2012广东中考数学模拟试卷(十三)
- 格式:doc
- 大小:241.50 KB
- 文档页数:4
一、选择题(共10小题,每题3分,共30分)1.实数3的倒数是()A.-13 B.13C.-3 D.32.将二次函数2=y x的图象向下平移1个单位,则平移后的二次函数的解析式为()A.2=1y x-B.2=+1y xC.2=(1)y x-D.2=(+1)y x3.一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱第3题图第5题图4.下面的计算正确的是()A.6a-5a=1 B.a+2a2= 3a3C.-(a-b) =-a+b D.2(a+b)=2a+b5.如图,在等腰梯形ABCD中,BC∥AD,AD =5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()A.26 B.25 C.21 D.206.已知|1|+7+a b-=0,则a+b=()A.-8 B.-6 C.6 D.87.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365B.1225C.94D.3348.已知a>b,若c是任意实数,则下列不等式中总是成立的是()A.a +c<b+ c B.a-c>b-cC.ac<bc D.ac>bc2012年广东广州中考数学试题(满分150分,考试时间120分钟)9.在平面中,下列命题为真命题的是()A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形10.如图,正比例函数y1=k1x和反比例函数2 2kyx=的图象交于A (-1,2),B(1,-2)两点,若y1<y2,则x的取值范围是()A.x<-1或x>1B.x<-1或0<x<1C.-1<x<0或0<x<1D.-1<x<0或x>1二、填空题(共6小题,每题3分,共18分)11.已知∠ABC=30°,BD是∠ABC的平分线,则∠ABD=_________度.12.不等式x-1≤10的解集是_____________.13.分解因式:a2-8a=_____________________.14.如图,在等边△ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为_____.15.已知关于x的一元二次方程223=0x x k--有两个相等的实数根,则k的值为____________.16.如图,在标有刻度的直线l上,从点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆;……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的_____倍,第n个半圆的面积为______________.(结果保留π)BAyx-3213-32-21-13-2-1O三、解答题(共9小题,共102分) 17. (9分)解方程组:{=83+=12x y x y -.18. (9分)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C .求证:BE =CD .19. (10分)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006~2010这五年各年的全年空气质量优良的天数,绘制折线图如图所示,根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是________,极差是________; (2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是_____年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.20. (10分)已知11+a ba ≠b ),求()ab a b -- ()ba ab -的值.21. (12分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7、-1、3,乙袋中的三张卡片上所标的数值分别为-2、1、6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数值,把x 、y 分别作为点A 的横坐标,纵坐标.(1)用适当的方法写出点A (x ,y )的所有情况;(2)求点A落在第三象限的概率.22.(12分)如图,⊙P的圆心为P(-3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.(1)在图中作出⊙P关于y轴对称的⊙P',根据作图直接写出⊙P'与直线MN的关系;(2)若点N在(1)中的⊙P'上,求PN的长.23.(12分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨 2.8元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出每月用水量未超过20吨和超过20吨时,y 与x 间的函数关系式; (2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨.24. (14分)如图,抛物线233384y x x =--+与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A ,B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.25.(14分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于点E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长.(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.2012年广东广州中考数学参考答案一、选择题(共30分,每题3分)二、填空题()三、解答题()17.53x y =⎧⎨=-⎩18.证明略19.(1)345,24;(2)2008;(3)343.22021.(1)树状图略,共9种情况;(2)2922.(1)图略,⊙P '与直线MN 相交;(2)PN 23.(1)当每月用水量未超过20吨时,y 与x 间的函数关系式:y =1.9x (0≤x ≤20);当每月用水量超过20吨时,y 与x 间的函数关系式:y =2.8x -18(x >20);(2)30吨24.(1)A (-4,0),B (2,0);(2)点D 的坐标(-1,274-)或(-1,94-);(3)334y x =-+或334y x =-25.(1)(2)①存在,k =3。
广东省中考数学模拟试题目2012年广东省初中毕业生学业考试数 学一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.2-的相反数是( A )A .2B .2-C .12D .12-2.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递,路线全长约40820米,用科学计数法表示火炬传递路程是( C ) A .2102.408⨯米 B .31082.40⨯米 C .410082.4⨯米 D .5104082.0⨯米 3.计算23()a 的结果是( B )A .5aB .6aC .8aD .23a4、如图1的几何体的俯视图是( A )5、二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( C ) A 、a <0 B 、abc >0 C 、c b a ++>0 D 、ac b 42->0二、填空题(本大题56x 7.分式方程112=+x x的解x 8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________; 9.如图1,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为____________; 10.如图2,DE 是△ABC 的中位线,且△ADE 的周长为20,则△ABC 的周长图1A .B .C .D ...为 三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算 :01)2008(260cos π-++- .12.解不等式x x <-64,并将不等式的解集表示在数轴上.13.画图:作出线段AB 的中点O . (要求:用尺规作图,保留作图 痕迹,写出作法,不用证明).14、如图,已知:⊙O 的直径AB 与弦AC 的夹角∠A =30°,过点C 作⊙O 的切线交AB 的延长线于点P . (1) 求证:AC =CP ;(2) 若PC =6,求图中阴影部分的面积(结果精确到1.73= 3.14π=)15.在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,. (1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.四、解答题(二)(本大题4小题,每小题7分,共28分) 16.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288mAB17.(本题满分7分)某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1、2、3、4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的18.(本题满分7分)如图,在ABCD 中,E F ,为BC 上两点,且BE CF =,AF DE =.求证:(1)ABF DCE △≌△; (2)四边形ABCD 是矩形.19.(本题满分7分)如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB 上,测量湖中两个小岛C 、D 间的距离.从山顶A 处测得湖中小岛C 的俯角为60°,测得湖中小岛D 的俯角为45°.已知小山AB 的高为180米,求小岛C 、D 间的距离.(计算过程和结果均不取近似值)五、解答题(三)(本大题3小题,每小题9分,共27分)20.如图10所示,E 是正方形ABCD 的边AB 上的动点, EF ⊥DE 交BC 于点F .(1)求证: ∆ADE ∽∆BEF ;(2) 设正方形的边长为4, AE =x ,BF =y .当x 取什么值时, y 有最大值?并求出这个最大值.(第A BCDEF21、阅读下列材料:112(123012),3123(234123),3134(345234),3⨯=⨯⨯-⨯⨯⨯=⨯⨯-⨯⨯⨯=⨯⨯-⨯⨯由以上三个等式相加,可得1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完以上材料,请你计算下各题:(1)1223341011⨯+⨯+⨯++⨯(写出过程); (2)122334(1)_____n n ⨯+⨯+⨯++⨯+=;(3)123234345789______⨯⨯+⨯⨯+⨯⨯++⨯⨯=22.(本题满分9分)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB 重合,直角边不重合,已知AB=8,BC=AD=4,AC 与BD 相交于点E ,连结CD .(1)填空:如图9,AC= ,BD= ;四边形ABCD 是 梯形.(2)请写出图9中所有的相似三角形(不含全等三角形).(3)如图10,若以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴建立如图10的平面直角坐标系,保持ΔABD 不动,将ΔABC 向x 轴的正方向平移到ΔFGH 的位置,FH 与BD 相交于点P ,设AF=t ,ΔFBP 面积为S ,求S 与t 之间的函数关系式,并写出t 的取值值范围.D C BAE图图1。
广东省广州市2012年初中毕业生学业考试【解析】1313⨯=,【提示】根据乘积是【考点】实数的性质【解析】由“上加下减”原则可知,将二次函数2y x =的图像向下平移一个单位,则平移以后的二次函数的解析式为:2y 1x =-.【提示】直接根据上加下减的原则进行解答即可. 【考点】二次函数图像与几何变换 3.【答案】D【解析】由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形,可得为棱柱体,所以这个几何体是三棱柱.【提示】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【考点】由三视图判断几何体 4.【答案】C【解析】解:A .65a a a =-,故此选项错误; B .a 与22a 不是同类项,不能合并,故此选项错误; C .()a b a b --=-+,故此选项正确; D .2()22a b a b +=+,故此选项错误; 故选:C .【提示】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案. 【考点】去括号与添括号,合并同类项 5.【答案】C【解析】解:BC AD ∥,DE AB ∥,∴四边形ABED 是平行四边形,5BE AD ∴==,3EC =,8BC BE EC ∴=+=,∴四边形ABCD 是等腰梯形,4AB DC ∴==,∴梯形ABCD 的周长为: 484521AB BC CD AD +++=+++=,故选C .【提示】由BC AD ∥,DE AB ∥,即可得四边形ABED 是平行四边形,根据平行四边形的对边相等,即可求得BE 的长,继而求得BC 的长,由等腰梯形ABCD ,可求得AB 的长,继而求得梯形ABCD 周长. 【考点】等腰梯形的性质,平行四边形的判定与性质 6.【答案】B【解析】解:根据题意得,10a -=,70b +=,解得1a =,7b =-,所以,1(7)6a b -=+-=-. 故选B .【提示】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解. 【考点】非负数的性质:算术平方根,非负数的性质:绝对值 【解析】解:根据题意画出相应的图形,如图所示:12AC BC AB CD =,91215AC BC CD AB ⨯∴==【提示】根据题意画出相应的图形,如图所示,在直角三角形【考点】勾股定理,点到直线的距离,三角形的面积 8.【答案】B 【解析】解:A .a b >,c 是任意实数,a c b c ∴+>+,故本选项错误;B .a b >,c 是任意实数,a c b c ∴->-,故本选项正确;C .当a b >,0c <时,ac bc <,而此题c 是任意实数,故本选项错误;D .当a b >,c >0时,ac bc >,而此题c 是任意实数,故本选项错误.故选B .【提示】根据不等式的性质,分别将四个选项分析求解即可求得答案;注意排除法在解选择题中的应用. 【考点】不等式的性质 9.【答案】C【解析】解:A .四边相等的四边形不一定是正方形,例如菱形,故此选项错误; B .对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误; C .四个角相等的四边形是矩形,故此选项正确;D .对角线互相垂直的四边形不一定是平行四边形,如右图所示,故此选项错误. 故选:C .【提示】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例.【考点】正方形的判定,平行四边形的判定,菱形的判定,矩形的判定,命题与定理 10.【答案】D【解析】由图像可得,10x -<<或1x >时,12y y <.故选D . 【提示】根据图像找出直线在双曲线下方的x 的取值范围即可. 【考点】反比例函数与一次函数的交点问题第二部分二、填空题 【解析】解:ABC ∠=【提示】根据角平分线的定义解答. 【考点】角平分线的定义 12.【答案】11x ≤【解析】解:移项,得:101x ≤+,则不等式的解集是:11x ≤.故答案是:11x ≤ 【提示】首先移项,然后合并同类项即可求解【考点】解一元一次不等式13.【答案】(a a a +-【提示】先提取公因式a ,再对余下的多项式利用平方差公式继续分解. 【考点】提公因式法与公式法的综合运用 14.【答案】2【解析】在等边三角形ABC 中,6AB =,6BC AB ∴==,3BC BD =,123BD BC ∴==,ABD △绕点A 旋转后得到ACE △,ABD ACE ∴△≌△,2CE BD ∴==【提示】由在等边三角形ABC 中,6AB =,D 是BC 上一点,且3BC BD =,根据等边三角形的性质,即可求得BD 的长,然后由旋转的性质,即可求得CE 的长度. 【考点】旋转的性质;等边三角形的性质 【解析】解:关于【提示】因为方程有两个相等的实数根,则2(40k ∆=--=,解关于k 的方程即可. 【考点】根的判别式 16.【答案】425n -【解析】解:以5π.【提示】根据已知图形得出第4个半圆的半径是第3个半圆的半径,进而得出第4个半圆的面积与第3个半圆面积的关系,得出第n 个半圆的半径,进而得出答案 【考点】规律型:图形的变化类 三、解答题17.【答案】53x y =⎧⎨=-⎩【解析】解:8312x y x y -=⎧⎨+=⎩,①,②,①+②得,420x =,解得5x =,把5x =代入①得,58y -=,解得3y =-,所以方程组的解是53x y =⎧⎨=-⎩.【提示】根据y 的系数互为相反数,利用加减消元法求解即可. 【考点】解二元一次方程组18.【答案】证明:在ABE △和ACD △中,A AAB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩=ABE ACD BE CD ∴△≌△,.【提示】已知图形A A ∠=∠,根据ASA 证ABE ACD △≌△,根据全等三角形的性质即可求出答案. 【考点】全等三角形的判定与性质 19.【答案】(1)345 24(2)2008 (3)343.2【解析】(1)这五年的全年空气质量优良天数按照从小到大排列如下: 333、334、345、347、357,所以中位数是345; 极差是:35733324-=;(2)2007年与2006年相比,333334=1--,2008年与2007年相比,34533312-=,2009年与2008年相比,3473452-=,2010年与2009年相比,35734710-=,所以增加最多的是2008年. (3)这五年的全年空气质量优良天数的平均数3343333453473571716==343.255++++天【提示】(1)把这五年的全年空气质量优良天数按照从小到大排列,根据中位数的定义解答;根据极差的定义,用最大的数减去最小的数即可.(2)分别求出相邻两年下一年比前一年多的优良天数,然后即可得解 (3)根据平均数的求解方法列式计算即可得解. 【考点】折线统计图,算术平均数,中位数,极差20.【解析】解:11a ba b ab++=∴= 22()()()()a b a b b a b a a b ab a b ab a b -=-----22()()()()a b a b a b a bab a b ab a b ab-+-+===--【提示】求出a b ab +=22()()a b ab a b ab a b ---,推出22()a b ab a b --,化简得出a bab+,代入求出即可.【考点】分式的化简求值,约分,通分,分式的加减法 21.【答案】(1)(,)x y 的所有等可能情况如下表:点(,)A x y 共9种情况 (2)29【解析】(2)点A 落在第三象限共有(7,2)--,(1,2)--两种情况,∴点A 落在第三象限的概率是29. 【提示】(1)直接利用表格列举即可解答(2)利用(1)中的表格求出点A 落在第三象限共有两种情况,再除以点A 的所有情况即可 【考点】列表法,点的坐标. 22.【答案】(1)见解析(2【解析】(1)如图所示,P '即为所求作的圆,P '与直线MN 相交;(2)设直线PP '与MN 相交于点A ,在Rt AP N '△中,AN =,在Rt APN△中,PN ==【提示】(1)根据关于y 轴对称的点的横坐标互为相反数,纵坐标相等找出点P '的位置,然后以3为半径画圆即可,再根据直线与圆的位置关系解答.(2)设直线PP '与MN 相交于点A ,在Rt AP N '△中,利用勾股定理求出AN 的长度,在Rt APN △中,利用勾股定理列式计算即可求出PN 的长度.【考点】作图——轴对称变换,直线与圆的位置关系 23.【答案】(1) 2.818y x ∴=- (2)30吨【解析】(1)当20x ≤时, 1.9y x =;当20x >时, 1.92020 2.8 2.818y x x =⨯+⨯=(-)-, 2.818y x ∴=- (2)5月份水费平均为每吨2.2元,用水量如果未超过20吨,按每吨1.9元收费.∴用水量超过了20吨.2.818 2.2x x ∴=-,解得30x =.答:该户5月份用水30吨.【提示】(1)未超过20吨时,水费 1.9y =⨯相应吨数;超过20吨时,水费 1.920y =⨯+超过20吨的吨数2.8⨯.(2)该户的水费超过了20吨,关系式为:1.920⨯+超过20吨的吨数 2.8⨯=用水吨数 2.2⨯. 【考点】一次函数的应用 24.【答案】(1)(4,0)A -(2,0)B(2)194,4D ⎛⎫-- ⎪⎝⎭或2271,4D ⎛⎫- ⎪⎝⎭(3)33y x =-+或33y x =-- 9AB OC =,在9AC h =,解得为直径作F ,圆心为点作F 的切线,这样的切线有轴于点N .(4,0)(20)(10)3A B F F FM FB -∴-==,,,,,半径.又5FE =,则在Rt MEF △中,22534ME =-=,4MFE =,在Rt FMN △中,412sin 355MN MN MFE =∠=⨯=,cos MN MFE ∠,55M ⎪⎝⎭的解析式为y =44【提示】(1)A B 、点为抛物线与x 轴交点,令0y =,解一元二次方程即可求解.(2)根据题意求出ACD △中AC 边上的高,设为h .在坐标平面内,作AC 的平行线,平行线之间的距离等于h .根据等底等高面积相等的原理,则平行线与坐标轴的交点即为所求的D 点.注意:这样的切线有两条,如答图2所示. 【考点】二次函数综合题 25.【答案】(1)(2)见解析【解析】(1)6010sin CE BCαα=︒=∴=,,,即sin 60CE ︒==,解得CE = (2)①存在3k =,使得EFD k AEF ∠=∠.理由如下:连接CF 并延长交BA 的延长线于点G ,F 为AD 的中点,AF FD ∴=,在平行四边形ABCD中,AB CD ∥,G DCF ∴∠=∠,在AFG CFD △和△中,()G DCFAFG DFC AF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩对顶角相等,CD CE AB ⊥,,5AB =,AFG △EFC AEF =∠,又CFD ∠=EFD ∴∠=,x AG CD =,中, x CF GF=,212C FC G ⎛∴=+= ⎝11 / 11【提示】(1)利用60︒角的正弦值列式计算即可得解.(2)①连接CF 并延长交BA 的延长线于点G ,利用“角边角”证明AFG △和CFD △全等,根据全等三角形对应边相等可得CF GF =,AG CD =,再利用直角三角形斜边上的中线等于斜边的一半可得EF GF =,再根据AB BC 、的长度可得AG AF =,然后利用等边对等角的性质可得AEF G AFG ∠=∠=∠,根据三角形的一个外角等于与它不相邻的两个内角的和可得2EFC G ∠=∠,然后推出3EFD AEF ∠=∠,从而得解; ②设BE x =,在Rt BCE △中,利用勾股定理表示出2CE ,表示出EG 的长度,在Rt CEG △中,利用勾股定理表示出2CG ,从而得到2CF ,然后相减并整理,再根据二次函数的最值问题解答.【考点】平行四边形的性质,二次函数的最值,全等三角形的判定与性质,直角三角形斜边上的中线,勾股定理。
广东省2012年初中毕业生学业考试数学答案解析 一、选择题1.【答案】A【解析】根据负数的绝对值等于它的相反数,得|5|5-=故选A【提示】根据绝对值的性质求解.【考点】绝对值2.【答案】B【解析】66400000 6.410=⨯【提示】科学记数法的形式为10n a ⨯,其中110a ≤<,n 为整数.【考点】科学记数法—表示较大的数3.【答案】C【解析】6出现的次数最多,故众数是6【提示】众数指一组数据中出现次数最多的数据,根据众数的定义即可求解.【考点】众数4.【答案】B【解析】从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:131, , ,故选:B . 【提示】主视图是从立体图形的正面看所得到的图形,找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【考点】简单组合体的三视图5.【答案】C【解析】设此三角形第三边的长为x ,则104104x -<<+,即614x <<,四个选项中只有11符合条件.【提示】设此三角形第三边的长为x ,根据三角形的三边关系求出x 的取值范围,找出符合条件的x 的值即可.【考点】三角形三边关系二、填空题6.【答案】2(5)x x -【解析】原式2(5)x x =-【提示】首先确定公因式是2x ,然后提公因式即可.【考点】因式分解——提公因式法7.【答案】3x >【解析】移项得,39x >,系数化为1得:3x >.【提示】先移项,再将x 的系数化为1即可.【考点】解一元一次不等式8.【答案】50︒【解析】Q 圆心角AOC ∠与圆周角ABC ∠都对»AC ,2AOC ABC ∴∠=∠,又25ABC ∠=︒,则50AOC ∠=︒ 【提示】根据同弧所对的圆心角等于所对圆周角的2倍,由已知圆周角的度数,即可求出所求圆心角的度数.【考点】圆周角定理9.【答案】1【解析】根据题意得:3030x y -=⎧⎨-=⎩,解得:33x y =⎧⎨=⎩.则20122012313x y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.【提示】根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可.【考点】非负数的性质:算术平方根,非负数的性质:绝对值10.【答案】13π3-【提示】过D 点作DF AB ⊥于点F ,可ABCD Y 和BCE △的高,观察图形可知阴影部分的面积为ABCD Y 的面积-扇形ADE 的面积-BCE △的面积,计算即可求解.【考点】扇形面积的计算,平行四边形的性质三、解答题(一)11.【答案】1-【提示】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值12.【答案】1-【解析】解,原式222299x x x x -+=-=-,当4x =时,原式2491=⨯-=-.【提示】先把整式进行化简,再把4x =代入进行计算即可.【考点】整式的混合运算——化简求值13.【答案】51x y =⎧⎨=⎩【解析】解:①+②得,420x =,解得5x =,把5x =代入①得,54y -=,解得1y =,故此不等式组的解为:51x y =⎧⎨=⎩【提示】先用加减消元法求出x 的值,再用代入法求出y 的值即可.【考点】解二元一次方程组 2ABO CDO ∴△≌△,AB CD ∴=,∴四边形ABCD 是平行四边形.【提示】先根据AB CD ∥可知ABO CDO ∠=∠,再由BO DO AOB DOC =∠=∠,,即可得出ABO CDO △≌△,故可得出AB CD =,进而可得出结论.【考点】平行四边形的判定,全等三角形的判定与性质四、解答题(二)16.【答案】(1)20%(2)8640【解析】(1)设这两年我国公民出境旅游总人数的年平均增长率为x .根据题意得25000(1)7200x +=.解得120.220% 2.2x x ===-,(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1)7200120%8640x +=⨯=万人次.答:预测2012年我国公民出境旅游总人数约8640万人次.【提示】(1)设年平均增长率为x ,根据题意2010年公民出境旅游总人数为25000(1)x +万人次,2011年公民出境旅游总人数25000(1)x +万人次.根据题意得方程求解.(2)2012年我国公民出境旅游总人数约7200(1)x +万人次.【考点】一元二次方程的应用【提示】(1)先把(4,2)代入反比例函数解析式,易求k ,再把0y =代入一次函数解析式可求B 点坐. (2)假设存在,然后设C 点坐标是(,0)a ,借此无理方程,易得3a =或5a =,其中3a =和B 点重合,舍去,故C 点坐标可求.【考点】反比例函数综合题解得:300AB =米,答:小山岗的高度为300米.【提示】首先在直角三角形ABC 中根据坡角的正切值用AB 表示出BC ,然后在直角三角形DBA 中用BA 表示出BD ,根据BD 与BC 之间的关系列出方程求解即可.【考点】解直角三角形的应用——仰角俯角问题,解直角三角形的应用——坡度坡角问题19.【答案】(1)1911⨯ 1112911⎛⎫⨯- ⎪⎝⎭(2)1(21)(21)n n -+ 11122121n n ⎛⎫⨯- ⎪-+⎝⎭【解析】(1)根据观察知答案分别为1911⨯和1112911⎛⎫⨯- ⎪⎝⎭.(2)根据观察知答案分别为1(21)(21)n n -+和11122121n n ⎛⎫⨯- ⎪-+⎝⎭. (3)1234100a a a a a +++++L1111111111111112323525727921992011111111111123355779199201111220112002201100201⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=-+-+-+-++- ⎪⎝⎭⎛⎫=- ⎪⎝⎭=⨯=L L【提示】(1)观察知,找第一个等号后面的式子规律是关键:分子不变,为1.(2)分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算.【考点】规律型:数字的变化类【考点】列表法与树状图法,分式有意义的条件,分式的化简求值21.【答案】(1)证明:BDC 'Q △由BDC △翻折而成,90C BAG C D AB CD AGB DGC ABG ADE ∠=∠=︒'==∠=∠'∴∠=∠,,,,在:ABG C DG '△≌△中,BAD C AB C D ABG ADC '∠=∠⎧⎪'=⎨⎪'∠=∠⎩Q ,ABG C DG ∴'△≌△.(2)724(3)256【解析】(2)Q 由(1)可知ABG C DG ∴'△≌△,GD GB AG GB AD ∴=∴+=,,设AG x =,则8GB x =-,在22Rt ABG AB AG BG +=Q △中,2, 即2226(8)x x +=-,解得74x =, 747tan 624AG ABG AB ∴∠=== (3)AEF Q △是DEF △翻折而成,EF ∴垂直平分AD ,142HD AD ∴==, 7tan tan 24ABG ADE ∴∠=∠=, 777=424246EH HD ∴=⨯⨯=, EF Q 垂直平分AD ,AB AD ⊥,HF Q 是ABD △的中位线,116322HF AB ∴==⨯=,725366EF EH HF =+=+=. 【提示】(1)根据翻折变换的性质可知90C BAG ∠=∠=︒,C D AB CD '==,AGB DGC '∠=∠,故可得出结论.(2)由(1)可知GD GB =,故AG GB AD +=,设AG x =,则8GB x =-,在Rt ABG △中利用勾股定理即可求出AG 的长,进而得出tan ABG ∠的值.(3)由AEF △是DEF △翻折而成可知EF 垂直平分AD ,故142HD AD ==,再根据tan ABG ∠即可得出EF 的长,同理可得HF 是ABD △的中位线,故可得出HF 的长,由EF EH HF =+即可得出结论.【考点】翻折变换(折叠问题),全等三角形的判定与性质,矩形的性质,解直角三角形22.【答案】(1)99AB OC ==,(2)21092s m m =<<() (3)118 729π52【提示】(1)已知抛物线的解析式,当0x =,可确定C 点坐标;当0y =时,可确定A B 、点的坐标,进而确定AB OC 、的长.(2)直线l BC ∥,可得出AED ABC △、△相似,它们的面积比等于相似比的平方,由此得到关于s m 、的函数关系式;根据题干条件:点E 与点A B 、不重合,可确定m 的取值范围.(3)第一小问、首先用m 列出AEC △的面积表达式,AEC AED △、△的面积差即为CDE △的面积,由此可的关于CDE S △、m 的函数关系式,根据函数的性质可得到CDE S △的最大面积以及此时m 的值.第二小问、过E 做BC 的垂线EF ,这个垂线段的长即为与BC 相切的E e 的半径,可根据相似三角形BEF △、BCO △得到的相关比例线段求得该半径的值,由此得解.【考点】二次函数综合题。
2012年广东省中考全真模拟试题数学试卷学校:__________班别:__________姓名:__________分数:____________一、 选择题(本题共5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母填在答卷相应题号下的方框里。
1将图1按顺时针方向旋转90°后得到的是( )2、如图2,每个小正方形的边长为1,把阴影部分剪下来,用 剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( ) AB 2CD 3、四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S , 如图3所示,则他们的体重大小关系是( )A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>>4.如图所示是由几个小正方体组成的一个几何体,这个几何体的左视图是( ).5.如图5,用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC= ( )度。
A 30B 36C 40D 72二、填空题(本题共5小题,每小题4分,共20分)请将答案填在答卷相应题号的横线上 6、池塘中放养了鲤鱼8000条,鲢鱼若干。
在几次随机捕捞中,共抓到鲤鱼320条,鲢鱼图3A B C 图8 E D 图2A )BCD 图9 A B DO图(1) 第5题图 图 (2)400条。
估计池塘中原来放养了鲢鱼__________条。
7.据国务院权威发布,截至6月15日12时,汶地震灾区共接受国内外社会各界捐赠款物约4570000万元,用科学计数法表示为 万元.8 .如图8,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB=6cm ,则AE= cm. 9 如图9,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知∠AOD=120°,AB=2.5, 则AC 的长为 .10.用同样大小的黑色棋子按图6所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).三、解答题。
2012年广州市初中毕业生学业考试数 学第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的4个选项中只有一项是符合题目要求的) 1.实数3的倒数是( )。
(A )、31-(B )、31(C )、3- (D )、32.将二次函数2x y =的图象向下平移1个单位,则平移后的二次函数的解析式为( )。
(A )、12-=x y(B )、 12+=x y (C )、2)1(-=x y(D )、2)1(+=x y3.一个几何体的三视图如图1所示,则这个几何体是( )。
(A )、四棱锥 (B )、 四棱柱 (C )、三棱锥 (D )、三棱柱4.下面的计算正确的是( ) 。
(A )、156=-a a(B )、 223a a a =+(C )、b a b a +-=--)((D )、b a b a +=+2)(25.如图2,在等腰梯形ABCD 中,BC ∥AD ,AD =5,DC =4,DE ∥AB 交BC 于点E ,且EC =3,则梯形ABCD 的周长是( ) (A )、26 (B )、25 (C )、21(D )、206..已知,071=++-b a 则=+b a ( ) 。
(A )、-8 (B )、 -6 (C )、6(D )、87. Rt ABC △中,∠C=900,AC =9,BC =12,则点C 到AB 的距离是( )。
(A )、536(B )、2512 (C )、49(D )、4338.已知a >b .若c 是任意实数,则下列不等式中总是成立的是( )。
(A )、a+c <b+c (B )、 a-c >b-c (C )、ac <bc(D )、ac >bc9.在平面中,下列命题为真命题的是( )。
(A )、四边相等的四边形是正方形 (B )、对角线相等的四边形是菱形 (C )、四个角相等的四边形是矩形 (D )、对角线互相垂直的四边形是平行四边形 10.如图3,正比例函数x ky 11=和反比例函数xky 22=的图象交于A(-1,2)、B (1,-2)两点。
2012年广东省中考数学试卷一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣2.(3分)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×1043.(3分)数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.84.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)分解因式:2x2﹣10x=.7.(4分)不等式3x﹣9>0的解集是.8.(4分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是.9.(4分)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是.10.(4分)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).三、解答题(一)(每小题6分,共30分)11.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.12.(6分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.13.(6分)解方程组:.14.(6分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.15.(6分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO =DO.求证:四边形ABCD是平行四边形.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(7分)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?17.(7分)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x 轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.18.(7分)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).19.(7分)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.21.(9分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD 于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.(9分)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).2012年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【考点】15:绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的形式为a×10n,其中1≤a<10,n为整数.【解答】解:6400000=6.4×106.故选:B.【点评】此题考查用科学记数法表示较大的数,其规律为1≤|a|<10,n为比原数的整数位数小1的正整数.3.(3分)数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.8【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义即可求解.【解答】解:6出现的次数最多,故众数是6.故选:C.【点评】本题主要考查了众数的概念,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的,比较简单.4.(3分)如图所示的几何体的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1:常规题型.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:几何体的主视图是:故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16【考点】K6:三角形三边关系.【专题】2B:探究型.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.【点评】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)分解因式:2x2﹣10x=2x(x﹣5).【考点】53:因式分解﹣提公因式法.【分析】首先确定公因式是2x,然后提公因式即可.【解答】解:原式=2x(x﹣5).故答案是:2x(x﹣5).【点评】本题考查了提公因式法,正确确定公因式是关键.7.(4分)不等式3x﹣9>0的解集是x>3.【考点】C6:解一元一次不等式.【分析】先移项,再将x的系数化为1即可.【解答】解:移项得,3x>9,系数化为1得,x>3.故答案为:x>3.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.8.(4分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是50°.【考点】M5:圆周角定理.【专题】11:计算题.【分析】根据同弧所对的圆心角等于所对圆周角的2倍,由已知圆周角的度数,即可求出所求圆心角的度数.【解答】解:∵圆心角∠AOC与圆周角∠ABC都对,∴∠AOC=2∠ABC,又∠ABC=25°,则∠AOC=50°.故答案为:50°.【点评】此题考查了圆周角定理的运用,熟练掌握圆周角定理是解本题的关键.9.(4分)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是1.【考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可【解答】解:根据题意得:,解得:.则()2012=()2012=1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.(4分)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是3﹣π(结果保留π).【考点】L5:平行四边形的性质;MO:扇形面积的计算.【专题】16:压轴题.【分析】过D点作DF⊥AB于点F.可求▱ABCD和△BCE的高,观察图形可知阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积,计算即可求解.【解答】解:过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2,∴阴影部分的面积:4×1﹣﹣2×1÷2=4﹣π﹣1=3﹣π.故答案为:3﹣π.【点评】考查了平行四边形的性质,扇形面积的计算,本题的关键是理解阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积.三、解答题(一)(每小题6分,共30分)11.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣1+=﹣.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.12.(6分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.【考点】4J:整式的混合运算—化简求值.【专题】2B:探究型.【分析】先把整式进行化简,再把x=4代入进行计算即可.【解答】解:原式=x2﹣9﹣x2+2x=2x﹣9,当x=4时,原式=2×4﹣9=﹣1.【点评】本题考查的是整式的混合运算﹣化简求值,在有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.13.(6分)解方程组:.【考点】98:解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入法求出y的值即可.【解答】解:①+②得,4x=20,解得x=5,把x=5代入①得,5﹣y=4,解得y=1,故此方程组的解为:.【点评】本题考查的是解二元一次方程组,熟知解二元一次不等式组的加减消元法和代入消元法是解答此题的关键.14.(6分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.【考点】KH:等腰三角形的性质;N2:作图—基本作图.【专题】2B:探究型.【分析】(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线即可;(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的定义得出∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.【解答】解:(1)①一点B为圆心,以任意长长为半径画弧,分别交AB、BC于点E、F;②分别以点E、F为圆心,以大于EF为半径画圆,两圆相交于点G,连接BG角AC于点D即可.(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°,∵BD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°,∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.【点评】本题考查的是基本作图及等腰三角形的性质,熟知角平分线的作法是解答此题的关键.15.(6分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO =DO.求证:四边形ABCD是平行四边形.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】14:证明题;16:压轴题.【分析】先根据AB∥CD可知∠ABO=∠CDO,再由BO=DO,∠AOB=∠DOC即可得出△ABO≌△CDO,故可得出AB=CD,进而可得出结论.【解答】证明:∵AB∥CD,∴∠ABO=∠CDO,在△ABO与△CDO中,∵,∴△ABO≌△CDO(ASA),∴AB=CD,∴四边形ABCD是平行四边形.【点评】本题考查的是平行四边形的判定、全等三角形的判定与性质,熟知平行四边形的判定定理是解答此题的关键.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(7分)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?【考点】AD:一元二次方程的应用.【专题】123:增长率问题.【分析】(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为5000(1+x)万人次,2011年公民出境旅游总人数5000(1+x)2 万人次.根据题意得方程求解;(2)2012年我国公民出境旅游总人数约7200(1+x)万人次.【解答】解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:5000(1+x)2 =7200,解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1+x)=7200×(1+20%)=8640(万人次).答:预测2012年我国公民出境旅游总人数约8640万人次.【点评】此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.17.(7分)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x 轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.【考点】GB:反比例函数综合题.【专题】31:数形结合.【分析】(1)先把(4,2)代入反比例函数解析式,易求k,再把y=0代入一次函数解析式可求B点坐标;(2)假设存在,然后设C点坐标是(a,0),然后利用两点之间的公式可得=,借此无理方程,易得a=3或a=5,其中a=3和B点重合,舍去,故C点坐标可求.【解答】解:(1)把(4,2)代入反比例函数y=,得k=8,把y=0代入y=2x﹣6中,可得x=3,故k=8;B点坐标是(3,0);(2)假设存在,设C点坐标是(a,0),∵AB=AC,∴=,即(4﹣a)2+4=5,解得a=5或a=3(此点与B重合,舍去)故点C的坐标是(5,0).【点评】本题考查了反比函数的知识,解题的关键是理解点与函数的关系,并能灵活使用两点之间的距离公式.18.(7分)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).【考点】T9:解直角三角形的应用﹣坡度坡角问题;TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先在直角三角形ABC中根据坡角的正切值用AB表示出BC,然后在直角三角形DBA中用BA表示出BD,根据BD与BC之间的关系列出方程求解即可.【解答】解:∵在直角三角形ABC中,=tanα=,∴BC=∵在直角三角形ADB中,∴=tan26.6°=0.50即:BD=2AB∵BD﹣BC=CD=200∴2AB﹣AB=200解得:AB=300米,答:小山岗的高度为300米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并求解.19.(7分)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5==;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.【考点】37:规律型:数字的变化类.【分析】(1)(2)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算.【解答】解:根据观察知答案分别为:(1);;(2);;(3)a1+a2+a3+a4+…+a100=×(1﹣)+×(﹣)+×(﹣)+×(﹣)+…+×=(1﹣+﹣+﹣+﹣+…+﹣)=(1﹣)=×=.【点评】此题考查寻找数字的规律及运用规律计算.寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.【考点】62:分式有意义的条件;6D:分式的化简求值;X6:列表法与树状图法.【分析】(1)根据题意列出图表,即可表示(x,y)所有可能出现的结果;(2)根据(1)中的树状图求出使分式+有意义的情况,再除以所有情况数即可;(3)先化简,再找出使分式的值为整数的(x,y)的情况,再除以所有情况数即可.【解答】解:(1)用列表法表示(x,y)所有可能出现的结果如下:﹣2﹣11﹣2(﹣2,﹣2)(﹣1,﹣2)(1,﹣2)﹣1(﹣2,﹣1)(﹣1,﹣1)(1,﹣1)1(﹣2,1)(﹣1,1)(1,1)(2)∵使分式+有意义的(x,y)有(﹣1,﹣2)、(1,﹣2)、(﹣2,﹣1)、(﹣2,1)4种情况,∴使分式+有意义的(x,y)出现的概率是,(3)∵+=(x≠±y),使分式的值为整数的(x,y)有(1,﹣2)、(﹣2,1)2种情况,∴使分式的值为整数的(x,y)出现的概率是.【点评】此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏地表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD 于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.【考点】KD:全等三角形的判定与性质;LB:矩形的性质;PB:翻折变换(折叠问题);T7:解直角三角形.【专题】16:压轴题;2B:探究型.【分析】(1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论;(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=8﹣x,在Rt△ABG中利用勾股定理即可求出AG的长,进而得出tan∠ABG的值;(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结论.【解答】(1)证明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE,在△ABG与△C′DG中,∵,∴△ABG≌△C′DG(AAS);(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD,设AG=x,则GB=8﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(8﹣x)2,解得x=,∴tan∠ABG===;(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD,∴HD=AD=4,∴tan∠ABG=tan∠ADE=,∴EH=HD×=4×=,∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线,∴HF=AB=×6=3,∴EF=EH+HF=+3=.【点评】本题考查的是翻折变换、全等三角形的判定与性质、矩形的性质及解直角三角形,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.22.(9分)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)已知抛物线的解析式,当x=0,可确定C点坐标;当y=0时,可确定A、B 点的坐标,进而确定AB、OC的长.(2)直线l∥BC,可得出△AED、△ABC相似,它们的面积比等于相似比的平方,由此得到关于s、m的函数关系式;根据题干条件:点E与点A、B不重合,可确定m的取值范围.(3)①首先用m列出△AEC的面积表达式,△AEC、△AED的面积差即为△CDE的面积,由此可得关于S△CDE、m的函数关系式,根据函数的性质可得到S△CDE的最大面积以及此时m的值;②过E做BC的垂线EM,这个垂线段的长即为与BC相切的⊙E的半径,可根据相似三角形△BEF、△BCO得到的相关比例线段求得该半径的值,由此得解.【解答】解:(1)已知:抛物线y=x2﹣x﹣9;当x=0时,y=﹣9,则:C(0,﹣9);当y=0时,x2﹣x﹣9=0,得:x1=﹣3,x2=6,则:A(﹣3,0)、B(6,0);∴AB=9,OC=9.(2)∵ED∥BC,∴△AED∽△ABC,∴=()2,即:=()2,得:s=m2(0<m<9).(3)解法一:∵S△ACE=AE•OC=m×9=m,∴S△CDE=S△ACE﹣S△ADE=m﹣m2=﹣(m﹣)2+.∵0<m<9,∴当m=时,S△CDE取得最大值,最大值为.此时,BE=AB﹣AE=9﹣=.记⊙E与BC相切于点M,连接EM,则EM⊥BC,设⊙E的半径为r.在Rt△BOC中,BC===3.∵∠OBC=∠MBE,∠COB=∠EMB=90°.∴△BOC∽△BME,∴=,∴=,∴r==.∴所求⊙E的面积为:π()2=π.解法二:∵S△AEC=AE•OC=m×9=m,∴S△CDE=S△AEC﹣S△ADE=m﹣m2=﹣(m﹣)2+.∵0<m<9,∴当m=时,S△CDE取得最大值,最大值为.此时,BE=AB﹣AE=9﹣=.∴S△EBC=S△ABC=.如图2,记⊙E与BC相切于点M,连接EM,则EM⊥BC,设⊙E的半径为r.在Rt△BOC中,BC==.∵S△EBC=BC•EM,∴×r=,∴r==.∴所求⊙E的面积为:π()2=π.【点评】该题主要考查了二次函数的性质、相似三角形的性质、图形面积的求法等综合知识.在解题时,要多留意图形之间的关系,有些时候将所求问题进行时候转化可以大大的降低解题的难度.。
2 中考数学模拟试卷1、选择题(下列各题给出的四个选项中,只有一个是正确的•每小题3 •下列运算中,计算正确的是32、30、28、34,则这组数据的众数和极差分别是如右图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是二、填空(每小题3分,共24分)9.写出一个小于 0的无理数 ____________________ .X10 .函数y = ------ 中自变量x 的取值范围 ______________________ .x 111 .分解因式: 4a 2 4a 1 = _________ __ , _____ .1 B . 的相反数2 2.花果山风景区一年接待旅游者约 876000人,这个数可以用科学记数法表示为 B. 876 103 C. 8.76 1%6A • 2的相反数 C . 2的相反数 的相反数A . 0.876 杓6D. 8.76 ()105A . RB . F 4C .F 2 或 F 3D .F 或F如图, 已知 □ABCD , / A=45 °,AD=4 , 以AD 为直径的半圆0与BC 相切于点B ,则图中阴影部分的面 积为 ( )A . 42B n +2C . 4D . 2 2如图, 在5 5的正方形网格中, 以 AB 为边画直角△ ABC ,使点C 在格点上,满足这样条件的点C 的个数 ()A . 6B7C . 8D . 97.& ()满分24分) A . 3x 2+2x 2=5x 4B . (-x 2)3=- x 6C . (2x 2y)2=2x 4y 2D . (x+y 2)2=x 2+y 4 4•体育课上,体育委员记录了 6位同学在25秒内连续垫排球的情况,6位同学连续30、27、A . 33, 7B . 32, 4C . 30, 4D 3075. 2 已知x 3,那么在数轴上与实数 x 对应的点可能是6.AB第5题212 .已知等腰梯形的面积为24cm2,中位线长为6cm,则等腰梯形的高为__________ _ _____ c m .13 .如图,把一块直角三角板的直角顶点放在直尺的一边上,如果/A\2x 2 - 3x-n的'一B是O则代数式15.如图,△ ABC 的三个顶点都在 5>5的网格(每个小正方形的边长均为 1个单位长度)的格点上,将厶ABC 绕点B 顺时针旋转到 △ A BC 的位置,则点 A 经过的路径长为 ___________________________ .(结果保留n ). 16•某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知 AD 垂直平分BC , AD = BC=40cm ,则圆柱形饮水桶的底面半径的最大值第16题 第15题过程或演算步骤)〔117.(本题满分6分)计算:(2)2: 4 -— (2 . 3)0318. (本题满分6分)19. (本题满分6分)解方程:x 2 2x 520. (本题满分6分)如图,四边形 ABCD 是正方形,点 E 在BC 上,DF 丄AE ,垂足为 F ,请你在 AE 上确定一点 G ,使 △ ABG ◎△ DAF ,请你写出两种确定点 G 的方案,并就其中一种方案的具体作法证明 △ ABG ◎△ DAF .方案一:作法: ________________________________________________ ; 方案二:(1)作法: ____________________________________________ .是 ___________ cm.團①■c三、解答题: (本大题共12小题,共内作答,解答时应写出文字说明、证明先化简(―3匚)a 1 a 1—,再选取一个使原式有意义的 a 2 1a 的值代入求值.AC'L 丄丄」一 第20题(2)证明:21. (本题满分6分)某手机专营店代理销售A、B两种型号手机.手机的进价、售价如下表:型号A B进价1200 元/部1000 元/部售价1380 元/部1200 元/部用36000元购进A、B两种型号的手机,全部售完后获利6300元,求购进A、B两种型号手机的数量。
2012年广东中考模拟试卷D2012年广东中考模拟试卷说明:1.试卷4页,答卷4页,共10页。
满分为120分,考试时间为120分钟。
2.本试卷设有附加题,共10分,考生可答可不答;全卷最后得分不得超过120分。
3.必须用黑色字迹的钢笔或签字笔在答题卷指定的区域内作答,否则答案无效。
一.基础(25分)1.根据课文,默写写古诗文。
(10分)(1)可以调素琴,阅金经。
口口口口口口,口口口口口口。
(刘禹锡《陋室铭》)(2) 口口口口口,口口口口口。
道狭草木长.夕露沾我衣。
(陶渊明《归园田居》)(3) 李商隐《无题》中,表现了爱情的坚贞,又暗含无私奉献之精神的诗句是:口口口口口口口,口口口口口口口。
(4) 默写杜牧《泊秦淮》全诗。
口口口口口口口,口口口口口口口。
口口口口口口口,口口口口口口口。
2、根据拼音写出相应的词语。
(4分)(1) 一个早起的孩子走来,tānlán地呼吸着新鲜的空气。
()(2) 从他那一面看起来,是一去之后,yǎowúxiāoxī了。
()(3) 隔了岁月的河流望过去,昔日的suǒsuì,都成了可爱。
()(4) 现在,只有一个人能搭救何满子;但是,何满子wàng yǎn yù chuān。
这颗救命星却迟迟不从东边闪现出来。
()3、下列对病句的修改不正确...的一项是( )(3分)A.我班同学讨论并听取了校长关于培养良好行为习惯的讲话。
(“讨论”和“听取”调换) B.昨天下午,我等了他整整一小时左右。
(将“整整”改为“足足”)C.开展“无烟日”活动,可以增强人们的自我健康保护。
(在“保护”后面添“意识”) D.通过这次野外学习,使我对自然科学的兴趣更大了。
(删掉“使”字)4、从下面备用词语中选择两个或两个以上的词语,至少运用一种修辞手法.写一段描写某人悲喜交加的神态变化的话。
(80字以内) (4分)喜极而泣潸然泪下手舞足蹈黯然神伤哀怨愉悦5、阅读下面材料,按要求回答问题。
2012年初中毕业班综合模拟测试数 学 试 题本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.3-的结果为( * )(A )3 (B )±3 (C )-3 (D )无法确定2.在函数x y 23-=中,自变量x 的取值范围是( * )(A )23>x (B )23≥x (C )23<x(D )23≤x 3.计算223)3(a a ÷的结果是( * )(A )46a(B )49a(C )49a -(D )39a4.下面各整式能直接运用完全平方公式分解因式的是( * ) (A )92-x(B )962-+x x(C )962++x x (D )9642++x x5.如图,BD 为⊙O 的直径,点A 、C 均在⊙O 上,∠CBD =60°,则∠A 的度数为( * )(A )60° (B )30°(C )45° (D )20°6.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于 ( ) (A )2cm(B )4cm(C )6cm(D )8cm第5题 第6题DCAB7.某制衣厂要确定一种衬衫不同号码的生产数量,在做市场调查时,该向商家侧重了解这种衬衫不同号码的销售数量的( * ) (A )平均数(B )中位数 (C )众数(D )极差8.抛物线322++-=x x y 与两坐标轴的交点个数为( * ) (A )0(B )1(C )2(D )39. 把半径为10,面积为π60的扇形做成圆锥的侧面,则圆锥的高是( * )(A )10(B )8(C )6(D )410.如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为( * )(A )5:3 (B )3:5 (C )4:3 (D )3:4第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.当5=x 时,12-x 的值为 .12.若关于x 的一元二次方程082=-+kx x 的一个根是2,则另一个根是__________. 13.若点)1,3(-P 是反比例函数上的一点,则这个反比例函数的解析式为___________. 14.已知两圆的半径分别为6㎝和2㎝,圆心距为4㎝,则这两个圆的位置关系为 . 15.已知点)0,2(A 、)2,0(B 、),1(m C -在同一条直线上,则m 的值为 . 16.如图,在等腰梯形ABCD 中,AD ∥BC ,AB =5,AD =6,BC =12,点E 在AD 边上,且AE :ED =1:2,点P 是AB 边上的一个动点,(P 不与A ,B 重合)过点P 作PQ ∥CE 交BC 于点Q ,设AP=x ,CQ=y ,则y 与x 之间的函数关系是_________________.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)计算 2933x x x --- 第16题F第10题如图7,点A 、E 、B 、D 在一条直线上,AE =DB ,AC =DF ,AC ∥DF . 求证:BC =EF19.(本小题满分10分)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售。
2012年广东省初中毕业生学业考试数学模拟试卷(十三)
一、选择题(本大题5小题,每小题3分,共15分,在每小题列出的四个选项中,只有一个是正确的). 1.4的算术平方根是( ) A.2 B.2
1 C. 2
1-
D. 2-
2.取值范围是2
1x ≠
的函数是( ).
A.1
x 2x y -= B. 1x 2y -= C. 1x 2y -= D. )
1x 2(x 1y -=
3. 下列美丽的图案,不是中心对称图形的是( )
A .
B .
C .
D .
4.我国的国土面积为6106.9⨯平方公里,则这个数原来是( ).
A.96 000
B.960 000
C.9 600 000
D.96 000 000
5.如图,圆锥的母线AB=6,底面圆的半径CB=2,则侧面展开图扇形的弧长和圆心角α的度数分别为( )
A. π2,︒
60 B. π2,︒90 C. π4,︒120 D. π4,︒150 二、填空题(本大题5小题,每小题4分,共20分)。
6.分解因式:2
2
mb ma
-= .
7.等腰三角形的两条边为3,6,则周长为 .
8.正五边形共有 条对角线 .
9.一组数据为:5、5、5、3,则这组数据的中位数和方差分别为 . 10.如图,已知反比例函数)0x (x
m y 1<=
的图象与直线b kx y 2+=交于点A (-1,6)和B (-3,2),根据图象,写出
当21y y >时,x 的取值范围为: . 三、解答题(一)(本大题5小题,每小题6分,共30分)
11.计算:412
)2012(60sin 1
32
-
π--+-︒ 12.解方程:01
x 3
x x 12
=-+-.
13.若一元二次方程 没有实数根,求K 的取值范围.
14.如图:△ABC 中, . (1)(尺规作图,保留痕迹)在边BC 上依次作点D 、E 、F (从左至右),使
BD=DE=EF=FC ;
(2)若AC=6cm ,BC=10cm ,则△ADE 的面积为: .
15. 如图,在平面直角坐标系中,反比例函数)0,0(>>=k x x
k y 的图象经过点
A (1, 2),
B (m ,n )(m >1),过点B
作y 轴的垂线,垂足为C.
(1)求该反比例函数解析式;
(2)当△ABC 面积为2时,求点B 的坐标.
四、解答题(二)(本大题4小题,每小题7分,共28分)
16. 日本在地震后,核电站出现严重的核泄漏事故,为了防止民众受到更多的核辐射,我国某医疗公司主动承担了为日本福田地区生产2万套防辐射衣服的任务,计划10天完成,在生产2天后,日本的核辐射危机加重了,所以需公司提前完成任务,于是公司从其他部门抽调了50名工人参加生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务。
求该公司原计划安排多少名工人生产防辐射衣服?
17.如图,已知AB 是⊙O 的直径,AC 、BC 为弦,过圆心O 作OD ⊥AC 于E ,交弧AC 于点D ,连接DC 。
(1)若∠CBA=︒
72,则∠DCA= .(填空)
(2)过B 作射线BF ,使∠CBF=∠A ,求证:直线BF 是⊙O 的切线; (3)若AC=24,DE=8,求⊙O 的直径AB 的长. 0k x 6x 2
=-+︒
=∠90
A
18.如图1,在△ABC 和△EDC 中,AC=CE=CB=CD ,∠ACB=∠ECD=︒90,AB 与CE 交于F ,ED 与AB 、BC 分别交于M ,H. (1)求证:CF=CH ;
(2)如图2,△ABC 不动,将△EDC 绕点C 旋转到∠BCE=45°时,试判断四边形ACDM 是什么四边形?并证明你的结论.
19.“五•一”假期,某公司组织部分员工到A 、B 、C 三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图.根据统计图回答下列问题:
(1)前往A 地的车票有 张,前往C 地的车票占全部车票的 %;
(2)若公司决定采用随机抽取的方式把车票分配给100名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去B 地车票的概率为 ;
(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?
五、解答题(三)(本大题3小题,每小题9分,共27分)
20、如图,直线1 ⊥x 轴于点(1,0),直线2 ⊥x 轴于点(2,0),直线3 ⊥x 轴于点(3,0),……直线n ⊥x 轴于
点(n,0).直线y=x 与直线1 ,2 ,3 ,……n 分别较于点1A ,2A ,3A ,……n A .直线y=2x 与直线1 ,2 ,3 ,……n 分别较于点1B ,2B ,3B ,……n B 。
如果11B OA ∆的面积为1S ,四边形1221B B A A 的面积记作2S ,四边形2332B B A A 的面积记作3S ,……四边形1n n n 1n B B A A --的面积记作n S ,那么
(1)1S = ;2S = ;3S = ;4S = ; (2)n S = ;
21.矩形ABCD 的边长AB=6,BC=4,点F 在DC 上,DF=2。
动点M 、N 分别在AD 、AB 上(M 、N 不与端点重合),连接FM 、FN 、MN 。
(1)分别取FM 、FN 、MN 的中点E 、G 、H ,连接得△EGH 与△NMF 是否相似,若相似,求出它们的相似比; (2)在(1)的条件下,若DM=BN=x ,问是否存在x 的值,使EH ..⊥HG ,若存在,求出x 的值,若不存在,说明理由; (3)在(1)的条件下,若DM=BN=x ,问是否存在x 的值,使EG ..⊥HG ,若存在,求出x 的值,若不存在,说明理由;
22. 如图,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为(2,4);矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y 轴上,且AD=2,AB=3. (1)分别求抛物线及直线ME 的解析式;
(2)在坐标平面内存在点Q ,使以M 、O 、E 、Q 为顶点的四边形为平行四边形,则点Q 的坐标为: (直接写出两个即可); (3)将矩形ABCD 以每秒1个单位长度的速度从如图1所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速....度.从点A 出发向B 匀速移动,设它们运动的时间为t 秒(0≤t ≤3),直线AB 与该抛物线的交点为N (如图2所示). ①当t=
2
5时,判断点P 是否在直线ME 上,并说明理由;
②设以P 、N 、C 、D 为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.。