶B处有一个观光塔,已知该山的山坡面与水平面的夹角∠BDC为30°,山高BC为100米,点E距山脚D处150米,在点E处测得观光塔顶端A的仰角为60°,则观光塔AB的高度是A.50米B.100米C.125米D.150米【答案】A【解析】如图,作EF⊥AC于F,EG⊥DC于G,在Rt△DEG中,EG=12DE=75,∴BF=BC-CF=BC-CE=100-75=25,EF=tan tan30BF BF BEF =∠︒=253,∵∠AEF =60°,∴∠A =30°,∴AF =253tan 33EF A ==75, ∴AB =AF -BF =50(米),故观光塔AB 的高度为50米,故选A .10.正方形网格中,△ABC 如图放置,则sin ∠BAC =A .13B .13C .13D .121311.如图,某湖心岛上有一亭子A ,在亭子A 的正东方向上的湖边有一棵树B ,在这个湖心岛的湖边C 处测得亭子A 在北偏西45︒方向上,测得树B 在北偏东36︒方向上,又测得B 、C 之间的距离等于200米,求A 、B 之间的距离(结果精确到1米).(参考数据:2 1.414≈,sin360.588︒≈,cos360.809︒≈,tan360.727︒≈,cot36 1.376︒≈)1.三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形2.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是A.50°B.60°C.100°D.120°3.如图,△ABC中,∠A=30°,tan B=32,AC=23,则AB的长为A.3+3B.2+23C.5 D.9 24.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB 于G,连接EF,则线段EF的长为__________.5.已知直角三角形的两条边分别是5和12,则斜边上的中线的长度为__________.6.如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为__________.7.如图,测量河宽AB(河的两岸平行),在C点测得∠ACB=32°,BC=60 m,则河宽AB约为__________m.(用科学计算器计算,结果精确到0.1)8.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)作图:在△BED中作出BD边上的高EF和BE边上的高DG;(3)若△ABC的面积为40,BD=5,则△BDE中BD边上的高EF为多少?若BE=6,求△BED中BE 边上的高DG为多少?9.如图,点D,E分别在AB,AC上,且AD=AE,∠BDC=∠CEB.求证:BD=CE.10.如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.11.如图,一架2.5 m长的梯子斜立在竖直的墙上,此时梯足B距底端O为0.7 m.(1)求OA的长度;(2)如果梯子顶端下滑0.4米,则梯子将滑出多少米?12.如图,小华站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时测得小船C的俯角是∠FDC=30°.若小华的眼睛与地面的距离是3米,BG=1.5米,BG平行于AC所在的直线,迎水坡i=4∶3,坡长AB=10米,点A、B、C、D、F、G在同一平面内,则此时小船C到岸边的距离CA的长是多少?(结果保留根号)1.(2017•大庆)在△ABC中,∠A,∠B,∠C的度数之比为2∶3∶4,则∠B的度数为A.120°B.80°C.60°D.40°2.(2017•广州)如图,Rt△ABC中,159015tan8,,C BC A∠=︒==,则AB=__________.3.(2017•抚顺)如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为__________米(结果保留根号).4.(2017•大庆)如图,已知一条东西走向的河流,在河流对岸有一点A ,小明在岸边点B 处测得点A 在点B 的北偏东30°方向上,小明沿河岸向东走80 m 后到达点C ,测得点A 在点C 的北偏西60°方向上,则点A 到河岸BC 的距离为__________.5.(2017•广州)如图,点E ,F 在AB 上,,,AD BC A B AE BF =∠=∠=.求证:△ADF ≌△BCE .6.(2017•张掖)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A ,B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得∠DAC =45°,∠DBC =65°.若AB =132米,求观景亭D 到南滨河路AC 的距离(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14).7.(2017•重庆A卷)在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图①,若AB=32,BC=5,求AC的长;(2)如图②,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.1.【答案】3.5<x<5.5【解析】由三角形三边关系得4<2x-3<8,解得3.5<x<5.5,故答案为:3.5<x<5.5.4.【答案】3【解析】由勾股定理知AD22543-=,BD平分∠ABC交AC于D点,所以PD=AD最小,PD=3,变式拓展故答案为:3.5.【答案】C【解析】∵四边形ABCD是正方形,∴△ABD≌△CBD.由旋转的性质得,△CBD≌GHD,DH=BD,DG=CD,∴△ABD≌△GHD,∴DH-AD=BD-DG,∴AH=BG.在△AHE和△BGE中,∵∠AEH=∠BEG,∠HAE=∠AGB=90°,AH=BG,∴△AHE≌△GBE,∴有4对三角形全等,故选C.6.【解析】∵AC⊥BE,∴∠BAD=∠CAE=90°,在Rt△ABD和Rt△ACE中,BD CE AB AC=⎧⎨=⎩,∴Rt△ABD≌Rt△ACE(HL),∴AD=AE.7.【答案】B【解析】当3 cm是底时,则腰长是(15-3)÷2=6(cm),此时能够组成三角形;当3 cm是腰时,则底是15-3×2=9(cm),此时3+3<9,不能组成三角形,应舍去,故选B.8.【答案】B【解析】如图,底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:12×2π×6π=6(cm),展开得:∵BC=8 cm,AC=6 cm,根据勾股定理得:AB=2268+=10(cm),故选B.9.【解析】(1)Rt△ABC中,∠ACB=90°,BC=3,tan∠ABC=2,∴AC=6,∵点D是AC的中点,∴CD=12AC=162,∴Rt△BCD中,BD=2232 2BC CD+=.(2)如图,过C作CH⊥AB于H,∵BC3tan∠ABC=2,∴CH =2,BH =1,∵CE =CB ,∴EH =BH =1,∵∠ACB =90°,BC =3,AC =6,∴AB =3,∴AE =3-2=1,∴△ACE 的面积=12×AE ×CH =12×1×2=22.11.【解析】如图,过点C 作CH AB ⊥,垂足为点H ,由题意,得45ACH ∠=︒,36BCH ∠=︒,200BC =, 在Rt △BHC 中,sin BH BCH BC ∠=,∴sin36200BH ︒=, ∵sin360.588︒≈,∴117.6BH ≈,又cos HC BCH BC ∠=,∴cos36200HC ︒=, ∵cos360.809︒≈,∴161.8HC ≈,在Rt △AHC 中,tan AHACH HC∠=, ∵45ACH ∠=︒,∴AH HC =,∴161.8AH ≈, 又AB AH BH =+,∴279.4AB ≈,∴279AB ≈(米). 答:A 、B 之间的距离为279米.1.【答案】C【解析】∵原式可化为a 2+b 2=c 2,∴此三角形是直角三角形,故选C . 2.【答案】A【解析】根据全等三角形的性质求出∠B =∠EDF =20°和∠C =∠F =60°,根据三角形内角和定理求出 ∠BAC =180°-∠B -∠C =100°,根据角平分线定义求出∠DAC =12∠BAC =50°,故选A . 3.【答案】C【解析】如图,作CD ⊥AB 于D .在直角三角形ACD 中,∠A =30°,AC =23,∴CD =3,AD =3. 在直角三角形BCD 中,tan B =3,∴BD =tan CD B =2.∴AB =AD +BD =5,故选C .4.【答案】1【解析】在△AGF 和△ACF 中,GAF CAFAF AF AFG AFC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGF ≌△ACF ,∴AG =AC =4,GF =CF ,则BG =AB −AG =6−4=2,又∵BE =CE ,∴EF 是△BCG 的中位线,∴EF =12BG =1,故答案为:1. 5.【答案】6或6.5【解析】分两种情况:①5和12是两条直角边,根据勾股定理求得斜边为13,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6.5;②5是直角边,12为斜边,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6,故答案为:6或6.5. 6.【答案】60°考点冲关【解析】∵△ABC是等边三角形,∴∠A=∠B=60°,∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=360°−∠A−∠AED−∠AFD=360°−60°−150°−90°=60°,故答案为:60°.7.【答案】37.5【解析】由BC求AB,可利用tan32°,得到AB=BC•tan32°,代入数值即可求出AB=BC•tan32°≈60×0.625≈37.5 m,故答案为:37.5.8.【解析】(1)∵∠BED是△ABE的外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°.(2)画图如下:9.【解析】∵∠ADC+∠BDC=180°,∠BEC+∠AEB=180°,又∵∠BDC=∠CEB,∴∠ADC=∠AEB.在△ADC和△AEB中,∠A=∠A(公共角),AD=AE(已知),∠ADC=∠AEB(已证),∴△ADC≌△AEB(ASA).∴AB=AC.∴AB-AD=AC-AE.即BD=CE.10.【解析】∵CA=CB,∴∠CAB=∠CBA,∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△BCF中,AF BF AC BC CF CF=⎧⎪=⎨⎪=⎩,∴△ACF≌△BCF(SSS),∴∠ACF=∠BCF,∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.12.【解析】如图,过点B作BE⊥AC于点E,延长DG交CA于点H,得Rt△ABE和矩形BEHG.∵i=43BEAE=,AB=10米,∴BE=8,AE=6.∵DG3BG=1.5,∴DH=DG+GH3+8,AH=AE+EH=6+1.5=7.5.在Rt△CDH中,∵∠C=∠FDC=30°,DH=8+3,tan30°=8333 DHCH CH+==,∴CH=83+3.又∵CH=CA+7.5,即83+3=CA+7.5,∴CA=83-4.5(米).答:CA的长约是(83-4.5)米.1.【答案】C【解析】∵∠A∶∠B∶∠C=2∶3∶4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+ 3x+4x=180°,解得x=20°,∴∠B的度数为60°,故选C.2.【答案】17【解析】∵Rt△ABC中,∠C=90°,∴tan A=BCAC,∵1515tan8,BC A==,∴AC=8,∴AB=22BC AC+=17,故答案为:17.3.【答案】1002【解析】如图,连接AN,由题意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB-∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=22AN=1002(米),故答案为:1002.4.【答案】203【解析】如图,过点A作AD⊥BC于点D.根据题意,∠ABC=90°-30°=60°,∠ACD=30°,设AD=x,直通中考在Rt△ACD中,tan∠ACD=ADCD,∴CD=3tan tan30AD xxACD==∠︒,在Rt△ABD中,tan∠ABC=ADBD,∴BD=3tan tan603AD xxABC==∠︒,∴BC=CD+BD=3x+33x=80,∴x=203,故答案为:203m.5.【解析】∵AE=BF,∴AE+EF=BF+EF,即AF=BE,在△ADF和△BCE中,AD BCA BAF BE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△BCE(SAS).6.【解析】如图,过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,tan∠DBE=DEBE,∵∠DBC=65°,∴DE=x·tan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=x·tan65°,解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.7.【解析】(1)∵∠ABM=45°,AM⊥BM,∴AM=BM=AB·cos45°=32×2,则CM=BC-BM=5-3=2,∴AC=2222+=+=.AM CM2313(2)如图,延长EF到点G,使得FG=EF,连接BG.由DM=MC,∠BMD=∠AMC,BM=AM,∴△BMD≌△AMC(SAS),∴AC=BD,又CE=AC,因此BD=CE,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠E,所以BD=BG=CE,因此∠BDG=∠G=∠E.。
考点十、三角形1、三角形的概念由 所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交, 的线段叫做三角形的角平分线。
(2)在三角形中, 的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线, 的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示:三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上 三角形是封闭图形 (3)首尾顺次相接三角形用符号“∆”表示,顶点是A 、B 、C 的三角形记作“∆ABC”,读作“三角形ABC”。
5、三角形的分类三角形按边的关系分类如下:三角形按角的关系分类如下:把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和 第三边。
推论:三角形的两边之差 第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于 。
推论:①直角三角形的两个锐角 。
②三角形的一个外角 和它不相邻的来两个内角的和。
③三角形的一个外角 任何一个和它不相邻的内角。
不等边三角形三角形 底和腰不相等的等腰三角形等腰三角形等边三角形直角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
中考数学考点三角形讲解
考前我们要肉体丰满,身强力壮。
每天坚持课外身体锻炼,及时消弭疲劳,及时给大脑补氧;大家知道中考数学考点三角形吗?下面我们就给大家详细引见一下吧!我们积聚
了一些阅历,在此拿出来与大家分享下,请大家相互指正。
三角形
易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。
易错点2:三角形三边之间的不等关系,留意其中的〝任何两边〞。
最短距离的方法。
易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的〝不相邻〞。
易错点4:全等形,全等三角形及其性质,三角形全等判定。
着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。
边边角两个三角形不一定全等。
易错点5:两个角相等战争行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方。
易错点6:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质处置有关计算与证明效果,这里需留意分类讨论思想的渗入。
易错点7:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,处置与面积有关的效果以及复杂的实践效果。
(2021年25题考点)
易错点8:将直角三角形,平面直角坐标系,函数,开放性效果,探求性效果结合在一同综合运用探求各种解题方法。
易错点9:中点,中线,中位线,一半定理的归结以及各自的性质。
易错点10:直角三角形判定方法:三角形面积确实定与底上的高(特别是钝角三角形)
易错点11:三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。
置信大家曾经了解中考数学考点三角形了吧!感谢大家对我们网站的支持!。