四川省成都市嘉祥外国语学校2016-2017学年度上期八年级期末数学试题(北师大版,word版无答案) (1)
- 格式:doc
- 大小:474.00 KB
- 文档页数:8
2017-2018学年四川省成都市锦江区嘉祥外国语学校八年级(上)期末数学试卷一.A 卷(1()()分)选择题(每小题3分,共30分)3. (3分)如果点P S, 1+2加)在第二象限,那么加的取值范用是(5. (3分)下列命题中的假命题是( )A. 一组邻边相等的平行四边形是菱形B. 一组邻边相等的矩形是正方形C. 一组对边平行且相等的四边形是平行四边形D. 一组对边相等且有一个角是直角的四边形是矩形6. (3分)如图,点O 是矩形ABCD 的中心,E 是AB 上的点, BC=3,则折痕CE 的长为( )D. 67. (3分)如图,正方形ABCD 的对角线AC, 相交于点O, 则线段OE 的长为( ) 1.(3分)下列四个图案中.是轴对称图形,但不是中心对称图形的是(B. 2. (3分)函数y=V2-x+—中自变虽:x 的取值范用是(C. x<2 且 xHlD.A ・ 2 是方程组* y=2 4. (3分)已知< B.丄<*0 2ax+y=_1的解,则"+方=(ta 2x-by=0 C ・ /?/<0 D.A. 2 B ・-2 C ・4 D. -4沿CE 折叠后,点B 恰好与点0重合,若DE 平分ZODA 交04于点E,若AB=4, A. C.A. 2V3A ・仝近B ・4-2血C ・V2D ・A /2-238. (3分)已知一次函数y=d+b (£H0)图象过点(0, 2),且与两坐标轴围成的三角形而积为2,贝lj 一次函数的解析式为( )A. y=x+2B ・ y= - x+2C ・ y=x+2 y= - x+2D ・ y= - x+2 5^ y=x - 29. (3分)济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变)•储运部库存物资S (吨)与时间/ (小时)之间的函数关系如图 所示,这批物资从开始调进到全部调出需要的时间是(10. (3分)如图,点P 为左角ZAOB 的平分线上的一个左点,P 旋转的过程中,其两边分別与OA 、OB 相交于M 、N 两点,则以下结论:(1) PM =PN 恒成立;(2) OM+ON 的值不变;(3)四边形PMON 的而积不变:(4) MN 的长不变•其中正确的个数为()AA. 4 B ・3 C ・2 D ・1二、填空题(每题4分,共16分)C. 4.8小时D. 5小时且ZMPN 与ZAOB 互补,若乙MPN 任绕点11 ・(4 分)因式分解:(X2+4)2-16A"=12. (4分)一次函数yi =k.x+b 与$2=丹“的图象如图,则kx+b>x+a >0的解集是 _________13. (4分)在平行四边形ABCD 中,AD=13, ZBAD 和ZADC 的角平分线分别交BC 于E, F,且EF=6, 则平行四边形的周长是 _______14. (4分)如图,在菱形ABCD 中,AB=4<n h ZADC= 120° ,点E 、F 同时由A 、C 两点岀发,分别沿 AB. CB 方向向点B 匀速移动(到点B 为止),点E 的速度为15?/"点F 的速度为Icmls.经过f 秒厶三.解答题(共54分):15. (15 分)⑴计算\-3(x-2)>4(2) 解不等式组1十2艾、.•并写岀不等式组的非负整数解. —二—>工_ 1 3(3) 解分式方程:辽 ・ox+2x-2 X 2-4216 s 嘻 吧求(吉君'(苣严的似 17.(7分)对兀,y 泄义一种新运算7 ;规左:T (x. y )=竺虫上(其中“均为非零常数).这里等式 x+y 右边是通常的四则运算,例如",1)=呼14,已知"小=2.5, ",2) =4. (1)求G 方的值:r Tf4in(2)若关于加的不等式组 :’ 二 恰好有2个整数解,求实数P 的取值范用.IT (2m, 3-2m )>P18・(8分)如图所示,已知AABC 的三个顶点的坐标分别为A ( -2, 3). B ( -6, 0). C ( - 1, 0),x+2. 16(1) 请直接写出点A 关于原点0对称的点的坐标:(2) 将AABC 绕坐标原点O 逆时针旋转90° ,求出A'点的坐标.(3) 请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.10天,剩下的工程再由甲.乙两队合作30天完成.(1) 求甲、乙两队单独完成这项工程各需多少天?(2) 已知甲队每天的施工费用为&4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500 万元.为缩短工期并髙效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元? 请给出你的判断并说明理由.20. (10 分)在菱形 ABCD 中,ZBAD=60° ・(1) 如图1,点E 为线段AB 的中点,连接DE, CE,若AB=4,求线段EC 的长;(2) 如图2, M 为线段AC 上一点(M 不与A, C 重合),以AM 为边,构造如图所示等边三角形AMN, 线段MN 与AD 交于点G,连接NC, DM. 0为线段NC 的中点,连接D Q, MQ.求证:DM=2DQ ・医12一、填空题(每题4分,共20分)B 卷(50分)322-⑴分)已知直线尸疇h 爲心正整数)与坐标轴用成的三角形的而积皿,则W+S 卄… +52012 = _________23・(4分)已知ZABC=60°,点D 是其角平分线上一点,BD=CD=6・ DE//AB 交BC 于点E ・若在射24. (4分)如图,四边形ABCD 中,ZA = ZABC=90° , AD=2, BC=5, E 是边CD 的中点,连接BE并延长与AD 的延长线相交于点F ・若是等腰三角形.则四边形BDFC 的面积为 ___________________25. (4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿ZADC 的平分线DE 折叠,如图2,点 使点A 落在DE 的中点A'处,折痕是FG,若原正方形纸片的边长为9cm 则FG= _________ °售价(元/部) 48004200C 落在点处,最后按图3所示方式折叠,二.解答题(共30分)26. (8分)某数码专营店销售甲、 乙两种品牌智能手机,这两种手机的进价和售价如下表所示: 进价(元/部)4300 3600 21. (4 分)已知 1<X V2,则的值是 VX"1(1)该店销售记录显示.三月份销售甲、乙两种手机共17部,且销售甲种手机的利润恰好是销售乙种手机利润的2倍,求该店三月份售岀甲种手机和乙种手机各多少部?(2)根据市场调研,该店四月份汁划购进这两种手机共20部,要求购进乙种手机数不超过甲种手机数的2,而用于购买这两种手机的资金低于81500元,请通过汁算设汁所有可能的进货方案.3(3)在(2)的条件下,该店打算将四月份按计划购进的20部手机全部售出后,所获得利润的30%用于购买A,B两款教学仪器捐赠给某希望小学.已知购买A仪器每台300元,购买B仪器每台570元,且所捐的钱恰好用完,试问该店捐赠A,B两款仪器一共多少台?(直接写出所有可能的结果即可)27.(10分)如图1,直线h: y= - X+3与坐标轴分别交于点A, B,与直线①y=x交于点C.2(1)求A, B两点的坐标;(2)求△BOC的面积;(3)如图2,若有一条垂直于x轴的直线/以每秒1个单位的速度从点A出发沿射线AO方向作匀速滑动,分别交宜线/i. h及x轴于点M, N和Q.设运动时间为t(5),连接C0.①当OA = 3MN时,求/的值:②试探究在坐标平面内是否存在点P,使得以0、Q、C、P为顶点的四边形构成菱形?若存在,请直接28.(12分)问题背景:如图1,等腰MBC中,AB=AC, ZBAC= 120° ,作AD丄于点D 则D为 "的中点,Z咙专纲,于是翳鬻皿:迁移应用:如图2, AABC和/XADE都是等腰三角形,ZBAC=ZDAE= 120° , D, E, C三点在同一条直线上,连接BD・①求证:AADB^AAEC;②请直接写岀线段AD,BD, CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,ZABC= 120° ,在ZABC内作射线BM,作点C关于BM的对称点、E,连接AE 并延长交于点F,连接CE, CF.①i正明ACEF是等边三角形:②若AE=5, CE=2,求BF的长.。
成都八中嘉祥外国语学校八年级上册期末数学模拟试卷含详细答案一、选择题1.新型冠状病毒“COVID ﹣19”的平均半径约为50纳米(1纳米=10﹣9米),这一数据用科学记数法表示,正确的是( )A .50×10﹣9米B .5.0×10﹣9米C .5.0×10﹣8米D .0.5×10﹣7米 2.若分式3x x +有意义,则实数x 的取值范围是( ) A .3x >-B .0x >C .3x ≠-D .0x ≠ 3.下列选项所给条件能画出唯一ABC ∆的是( )A .3AC =,4AB =,8BC =B .50A ∠=︒,30B ∠=︒,2AB =C .90C ∠=︒,90AB =D .4AC =,5AB =,60B ∠=︒ 4.若m+1m =5,则m 2+21m 的结果是( ) A .23 B .8 C .3 D .75.我国古代许多关于数学的发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律,例如,第四行的四个数1,3,3,1恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数,请你猜想5()a b +的展开式中含32a b 项的系数是( )A .10B .12C .9D .86.把边长相等的正五边形ABCDE 和正方形ABFG ,按照如图所示的方式叠合在一起,连结AD ,则∠DAG =( )A .18°B .20°C .28°D .30° 7.下列运算正确的是( ) A .()325a a = B .()22ab ab = C .632a a a ⋅= D .235a a a ⋅=8.设,,a b c 是三角形的三边长,且满足222a b c ab bc ca ++=++,关于此三角形的形状有以下判断:①是直角三角形; ②是等边三角形; ③是锐角三角形;④是钝角三角形,其中正确的说法的个数有( )A .1个B .2个C .3个D .4个9.下列运算正确的是( ) A .23522a a a ⋅= B .()22436m m = C .623m m m ÷=D .22(1)1x x +=+ 10.如图,已知12,AC AD ∠=∠=,增加下列条件,不能肯定ABC AED ≌的是( )A .C D ∠=∠B .B E ∠=∠C . AB AE =D .BC ED =二、填空题11.已知2+x x y 的值为4,若分式2+x x y 中的x 、y 均扩大2倍,则2+x x y的值为__________.12.分解因式:4x ﹣2x 2=_____.13.已知2235,310m n ==,则19m n -+的值是_______________________.14.若关于x 的方程355x m x x=+--有增根,则m =_____. 15.因式分解:24m n n -=________.16.已知32×9m ÷27=321,则m=______.17.如图,在等边△ABC 中,D 、E 分别是AB 、AC 上的点,且AD=CE ,则∠BCD+∠CBE= 度.18.已知a ﹣b =3,那么2a ﹣2b+6=_____.19.求220191222++++的值,可令22019S 1222=++++,则23202022222S =++++,因此2020221S S -=-.仿照以上推理,计算出23201911112222++++的值为______.20.在多项式241x +中添加一个单项式,使其成为一个完全平方式,则添加的单项式是______(只写出一个即可).三、解答题21.如图,已知△ABC .(1)请用尺规作图作出AC 的垂直平分线,垂足为点D ,交AB 于点E (保留作图痕迹,不要求写作法);(2)连接CE ,如果△ABC 的周长为27,DC 的长为5,求△BCE 的周长.22.计算:(1)23()x x ⋅;(2)(3)(2)x y x y +-;23.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______________;(请选择正确的一个)A 、2222()a ab b a b -+=-,B 、22()()a b a b a b -=+-,C 、2()a ab a a b +=+.(2)应用你从(1)选出的等式,完成下列各题:①已知22412x y -=,24x y +=,求2x y -的值. ②计算:2222211111111112344950⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 24.已知ABC ,80ABC ∠=︒,点E 在BC 边上,点D 是射线AB 上的 一个动点,将ABD △沿DE 折叠,使点B 落在点B '处,(1)如图1,若125ADB '∠=︒,求CEB '∠的度数;(2)如图2,试探究ADB '∠与CEB '∠的数量关系,并说明理由;(3)连接CB ',当//CB AB '时,直接写出CB E ∠'与ADB '∠的数量关系为 .25.化简:(1)2(2)(2)(2)42x y x y x y xy y ⎡⎤--+-+÷⎣⎦;(2)24442244a a a a a a --⎛⎫--÷ ⎪--+⎝⎭26.已知:如图,在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,(1)作B 的平分线BD ,交AC 于点D ;作AB 的中点E ;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)连接DE ,求证:ADE BDE ∆≅∆.27.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ;(2)根据(1)中的结论,若x+y =5,x•y =94,则x ﹣y = ;(3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.28.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.试说明:≅;(1)ABC DEF∠=∠.(2)A EGC29.已知x=3+1,y=3﹣1,求:(1)代数式xy的值;(2)代数式x3+x2y+xy2+y3的值.>的长方形,沿图中虚线用剪刀均分成四30.如图①所示是一个长为2m,宽为2n(m n)个小长方形,然后按图2的方式拼成一个正方形()1如图②中的阴影部分的正方形的边长等于______(用含m、n的代数式表示);()2请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①:______;方法②:______;()3观察图②,试写出2-、mn这三个代数式之间的等量关系:(m n)+、2(m n)______;()4根据()3题中的等量关系,若m n12=,求图②中阴影部分的面积.+=,mn25【参考答案】***试卷处理标记,请不要删除1.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:50纳米=50×10﹣9米=5.0×10﹣8米.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.C解析:C【解析】【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+3≠0,解得x ≠-3.故选:C .【点睛】本题考查了分式有意义的条件,利用分式有意义得出不等式是解题关键.3.B解析:B【解析】【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A 、3+4<8,不能构成三角形,故A 错误;B 、50A ∠=︒,30B ∠=︒,2AB =,满足ASA 条件,能画出唯一的三角形,故B 正确;C 、90C ∠=︒,90AB =,不能画出唯一的三角形,故C 错误;D 、4AC =,5AB =,60B ∠=︒,不能画出唯一的三角形,故D 错误;故选:B.此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.4.A解析:A【解析】因为m +1m =5,所以m 2+21m =(m +1m)2﹣2=25﹣2=23,故选A . 5.A解析:A【解析】【分析】根据“杨辉三角”的构造法则即可得.【详解】由“杨辉三角”的构造法则得:5()a b 的展开式的系数依次为1,5,10,10,5,1, 因为系数是按a 的次数由大到小的顺序排列,所以含32a b 项的系数是第3个,即为10,故选:A .【点睛】本题考查了多项式乘法中的规律性问题,理解“杨辉三角”的构造法则是解题关键.6.A解析:A【解析】【分析】利用多边形内角和公式求得∠E 的度数,在等腰三角形AED 中可求得∠EAD 的度数,进而求得∠BAD 的度数,再利用正方形的内角得出∠BAG =90°,进而得出∠DAG 的度数.【详解】解:∵正五边形ABCDE 的内角和为(5﹣2)×180°=540°,∴∠E =∠BAE =15×540°=108°, 又∵EA =ED ,∴∠EAD =12×(180°﹣108°)=36°, ∴∠BAD =∠BAE ﹣∠EAD =72°,∵正方形GABF 的内角∠BAG =90°,∴∠DAG =90°﹣72°=18°,故选:A .【点睛】本题考查正多边形的内角和,掌握多边形内角和公式是解题的关键.解析:D【解析】【分析】利用幂的运算性质直接计算后即可确定正确的选项.【详解】A 、()326a a =,故错误,不符合题意;B 、()222ab a b =,故错误,不符合题意;C 、639a a a ⋅=,故错误,不符合题意;D 、235a a a ⋅=,正确,符合题意,故选:D .【点睛】本题考查了幂的运算性质,解题的关键是了解这些性质并能正确的计算. 8.B解析:B【解析】【分析】先将原式转化为完全平方公式,再根据非负数的性质得出a b c ==.进而判断即可.【详解】∵222a b c ab bc ca ++=++,∴222222222a b c ab bc ca ++=++,即()()()2220a b b c a c -+-+-=,∴a b c ==,∴此三角形为等边三角形,同时也是锐角三角形.故选:B .【点睛】本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键. 9.A解析:A【解析】【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:∵2a 2•a 3=2a 5,故选项A 正确;∵(3m 2)2=9m 4,故选项B 错误;∵m 6÷m 2=m 4,故选项C 错误;∵(x+1)2=x 2+2x+1,故选项D 错误;故选:A.【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.10.D解析:D【解析】【分析】根据等式的性质可得∠CAB=∠DAE,然后再结合判定两个三角形全等的一般方法SSS、SAS、ASA、AAS、HL分别进行分析.【详解】解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,∴∠CAB=∠DAE,A、添加∠C=∠D可利用ASA定理判定△ABC≌△AED,故此选项符合题意;B、添加∠B=∠E可利用AAS定理判定△ABC≌△AED,故此选项符合题意;C、添加AB=AE可利用SAS定理判定△ABC≌△AED,故此选项符合题意;D、添加CB=DE不能判定△ABC≌△AED,故此选项符合题意.故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,解题关键是:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题11.8【解析】【分析】首先把分式中的x、y均扩大2倍,然后约分化简,进而可得答案.【详解】解:分式中的x、y均扩大2倍得:=2×4=8,故答案为:8.【点睛】本题考查了分式的基本性质,关解析:8【解析】【分析】首先把分式2+xx y中的x、y均扩大2倍,然后约分化简,进而可得答案.【详解】解:分式2+xx y中的x、y均扩大2倍得:224222x xx y x y=++=2×4=8,故答案为:8.【点睛】本题考查了分式的基本性质,关键是掌握分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.12.2x(2﹣x).【解析】【分析】直接找出公因式2x,进而提取公因式得出即可.【详解】解:4x﹣2x2=2x(2﹣x).故答案为:2x(2﹣x).【点睛】本题考查了提取公因式法分解因式解析:2x(2﹣x).【解析】【分析】直接找出公因式2x,进而提取公因式得出即可.【详解】解:4x﹣2x2=2x(2﹣x).故答案为:2x(2﹣x).【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题的关键.13.【解析】【分析】先逆用幂的乘方法则,把32m、32n转化为9m、9n的形式,再逆用同底数幂的乘除法法则,把9m-n+1转化为同底数幂的乘除法的形式后代入求值.【详解】∵32m=(32)m=解析:9 2【解析】【分析】先逆用幂的乘方法则,把32m、32n转化为9m、9n的形式,再逆用同底数幂的乘除法法则,把9m-n+1转化为同底数幂的乘除法的形式后代入求值.【详解】∵32m=(32)m=9m=5,32n=(32)n=9n=10,∴9m-n+1=9m÷9n×9=5÷10×992.故答案为:92.【点睛】本题考查了同底数幂的乘除法法则、幂的乘方法则,掌握同底数幂的乘除法、幂的乘方法则及逆用是解决本题的关键.14.-5【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程即可求出m的值.【详解】分式方程去分母得:x=3x﹣15﹣m,由分式方程有增根解析:-5【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程即可求出m的值.【详解】分式方程去分母得:x=3x﹣15﹣m,由分式方程有增根,得到x﹣5=0,即x=5,把x=5代入整式方程得:m=﹣5,故答案为:﹣5.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.n(m+2)(m﹣2)【解析】【分析】先提取公因式 n,再利用平方差公式分解即可.【详解】m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..故答案为n(m+2)(m﹣2).【点睛解析:n(m+2)(m﹣2)【解析】【分析】先提取公因式 n,再利用平方差公式分解即可.【详解】m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..故答案为n(m+2)(m﹣2).【点睛】本题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键16.【解析】【分析】根据32×9m÷27=321,可得:32+2m-3=321,据此求出m的值是多少即可.【详解】解:∵32×9m÷27=321,∴32+2m-3=321,∴2+2m-3=解析:【解析】【分析】根据32×9m÷27=321,可得:32+2m-3=321,据此求出m的值是多少即可.【详解】解:∵32×9m÷27=321,∴32+2m-3=321,∴2+2m-3=21,解得:m=11.故答案为:11.【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,以及同底数幂的乘法的运算方法,要熟练掌握.17.【解析】试题分析:根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定△ADC≌△CEB,从而得出∠ACD=∠CBE,所以∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=解析:【解析】试题分析:根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定△ADC≌△CEB,从而得出∠ACD=∠CBE,所以∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60°.解:∵△ABC是等边三角形∴∠A=∠ACB=60°,AC=BC∵AD=CE∴△ADC≌△CEB∴∠ACD=∠CBE∴∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60°.故答案为60.考点:等边三角形的性质;全等三角形的判定与性质.18.12【解析】【分析】把所求的式子用已知的式子a﹣b表示出来,代入数据计算即可.【详解】解:∵a﹣b=3,∴2a﹣2b+6=2(a﹣b)+6=2×3+6=12.故答案为:12【点睛】解析:12【解析】【分析】把所求的式子用已知的式子a﹣b表示出来,代入数据计算即可.【详解】解:∵a﹣b=3,∴2a﹣2b+6=2(a﹣b)+6=2×3+6=12.故答案为:12【点睛】考核知识点:整式化简求值.式子变形是关键.19.【解析】【分析】根据题目所给计算方法,令,再两边同时乘以,求出,用,求出的值,进而求出的值.【详解】解:令,则,∴,∴,则.故答案为:【点睛】本题考查了同底数幂的乘法,利用错 解析:2019112-【解析】【分析】 根据题目所给计算方法,令23201911112222S,再两边同时乘以12,求出12S ,用12S S ,求出12S 的值,进而求出S 的值. 【详解】 解:令23201911112222S , 则22023401111122222S , ∴2020111222S S , ∴2020111222S , 则2019112S .故答案为:2019112-【点睛】 本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键. 20.或【解析】【分析】【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ;如果这里首末两项是Q 和1,则乘积项是4x2=2解析:4x ±或416x【解析】【分析】【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ;如果这里首末两项是Q 和1,则乘积项是4x 2=2⋅2x 2,所以Q=4x 4;如果该式只有4x 2项或1,它也是完全平方式,所以Q=-1或-4x 2.解:∵4x 2+1±4x=(2x±1)2;4x 2+1+4x 4=(2x 2+1)2;4x 2+1-1=(±2x )2;4x 2+1-4x 2=(±1)2.∴加上的单项式可以是±4x 、4x 4、-4x 2、-1中任意一个.三、解答题21.(1)见解析(2)17【解析】【分析】(1)利用基本作图作DE 垂直平分AC ;(2)根据线段垂直平分线的性质得到EA =EC ,AD =CD =5,则利用△ABC 的周长得到AB+BC =17,然后根据等线段代换可求出△AEC 的周长.【详解】(1)如图,DE 为所作;(2)∵DE 垂直平分AC ,∴EA =EC ,AD =CD =5,∴AC =10,∵△ABC 的周长=AB+BC+AC =27,∴AB+BC =27﹣10=17,∴△AEC 的周长=BE+EC+BC =BE+AE+BC =AB+BC =17.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).22.(1)7x ;(2)22253x xy y +-【解析】【分析】(1)首先利用幂的乘方的性质进行计算,再利用同底数幂的乘法运算法则计算即可; (2)利用多项式的计算法则进行计算即可.【详解】(1)23()x x ⋅6x x =⋅7x =;(2)(3)(2)x y x y +-22263x xy xy y =-+-22253x xy y =+-.【点睛】本题主要考查了多项式乘多项式,以及幂的乘方和积的乘方,关键是掌握整式运算的各计算法则.23.(1)B ;(2)①3;②51100【解析】【分析】(1)观察图1与图2,根据两图形阴影部分面积相等验证平方差公式即可;(2)①已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;②原式利用平方差公式变形,约分即可得到结果.【详解】(1)根据图形得:22()()a b a b a b -=+-,上述操作能验证的等式是B ,故答案为:B ;(2)①∵224(2)(2)12x y x y x y -=+-=, 24x y +=,∴23x y -=; ②2222211111111112344950⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111223⎛⎫⎛⎫⎛⎫=-+- ⎪⎪⎪⎝⎭⎝⎭⎝⎭1111111111349495050⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+-+ ⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1324354850495122334449495050=⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯ 515120=⨯51100=. 【点睛】本题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.24.(1)35CEB '∠=︒;(2)20ADB CEB ''∠=∠-︒,理由见解析;(3)①当点D 在边AB 上时,80CB E ADB ''∠=∠-︒,②当点D 在AB 的延长线上时,80CB E ADB ''∠+∠=︒;【解析】【分析】(1)利用四边形内角和求出∠BEB′的值,进而可求出CEB '∠的度数;(2)方法类似(1);(3)分两种情形:如图1-1中,当点D 线段AB 上时,结论:∠CB′E+80°=∠ADB′;如图2中,当点D 在AB 的延长线上时,结论:∠CB′E+∠ADB′=80°.分别利用平行线的性质证明即可.【详解】解:(1)如图1中由翻折的性质可知,∠DBE=∠DB′E=80°,∵∠ADB′=125°,∴∠BDB′=180°-125°=55°,∵∠BEB′+∠BDB′+∠DBE+∠DB′E=360°,∴∠BEB′=360°-55°-80°-80°=145°,∴∠CEB′=180°-145°=35°.(2)结论:∠ADB′=∠CEB′-20°.理由:如图2中,∵80ABC ∠=︒,∴B′=CBD=180°-80°=100°,∵∠ADB′+∠BEB′=360°-2×100°=160°,∴∠ADB′=160°-∠BEB′,∵∠BEB′=180°-∠CEB′,∴∠ADB′=∠CEB′-20°.(3)如图1-1中,当点D 线段AB 上时,结论:∠CB′E+80°=∠ADB′理由:连接CB′.∵CB′//AB ,∴∠ADB′=∠CB′D ,由翻折可知,∠B=∠DB′E=80°,∴∠CB′E+80°=∠CB′D=∠ADB′.如图2-1中,当点D 在AB 的延长线上时,结论:∠CB′E+∠ADB′=80°.由:连接CB′.∵CB′//AD ,∴∠ADB′+∠DB′C=180°,∵∠ABC=80°,∴∠DBE=∠DB′E=100°,∴∠CB′E+100°+∠ADB′=180°,∴∠CB′E+∠ADB′=80°.综上所述,∠CB'E 与∠ADB'的数量关系为∠CB′E+80°=∠ADB′或∠CB′E+∠ADB′=80°. 故答案为:∠CB′E+80°=∠ADB′或∠CB′E+∠ADB′=80°.【点睛】本题考查翻折变换,多边形内角和定理,平行线的性质,以及分类讨论等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(1)y ;(2)22a a -+【解析】【分析】(1)先运用完全平方公式和平方差公式化简括号内,最后运用整式除法法则计算即可; (2)先将括号内通分计算,然后再对能因式分解的部分因式分解,最后运用整式除法法则计算即可.【详解】(1)原式()222244442x xy y x y xy y =-+-++÷ 222y y =÷=y ;(2)解:原式()22(44)442(2)a a a a a ----=⋅-- 2(4)(2)24a a a a a ---=⋅-- 22a a =-+.【点睛】本题考查了整式的混合运算和分式的混合运算,掌握并灵活运用相关运算法则和计算技巧是解答本题的关键.26.(1)见解析;(2)见解析【解析】【分析】(1)①以B 为圆心,任意长为半径画弧,交AB 、BC 于F 、N ,再以F 、N 为圆心,大于12FN 长为半径画弧,两弧交于点M ,过B 、M 画射线,交AC 于D ,线段BD 就是∠B 的平分线;②分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧交于X 、Y ,过X 、Y 画直线与AB 交于点E ,点E 就是AB 的中点;(2)首先根据角平分线的性质可得∠ABD 的度数,进而得到∠ABD =∠A ,根据等角对等边可得AD =BD ,再加上条件AE =BE ,ED =ED ,即可利用SSS 证明△ADE ≌△BDE .【详解】解:(1)作出B 的平分线BD ; 作出AB 的中点E .(2)证明:160302ABD ∠=⨯︒=︒,30A ∠=︒, ABD A ∴∠=∠,AD BD ∴=,在ADE ∆和BDE ∆中, AE BE ED ED AD BD =⎧⎪=⎨⎪=⎩()ADE BDE SSS ∴∆≅∆.【点睛】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.27.(1)(a+b)2-(a-b)2=4ab ;(2)±4;(3)-7【解析】【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy ,将x+y =5,x•y =94代入(x+y)2-(x-y)2=4xy ,即可求得x-y 的值(3)因为(2019﹣m)+(m ﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m ﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2 ∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y =5,x•y =94 ∴52-(x-y)2=4×94 ∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m ﹣2020)=-1∴[(2019﹣m)+(m ﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m ﹣2020)+ (m ﹣2020)2=1∵(2019﹣m)2+(m ﹣2020)2=15∴2(2019﹣m)(m ﹣2020)=1-15=-14∴(2019﹣m)(m ﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.28.(1)见解析;(2)见解析【解析】【分析】(1)根据等式性质,由BE=CF 得BC=EF ,再根据SSS 定理得△ABC ≌△DEF 即可;(2)由全等三角形得∠B=∠DEF ,由平行线的判定定理得AB ∥DE ,再根据平行线的性质得∠A=∠EGC .【详解】(1)∵BE CF =,∴BE EC CF EC +=+,即BC EF =,在△ABC 与△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩, ∴(SSS)ABC DEF ≅△△;(2)∵△ABC ≌△DEF ,∴∠B=∠DEF ,∴AB ∥DE ,∴∠A=∠EGC .【点睛】本题考查了全等三角形的判定和性质,平行线的性质与判定,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.29.(1)2;(2)【解析】【分析】(1)直接代入平方差公式计算即可;(2)先计算出x+y 和x 2+y 2,原式整理成(x 2+y 2)(x+y )代入计算即可;【详解】(1)xy=)=2-1=2;(2)∵x,y1,xy=2,∴∴x 2+y 2=(x+y )2-2xy=8,则x 3+x 2y +xy 2+y 3= x 2(x+y )+y 2(x+y )=(x 2+y 2)(x+y )【点睛】此题考查整式的化简求值,平方差公式,完全平方公式,解题关键在于掌握运算法则.30.(1)()m n -(2)①2(m n)-②2(m n)4mn +-(3)22(m n)4mn (m n)+-=-(4)44【解析】【分析】()1由图①可知,分成的四个小长方形每个长为m ,宽为n ,因此图②中阴影部分边长为小长方形的长减去宽,即()m n -;()2①直接用阴影正方形边长的平方求面积;②用大正方形面积减四个小长方形的面积;()3根据阴影部分面积为等量关系列等式;()4直接代入计算.【详解】()1小长方形每个长为m ,宽为n ,∴②中阴影部分正方形边长为小长方形的长减去宽,即()m n -故答案为()m n -()2①阴影正方形边长为()m n -∴面积为:2(m n)-故答案为2(m n)-②大正方形边长为()m n +∴大正方形面积为:2(m n)+四个小长方形面积为4mn∴阴影正方形面积=大正方形面积4-⨯小长方形面积,为:2(m n)4mn +- 故答案为2(m n)4mn +-()3根据阴影正方形面积可得:22(m n)4mn (m n)+-=-故答案为22(m n)4mn (m n)+-=-()224(m n)4mn (m n)+-=-且m n 12+=,mn 25= ,222(m n)(m n)4mn 1242514410044∴-=+-=-⨯=-=【点睛】本题考查了根据图形面积列代数式,用几何图形面积验证完全平方公式.找准图中各边的等量关系是解题关键.。
成都八中嘉祥外国语学校八年级上册期末数学模拟试卷及答案一、选择题1.若关于x 的分式方程1233m x x x -=---有增根,则实数m 的值是( ) A .2 B .2- C .1 D .02.如图,在锐角三角形ABC 中,AB=52,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是( )A .4B .5C .6D .103.如图,四边形ABCD 中,//AD BC ,BD 平分ADC ∠,下列结论①AD AB =,②CD BC =,③BD 平分ABC ∠,④ABC ABD S S ∆∆=,⑤AC BD ⊥.正确的是( )A .②B .①②④C .②③④D .②④⑤ 4.关于x 的分式方程22x m x +-=3的解是正数,则负整数m 的个数为( ) A .3B .4C .5D .6 5.在下列多项式中,不能用平方差公式因式分解的是( )A .229x y -B .21m -+C .2216a b -+D .21x -- 6.如图,点D ,E 在△ABC 的边BC 上,△ABD ≌△ACE ,其中B ,C 为对应顶点,D ,E 为对应顶点,下列结论不.一定成立的是( )A .AC=CDB .BE=CDC .∠ADE=∠AED D .∠BAE=∠CAD7.在平面直角坐标系xOy 中,点A(0,a),B(b ,12-b),C(2a -3,0),0<a <b <12,若OB 平分∠AOC,且AB =BC ,则a +b 的值为( )A .9或12B .9或11C .10或11D .10或12 8.若210m m +-=,则3222019m m ++的值为( )A .2020B .2019C .2021D .20189.有下列说法:①轴对称的两个三角形形状相同;②面积相等的两个三角形是轴对称图形;③轴对称的两个三角形的周长相等;④经过平移、翻折或旋转得到的三角形与原三角形是形状相同的.其中正确的有( )A .4个B .3个C .2个D .1个 10.下列运算正确的是( ) A .23522a a a ⋅= B .()22436m m = C .623m m m ÷=D .22(1)1x x +=+ 二、填空题11.如图,已知:AB ∥CD ,DB ⊥BC ,∠1=40°,求∠2的度数.完成下面的证明过程: 证明:∵AB ∥CD ( ), ∴∠1=∠BCD =40°( ).∵BD ⊥BC ,∴∠CBD = .∵∠2+∠CBD+∠BCD = ( ),∴∠2= .12.若关于x 的方程355x m x x=+--有增根,则m =_____. 13.若关于x 的分式方程3111m x x +=--无解,则m 的值是__________. 14.若分式221x x -+的值为零,则x 的值等于_____. 15.如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_____.16.如图,//AB CD ,EG AB ⊥,垂足为G .若150∠=︒,则E ∠=_______.17.如图,已知:∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,AB =6,AC =3,则BE =_______.18.若多项式2x px q -+(p ,q 是常数)分解因式后,有一个因式是x +3,则3p +q 的值为________.19.在△ABC 中,AB =AC ,∠ABC =∠ACB ,CE 是高,且∠ECA =36°,平面内有一异于点A ,B ,C ,E 的点D ,若△ABC ≌△CDA ,则∠DAE 的度数为_____.20.一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______.三、解答题21.如图,在ABC 中,110ABC ∠=,40A ∠=.(1)作ABC 的角平分线BE (点E 在AC 上;用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求BEC ∠的度数.22.如图,在ABC ∆和DEF ∆中,B 、E 、C 、F 在同一直线上,下面有四个条件:①AB DE =;②AC DF =;③//AB DE ;④BE CF =.请你从中选三个作为题设,余下的一个作为结论,写出一个真命题,并加以证明.解:我写的真命题是:已知:____________________________________________;求证:___________.(注:不能只填序号)证明如下:23.在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD ;(3)画出BC 边上的高线AE ;(4)记网格的边长为1,则A B C '''的面积为___________.24.化简:(1)2(2)(2)(2)42x y x y x y xy y ⎡⎤--+-+÷⎣⎦; (2)24442244a a a a a a --⎛⎫--÷ ⎪--+⎝⎭ 25.在平面直角坐标系中,()0,A a ,()5,Bb ,且a ,b 满足130a b +++=,将线段AB 平移至CD ,其中A ,B 的对应点分别为C ,D .(1)a =______,b =______;(2)若点C 的坐标为()2,4-,如图1,连接OC ,求三角形COD 的面积; (3)设点E 是射线OD (E 不与点D 重合)上一点,①如图2,若点E 在线段OD 上,25DCE ∠=︒,70EAB ∠=︒,求AEC ∠的度数并说明理由;②如图3,点E 在射线OD 上,试探究DCE ∠与EAB ∠和AEC ∠的关系并直接写结论.26.如图,∠ADB=∠ADC,∠B=∠C.(1)求证:AB=AC;(2)连接BC,求证:AD⊥BC.27.如图,等边△ABC的边AC,BC上各有一点E,D,AE=CD,AD,BE相交于点O.(1)求证:△ABE≌△CAD;(2)若∠OBD=45°,求∠ADC的度数.28.如图,已知直线y=13x+1与x轴、y轴分别交于点A、B,以线AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90o、点P(x、y)为线段BC上一个动点(点P不与B、C重合),设△OPA的面积为S.(1)求点C的坐标;(2)求S 关于x 的函数解析式,并写出x 的的取值范围;(3)△OPA 的面积能于92吗,如果能,求出此时点P 坐标,如果不能,说明理由. 29.如图,如果AD ∥BC ,∠B =∠C ,那么AD 是∠EAC 的平分线吗?请说明你判别的理由.30.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Napier ,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Euler ,1707-1783年)才发现指数与对数之间的联系,对数的定义:一般地,若()0,1xa N a a =>≠,那么x 叫做以a 为底N 的对数,记作:log N a x =,比如指数式4216=可以转化为1624log =,对数式2552log =可以转化为2525=,我们根据对数的定义可得到对数的一个性质:()log log log a a a MN M N =+ ()0,1,0,0a a M N >≠>>),理由如下:设log ,log a a M m N n ==则m n M a N a ==,∴m n m n MN a a a +==,由对数的定义得log ()a m n MN +=又∵log log a a m n M N +=+,所以()log log log a a a MN M N =+,解决以下问题:(1)将指数3464=转化为对数式____;计算2log 8=___;(2)求证:log log log (0,1,0,0)a a a M M N a a M N N=->≠>> (3)拓展运用:计算333log 2log 6log 4+-=【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出m 的值.【详解】去分母得:m=x-1-2x+6,由分式方程有增根,得到x-3=0,即x=3,把x=3代入整式方程得:m=2,故选:A .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.2.B解析:B【解析】【分析】【详解】∵AD 平分∠CAB ,∴点B 关于AD 的对称点B′在线段AC 上,作B′N′⊥AB 于N′交AD 于M′.∵BM+MN=B′M+MN ,∴当M 与M′重合,N 与N′重合时,BM+MN 的值最小,最小值为B′N′,∵AD 垂直平分BB′,∴2,∵∠B′AN′=45°,∴△AB′N′是等腰直角三角形,∴B′N′=5∴BM+MN 的最小值为5.故选B .【点睛】本题考查轴对称-最短问题、垂线段最短、等腰直角三角形的判定和性质等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.3.A解析:A【解析】【分析】利用//AD BC ,得出∠ADB=∠DBC, BD 平分ADC ,得出∠ADB=∠BDC, 所以∠BDC=∠DBC,根据等边对等角得出CD=CB .【详解】解:∵//AD BC , BD 平分ADC ∠,∴∠ADB=∠DBC, ∠ADB=∠BDC ,∴∠BDC=∠DBC ,∴CD=CB ,所以②正确,①、③、④、⑤不一定正确.故选:A .【点睛】本题考查平行线的性质、角平分线的性质、等腰三角形的判定等,解题关键是熟练掌握以上性质.4.B解析:B【解析】【分析】 首先解分式方程2=32x m x +-,然后根据方程的解为正数,可得x >0,据此求出满足条件的负整数m 的值为多少即可.【详解】 解:2=32x m x +-, 2x +m =3(x ﹣2),2x ﹣3x =﹣m ﹣6,﹣x =﹣m ﹣6,x =m +6,∵关于x 的分式方程2=32x m x +-的解是正数, ∴m +6>0,解得m >﹣6,∴满足条件的负整数m 的值为﹣5,﹣4,﹣3,﹣2,﹣1,当m =﹣4时,解得x =2,不符合题意;∴满足条件的负整数m 的值为﹣5,﹣3,﹣2,﹣1共4个.故选:B .【点睛】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解. 5.D解析:D【解析】【分析】根据平方差公式有: 229x y -==(x +3y )(x−3y );21m -+=m 2-1=(m+1)(m−1);2216a b -+=b 2−16a 2=(b +4a )(b−4a );而−x 2−1=−(x 2+1),不能用平方差公式分解.【详解】A.229x y -==(x +3y )(x−3y );B.21m -+=m 2-1=(m+1)(m−1);C.2216a b -+=b 2−16a 2=(b +4a )(b−4a );而−x 2−1=−(x 2+1),不能用平方差公式分解.故选:D .【点睛】本题考查了平方差公式:a 2−b 2=(a +b )(a−b ),熟练掌握此公式是解答此题的关键.6.A解析:A【解析】【分析】【详解】∵△ABD ≌△ACE ,∴∠ADB=∠AEC ,∠BAD=∠CAE ,BD=CE ,∴180°-∠ADB=180°-∠AEC ,∠BAD+∠DAE=∠CAE+∠DAE ,BD+DE=CE+DE ,即∠ADE=∠AED ,∠BAE=∠CAD ,BE=CD ,故B 、C 、D 选项成立,不符合题意;无法证明AC=CD ,故A 符合题意,故选A.7.B解析:B【解析】【分析】由OB 平分∠AOC 可知,B 点的横坐标和纵坐标数值相同,再根据AB =BC 分情况讨论即可.【详解】∵OB 平分∠AOC∴B 点的横坐标和纵坐标数值相同即b=12-b解得,b=6因为AB =BC可分情况讨论,若OA=OC ,如图所示则△OAB≌△OCBa=2a -3解得,a=3此时,0<a<b<12,故a+b=3+6=9②若OA>OC,如图所示过点B分别作x轴,y轴的垂线,垂足分别为点D,点E 因为B点的横纵坐标数值相同,所以BD=BE∵AB=BC,∴Rt△ADB≌Rt△CEB∴AD=CE∴a-6=6-(2a-3)解得,a=5此时,不满足OA>OC,故此种情况不存在③若OC>OA,如图所示,过点B分别作x轴,y轴的垂线,垂足分别为点D,点E 因为B点的横纵坐标数值相同,所以BD=BE∵AB=BC,∴Rt△ADB≌Rt△CEB∴AD=CE6-a=2a-3-6解得,a=5此时,0<a <b <12,故a+b=5+6=11综上,a+b=9或11【点睛】本题考查角平分线的性质和代数式的应用.8.A解析:A【解析】【分析】根据已知方程可得21m m =-,代入原式计算即可.【详解】解:∵210m m +-=∴21m m =-∴原式=()2122019m m m -⋅++ 222220192019120192020m m m m m =-++=++=+= 故选:A【点睛】这类题解法灵活,可根据所给条件和求值式的特征进行适当的变形、转化.9.B解析:B【解析】【分析】根据平移、翻折或旋转的性质逐项判断可求解.【详解】解:①轴对称的两个三角形形状相同,故正确;②面积相等的两个三角形形状不一定相同,故不是轴对称图形,故错误;③轴对称的两个三角形的周长相等,故正确;④经过平移、翻折或旋转得到的三角形与原三角形是形状相同的,故正确.故选:B.【点睛】本题考查了图形的变换,掌握平移、翻折或旋转的性质是解题的关键.10.A解析:A【解析】【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:∵2a2•a3=2a5,故选项A正确;∵(3m2)2=9m4,故选项B错误;∵m6÷m2=m4,故选项C错误;∵(x+1)2=x2+2x+1,故选项D错误;故选:A.【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.二、填空题11.已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【解析】【分析】由平行线的性质和垂线的定义可得∠1=∠BCD=40°,∠CBD=90°,由三角形内角和定理可求∠2的度数解析:已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【解析】【分析】由平行线的性质和垂线的定义可得∠1=∠BCD=40°,∠CBD=90°,由三角形内角和定理可求∠2的度数.【详解】∵AB∥CD(已知),∴∠1=∠BCD=40°(两直线平行,同位角相等).∵BD⊥BC,∴∠CBD=90°.∵∠2+∠CBD+∠BCD=180°(三角形内角和定理),∴∠2=50°.故答案为:已知,两直线平行,同位角相等,90°,180°,三角形内角和定理,50°.【点睛】本题考查了平行线的性质,垂线的定义,三角形内角和定理,熟练运用三角形内角和定理是本题的关键.12.-5【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程即可求出m的值.【详解】分式方程去分母得:x=3x﹣15﹣m,由分式方程有增根解析:-5【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程即可求出m的值.【详解】分式方程去分母得:x=3x﹣15﹣m,由分式方程有增根,得到x﹣5=0,即x=5,把x=5代入整式方程得:m=﹣5,故答案为:﹣5.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.3【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【详解】解:去分母,得,∴,∵关于的分式方程无解,∴最简公分母,∴当时解析:3【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出m 的值.【详解】 解:3111m x x+=-- 去分母,得31m x -=-,∴2x m =-,∵关于x 的分式方程无解,∴最简公分母10x -=,∴当1x =时,得3m =,即m 的值为3.【点睛】此题考查了分式方程的解,解题的关键是弄清分式方程无解的条件.14.2【解析】根据题意得:x ﹣2=0,解得:x=2.此时2x+1=5,符合题意,故答案为2. 解析:2【解析】根据题意得:x ﹣2=0,解得:x=2.此时2x +1=5,符合题意,故答案为2.15.70°.【解析】【分析】根据全等三角形的性质得出AB =AD ,∠BAC =∠DAE ,求出∠BAD =∠EAC =40°,根据等腰三角形的性质得出∠B =∠ADB ,即可求出答案.【详解】解:∵△ABC解析:70°.【解析】【分析】根据全等三角形的性质得出AB =AD ,∠BAC =∠DAE ,求出∠BAD =∠EAC =40°,根据等腰三角形的性质得出∠B =∠ADB ,即可求出答案.【详解】解:∵△ABC ≌△ADE ,∴AB =AD ,∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=12(180°﹣∠BAD)=70°,故答案为:70°.【点睛】本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理等知识点,能根据全等三角形的性质得出AB=AD和求出∠BAD=∠EAC是解此题的关键.16.40°【解析】【分析】∠1和∠2是对顶角相等,∠2和∠3为同位角,根据两直线平行,同位角相等可求出∠3,在直角三角形中,两锐角互余,即可求解.【详解】解:∵∠1=50°,∴∠1=∠2(解析:40°【解析】【分析】∠1和∠2是对顶角相等,∠2和∠3为同位角,根据两直线平行,同位角相等可求出∠3,在直角三角形中,两锐角互余,即可求解.【详解】解:∵∠1=50°,∴∠1=∠2(对顶角相等),∵AB∥CD,∴∠3=∠2=50°,又∵EG⊥AB,∴∠E=90°-∠3=90°-∠50°=40°.故答案为:40°.【点睛】本题主要考查了平行线的性质以及直角三角形两锐角互余的关系,熟练掌握性质定理是解题的关键.17.【解析】【分析】连接CD 、BD ,由∠BAC 的平分线与BC 的垂直平分线相较于点D ,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,从而得到AF=AE 解析:32【解析】【分析】连接CD 、BD ,由∠BAC 的平分线与BC 的垂直平分线相较于点D ,DE ⊥AB ,DF ⊥AC ,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,从而得到AF=AE ,可证的Rt △CDF ≌Rt △BDE ,则可得BE=CF ,即可得到结果.【详解】解:如图所示,连接CD 、BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE ,∴AE=AF ,∵DG 是BC 的垂直平分线,∴CD=BD ,在Rt △CDF 和Rt △BDE 中CD BD DF DE =⎧⎨=⎩∴Rt △CDF ≌Rt △BDE∴BE=CF ,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,∵AB=6,AC=3,∴BE=32.故答案为:32【点睛】 本题主要考查的是线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,掌握以上知识点是解题的关键.18.-9【解析】【分析】设另一个因式为,因为整式乘法是因式分解的逆运算,所以将两个因式相乘后结果得,根据各项系数相等列式,计算可得3p+q 的值.【详解】因为多项式中二次项的系数为1,则设另一解析:-9【解析】【分析】设另一个因式为x a +,因为整式乘法是因式分解的逆运算,所以将两个因式相乘后结果得2x px q -+,根据各项系数相等列式,计算可得3p+q 的值.【详解】因为多项式2x px q -+中二次项的系数为1,则设另一个因式为x a +,则()()()22233333x px q x x a x ax x a x a x a -+=++=+++=+++, 由此可得33a p a q +=-⎧⎨=⎩①②, 由①得:3a p =--③,把③代入②得:39p q --=,∴39p q +=-,故答案为:9-.【点睛】本题考查了因式分解的意义.解题的关键是掌握因式分解的意义,因式分解与整式乘法是相反方向的变形,二者是一个式子的不同表现形式;因此具体作法是:按多项式法则将分解的两个因式相乘,列等式或方程组即可求解.19.117°、27°、9°和81°【解析】【分析】根据等腰三角形的性质和全等三角形的性质解答即可.解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠BAC=解析:117°、27°、9°和81°【解析】【分析】根据等腰三角形的性质和全等三角形的性质解答即可.【详解】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠BAC=54°,∠ACB=∠ABC=63°,∵△ABC≌△CDA,∴∠CAD=∠ACB=63°,∴∠DAE=∠CAD+∠BAC=63°+54°=117°,同理,∠DAE=9°,当△ABC为钝角三角形时,∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠EAC=54°,∠ACB=∠ABC=27°,∵△ABC≌△CDA,∴∠CAD=∠ACB=27°,∴∠DAE=∠EAC﹣∠CAD=54°﹣27°=27°,同理可得:∠DAE=81°.故答案为:117°、27°、9°和81°.本题考查了全等三角形的性质,关键是根据等腰三角形的性质和全等三角形的性质解答.20.720°【解析】【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2) ×180°.解析:720°【解析】【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2) ×180°.【详解】解:∵任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∴n=360°÷60°=6,∴此正多边形的边数为6,则这个多边形的内角和为(n-2) ×180°,(6-2)×180°=720°,故答案为720°.【点睛】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n边形内角和等于(n-2) ×180°”是解题的关键.三、解答题21.(1)见解析;(2)95°【解析】【分析】(1)依据角平分线的作法,即可得到△ABC的角平分线BE;(2)依据三角形内角和定理,即可得到∠AEB的度数,再根据邻补角的定义,即可得到∠BEC的度数.【详解】(1)如图(满足“三弧一线”可得)线段BE 即为所求(2)由(1)得,BE 平分ABC ∠∵110ABC ∠=︒ ∴1552ABE ABC ∠=∠=︒ ∵40A ∠=︒∴180554085AEB ∠=︒-︒-︒=︒∵180AEB BEC ∠+∠=︒∴1808595BEC ∠=︒-︒=︒【点睛】本题主要考查了三角形内角和定理以及基本作图,解决问题的关键是掌握角平分线的作法.22.已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AC=DF ,BE=CF .求证:AB ∥DE.证明见解析.或已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AB ∥DE ,BE=CF .求证:AC=DF .证明见解析.【解析】【分析】由BE=CF ⇒BC=EF ,所以,由①②④,可用SSS ⇒△ABC ≌△DEF ⇒∠ABC=∠DEF ⇒ AB ∥DE ;由①③④,可用SAS ⇒△ABC ≌△DEF ⇒AC=DF ;由于不存在ASS 的证明全等三角形的方法,故由其它三个条件不能得到1或4.【详解】解:将①②④作为题设,③作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AC=DF ,BE=CF . 求证:AB ∥DE .证明:在△ABC 和△DEF 中,∵BE=CF ,∴BC=EF.又∵AB=DE ,AC=DF ,∴△ABC ≌△DEF (SSS )∴∠ABC=∠DEF .∴ AB ∥DE.将①③④作为题设,②作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AB ∥DE ,BE=CF . 求证:AC=DF .证明:∵AB ∥DE,∴∠ABC=∠DEF.在△ABC 和△DEF 中∵BE=CF ,∴BC=EF.又∵AB=DE ,∠ABC=∠DEF ,∴△ABC ≌△DEF (SAS ),∴AC=DF .【点睛】本题考查命题与定理、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.23.(1)见解析;(2)见解析;(3)见解析;(4)8【解析】【分析】(1)连接BB ′,过A 、C 分别做BB ′的平行线,并且在平行线上截取AA ′=CC ′=BB ′,顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)作AB 的垂直平分线找到中点D ,连接CD ,CD 就是所求的中线.(3)从A 点向BC 的延长线作垂线,垂足为点E ,AE 即为BC 边上的高;(4)根据三角形面积公式即可求出△A ′B ′C ′的面积.【详解】解:(1)如图所示:A B C '''∆即为所求;(2)如图所示:CD 就是所求的中线;(3)如图所示:AE 即为BC 边上的高;(4)4421628A B C S '''∆=⨯÷=÷=.故A B C '''∆的面积为8.【点睛】本题主要考查了根据平移变换作图,以及三角形的中线,高的一些基本画图方法.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.24.(1)y ;(2)22a a -+【解析】【分析】(1)先运用完全平方公式和平方差公式化简括号内,最后运用整式除法法则计算即可; (2)先将括号内通分计算,然后再对能因式分解的部分因式分解,最后运用整式除法法则计算即可.【详解】(1)原式()222244442x xy y x y xy y =-+-++÷ 222y y =÷=y ;(2)解:原式()22(44)442(2)a a a a a ----=⋅-- 2(4)(2)24a a a a a ---=⋅-- 22a a =-+.【点睛】本题考查了整式的混合运算和分式的混合运算,掌握并灵活运用相关运算法则和计算技巧是解答本题的关键.25.(1)﹣1,﹣3;(2)8;(3)①∠AEC=95°,理由见解析;②当点E 在线段OD 上时,DCE ∠+EAB ∠=AEC ∠;当点E 在OD 的延长线上时,∠BAE=∠DCE+∠AEC .【解析】【分析】(1)根据非负数的性质解答即可;(2)先根据平移的性质求出点D 的坐标,然后过点C 、D 作CM ⊥x 轴于M ,DN ⊥x 轴于N ,如图1,再根据S △COD =S 梯形CMND -S △COM -S △DON 代入数据计算即可;(3)①根据平移的性质可得AB ∥CD ,过点E 作EG ∥AB ,如图2,则AB ∥CD ∥EG ,然后根据平行线的性质可得∠DCE=∠CEG ,∠BAE=∠GEA ,再根据角的和差即可求出结果; ②分两种情况:当点E 在线段OD 上时,如图2,此时由①的推导可直接得出结论;当点E 在OD 的延长线DH 上时,如图3,设CD 的延长线DQ 交AE 于点P ,根据平行线的性质和三角形的外角性质解答即可.【详解】解:(1)∵10a +,∴a+1=0,b+3=0,解得:a=﹣1,b=﹣3,故答案为:﹣1,﹣3;(2)∵a=﹣1,b=﹣3,∴A (0,﹣1),B (5,﹣3),∵将线段AB 平移至CD ,A ,B 的对应点分别为C (﹣2,4),D ,∴点D (3,2)如图1,过点C 、D 作CM ⊥x 轴于M ,DN ⊥x 轴于N ,则CM=4,DN=2,MN=2+3=5,∴S △COD =S 梯形CMND -S △COM -S △DON =()11124524328222⨯+⨯-⨯⨯-⨯⨯=;(3)①根据平移的性质可得AB ∥CD ,过点E 作EG ∥AB ,如图2,则AB ∥CD ∥EG , ∴∠DCE=∠CEG ,∠BAE=∠GEA ,∵25DCE ∠=︒,70EAB ∠=︒,∴∠AEC=∠CEG+∠AEG=∠DCE+∠BAE=25°+70°=95°;②当点E 在线段OD 上时,如图2,此时由①的结论可得:DCE ∠+EAB ∠=AEC ∠; 当点E 在OD 的延长线DH 上时,如图3,设CD 的延长线DQ 交AE 于点P ,∵AB ∥CD ,∴∠EPQ=∠EAB ,∵∠EPQ=∠DCE+∠AEC ,∴∠BAE=∠DCE+∠AEC ;综上,当点E 在线段OD 上时,DCE ∠+EAB ∠=AEC ∠;当点E 在OD 的延长线上时,∠BAE=∠DCE+∠AEC .【点睛】本题考查了非负数的性质、平移的性质、坐标系中三角形面积的计算、平行线的性质、平行公理的推论以及三角形的外角性质等知识,涉及的知识点多,但难度不大,熟练掌握上述知识是解题的关键.26.(1)见解析;(2)见解析【解析】【分析】(1)根据题意证明△ADB ≌△ADC 即可证明AB =AC ;(2)连接BC ,由中垂线的逆定理证明即可.【详解】证明:(1)∵在△ADB 和△ADC 中,==ADB ADC B CAD AD ∠⎧⎪∠∠⎨⎪=⎩, ∴△ADB ≌△ADC (AAS ),∴AB =AC ;(2)连接BC ,∵△ADB ≌△ADC ,∴AB =AC ,BD =CD ,∴A 和D 都在线段BC 的垂直平分线上,∴AD 是线段BC 的垂直平分线,即AD ⊥BC .【点睛】本题主要考查全等三角形的判定与性质以及中垂线的逆定理,熟记相关定理是解题关键.27.(1)见解析;(2)∠ADC=105°【解析】【分析】(1)根据等边三角形的性质可得AB=AC,∠BAE=∠C=60 °,再根据SAS即可证得结论;(2)根据全等三角形的性质可得∠ABE=∠CAD,然后根据三角形的外角性质和角的和差即可求出∠BOD的度数,再根据三角形的外角性质即可求出答案.【详解】(1)证明:∵△ABC为等边三角形,∴AB=AC,∠BAE=∠C=60 °,在△ABE与△CAD中,∵AB=AC,∠BAE=∠C,AE=CD,∴△ABE≌△CAD(SAS);(2)解:∵△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BOD=∠ABO+∠BAO=∠CAD +∠BAO=∠BAC=60°,∴∠ADC=∠OBD+∠BOD=45°+60°=105°.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质以及三角形的外角性质等知识,属于常考题目,熟练掌握上述知识是解答的关键.28.(1)(4,3);(2)S=3342x+,0<x<4;(3)不存在.【解析】【分析】(1)直线y=13x-+1与x轴、y轴分别交于点A、B,可得点A、B的坐标,过点C作CH⊥x轴于点H,如图1,易证△AOB≌△CHA,从而得到AH=OB、CH=AO,就可得到点C 的坐标;(2)易求直线BC解析式,过P点作PG垂直x轴,由△OPA的面积=1OA PG2即可求出S关于x的函数解析式.(3)当S=92求出对应的x即可.【详解】解:(1)∵直线y=13x-+1与x轴、y轴分别交于点A、B,∴A点(3,0),B点为(0,1),如图:过点C作CH⊥x轴于点H,则∠AHC =90°.∴∠AOB =∠BAC =∠AHC =90°,∴∠OAB =180°-90°-∠HAC =90°-∠HAC =∠HC A .在△AOB 和△CHA 中,AOB CHA OAB HCA AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AOB ≌△CHA (AAS ),∴AO =CH =3,OB =HA =1,∴OH =OA +AH =4∴点C 的坐标为(4,3);(2)设直线BC 解析式为y =kx +b ,由B (0,1),C (4,3)得:143b k b =⎧⎨+=⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线BC 解析式为112y x =+, 过P 点作PG 垂直x 轴,△OPA 的面积=12OA PG ,∵PG =112y x =+,OA =3, ∴S =113(1)22x +=3342x +; 点P (x 、y )为线段BC 上一个动点(点P 不与B 、C 重合),∴0<x <4. ∴S 关于x 的函数解析式为S =3342x +, x 的的取值范围是0<x <4; (3)当s =92时,即339422x +=,解得x =4,不合题意,故P 点不存在. 【点睛】本题主要考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、勾股定理、三角形的面积公式等知识,构造全等三角形是解决第(1)小题的关键.29.AD 是∠EAC 的平分线,理由见解析【解析】【分析】根据平行线和等腰三角形的性质可证得∠EAD=∠DAC ,可得出结论.【详解】AD 是∠EAC 的平分线,∵AD ∥BC ,∴∠EAD =∠B ,∠DAC =∠C ,又∵∠B =∠C ,∴∠EAD =∠DAC ,∴AD 是∠EAC 的平分线.【点睛】本题主要考查了等腰三角形的性质和平行线的性质,掌握等边对等角和平行线的性质是解题的关键.30.(1)33log 64 ,3;(2)证明见解析;(3)1【解析】【分析】(1)根据题意可以把指数式43=64写成对数式;(2)先设log a M =m ,log a N =n ,根据对数的定义可表示为指数式为:M =a m ,N =a n ,计算M N的结果,同理由所给材料的证明过程可得结论; (3)根据公式:log a (M•N )=log a M +log a N 和log MN a =log a M −log a N 的逆用,将所求式子表示为:log 3(2×6÷4),计算可得结论.【详解】解:(1)由题意可得,指数式43=64写成对数式为:3=log 464,故答案为:3=log 464;(2)设log a M =m ,log a N =n ,则M =a m ,N =a n , ∴M N =mn a a=a m−n ,由对数的定义得m−n =log M N a , 又∵m−n =log a M −log a N , ∴log MN a =log a M −log a N (a >0,a≠1,M >0,N >0); (3)log 32+log 36−log 34,=log 3(2×6÷4),=log 33,=1,故答案为:1.【点睛】本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.。
2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。
2016-2017年秋期八年级上期末教学质量检测数学试卷出题人:曾琴一、选择题〔本大题共10个小题,每小题3分,共30分〕1.若分式有意义,则x满足的条件是A.x≠0B.x≠3C.x≠-3D.x≠±32.计算:(-x)3·(-2x)的结果是A.-2x4B.-2x3C.2x4D.2x33.在平面直角坐标系中,点A(7,-2)关于x轴对称的点A′的坐标是A.(7,2)B.(7,-2)C.(-7,2) D.(-7,-2)4.若△ABC≌△A′B′C′,且AB=AC=9,△ABC的周长为26cm,则B′C′的长为A.10cmB.9cmC.4cmD.8cm5.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P为:A.90°﹣α B. 90°+αC. C. 360°﹣α6.分式方程1226x x=+的解为第5题图A.x=-2B.x=2 C.x=-3D.x=37.计算:201423⎛⎫⎪⎝⎭×(-1.5)2015的结果是A.-32B.32C.-23D.238. 下列各图形都是轴对称图形,其中对称轴最多的是A.等腰直角三角形B.直线C.等边三角形D.正方形9.已知△ABC的两边长分别为AB=9、AC=2,第三边BC的长为奇数,则BC的长是A.5B.7C.9D.1110.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为A. 5B. 5或6C. 5或7D. 5或6或7二、填空题(本大题共6个小题,每小题3分,共18分)请将答案直接填在答题卷对应的横线上.11.分解因式:4x2-1=.12.若分式2212xx x-+-=0,则x=.A )BCD 84° (第13题)13.如图,在△ABC 中,点D 是BC 上一点,∠BAD =84°,AB =AD =DC ,则∠CAD =.14.如图,在△ABC 中,EF 是AB 边的垂直平分线,AC =18cm ,BC =16cm 则△BCE 的周长为cm .15.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值X 围是________.16.已知b a b a +=+111 ,则ba ab +的值。
2024届四川省成都市嘉祥外国语学校八年级数学第一学期期末综合测试试题 注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)1.将直线y =-x +a 的图象向下平移2个单位后经过点A (3,3),则a 的值为( )A .-2B .2C .-4D .82.在Rt △ABC 中,∠C =90°,AB =13,AC =12,则△ABC 的面积为( )A .5B .60C .45D .303.下列计算中,①()325ab ab =;②()323639xy x y =;③325236x x x ⋅=;④()()224c c c -÷-=-不正确的有() A .3个 B .2个 C .1个 D .4个4.用反证法证明:“直角三角形至少有一个锐角不小于45°”时,应先假设( )A .直角三角形的每个锐角都小于45°B .直角三角形有一个锐角大于45°C .直角三角形的每个锐角都大于45°D .直角三角形有一个锐角小于45°5.下列计算正确的是( )A .33(2)2a a -=-B .22()()a b a b b a ---=-C .222()a b a b +=+D .336()()--=a a a6.下列各式中,是最简二次根式的是( )A .0.2B .18C .49D .21x +7.如图,在△ABC 中,∠BAC =90°,AD 是△ABC 的高,若∠B =20°,则∠DAC =( )A .90°B .20°C .45°D .70°8.下列各组图形中,是全等形的是( )A .两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形9.每个网格中均有两个图形,其中一个图形关于另一个图形轴对称的是()A.B.C.D.10.已知x2+2mx+9是完全平方式,则m的值为()A.±3 B.3 C.±6 D.611.我国民间,流传着许多含有吉祥意义的图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”“禄”“寿”“喜”,其中是轴对称图形的有几个()A.1个B.2个C.3个D.4个12.如图,在△ABC中,∠C=90°,AD平分∠BAC,AE=AC,下列结论中错误的是( )A.DC=DE B.∠AED=90°C.∠ADE=∠ADC D.DB=DC二、填空题(每题4分,共24分)⊥于D.若A(4,0),B(m,3),C(n,-5),则AD BC=______.13.如图,直线BC经过原点O,点A在x轴上,AD BC14.如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,−3),B(4,−1).(1)若P(p,0)是x 轴上的一个动点,则△PAB 的最小周长为___________(2)若C(a,0),D(a+3,0)是x 轴上的两个动点,则当a=___________时,四边形ABDC 的周长最短;15.化简:2(321)-=_________.16.在等腰三角形中,有一个角等于40°,则这个等腰三角形的顶角的外角的度数为___17.点11A y -(,),2(3)B y ,是直线(0)y kx b k =+<上的两点,则12y y -_______0(填“>”或“<”).18.直角坐标平面上有一点P (﹣2,3),它关于y 轴的对称点P ′的坐标是_____.三、解答题(共78分)19.(8分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A 驶向终点B ,在整个行程中,龙舟离开起点的距离y (米)与时间x (分钟)的对应关系如图所示,请结合图象解答下列问题: (1)起点A 与终点B 之间相距 m .(2)分别求甲、乙两支龙舟队的y 与x 函数关系式;(3)甲龙舟队出发多少时间时两支龙舟队相距200米?20.(8分)如图,已知△ABC ,利用尺规..,根据下列要求作图(保留作图痕迹,不写作法),并根据要求填空: (1)作∠ABC 的平分线BD 交AC 于点D ;(2)作BD 的垂直平分线交AB 于E ,交BC 于F ;(3)在(1)、(2)条件下,连接DE ,线段DE 与线段BF 的关系为 .21.(8分)为了适应网购形式的不断发展,某邮政快递公司更新了包裹分拣设备后,平均每名邮递员每天比原先要多分拣60件包裹,而且现在分拣550件包裹所需要的时间与原来分拣350件包裹所需时间相同,问现在平均每名邮递员每天分拣多少件包裹?22.(10分)如图,点C 在线段AB 上,A B ∠=∠,AC BE =,AD BC =,F 是DE 的中点.(1)求证:CF DE ⊥;(2)若20ADC ∠=︒,80DCB ∠=︒,求CDE ∠的度数.23.(10分)(1)在等边三角形ABC 中,①如图①,D ,E 分别是边AC ,AB 上的点且AE=CD ,BD 与EC 交于点F ,则∠BFE 的度数是 度; ②如图②,D ,E 分别是边AC ,BA 延长线上的点且AE=CD ,BD 与EC 的延长线交于点F ,此时∠BFE 的度数是 度; (2)如图③,在△ABC 中,AC=BC ,∠ACB 是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,AE=CD ,BD 与EC 的延长线交于点F ,若∠ACB=α,求∠BFE 的大小.(用含α的代数式表示).24.(10分)解答下列各题:(1)计算:()()()2233221x x x x x -++--+(2)分解因式:244mx mx m ++.25.(12分)已知,求的值.26.如图:等边ABC ∆中,BC AC 、上,且AE CD =,AD BE 、相交于点P ,连接PC .(1)证明ABE CAD ∆≅∆.(2)若CPD PBD ∠=∠,证明PCE ∆是等腰三角形.参考答案一、选择题(每题4分,共48分)1、D【分析】先根据平移规律得出平移后的直线解析式,再把点A (3,3)代入,即可求出a 的值.【题目详解】解:将直线y =-x +a 向下平移1个单位长度为:y =-x +a −1.把点A (3,3)代入y =-x +a −1,得-3+a−1=3,解得a =2.故选:D .【题目点拨】本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y =kx +b 向左平移m 个单位,是y =k (x +m )+b , 向右平移m 个单位是y =k (x -m )+b ,即左右平移时,自变量x 左加右减;②y =kx +b 向上平移n 个单位,是y =kx +b +n , 向下平移n 个单位是y =kx +b -n ,即上下平移时,b 的值上加下减.2、D【分析】在Rt △ABC 中,根据勾股定理可求得BC 的长,然后根据三角形的面积公式即可得出结论.【题目详解】解:∵AB =13,AC =12,∠C =90°,∴BC =5,∴△ABC 的面积=12×12×5=30, 故选:D .【题目点拨】本题考查了勾股定理以及三角形的面积,掌握基本性质是解题的关键.3、A【分析】直接利用积的乘方运算法则、单项式乘以单项式的法则、同底数幂的除法法则分别计算得出答案即可.【题目详解】解:①()3236ab a b =,故此选项错误,符合题意; ②()3236327xy x y =,故此选项错误,符合题意;③325236x x x ⋅=,故此选项正确,不符合题意;④()()()2242c c c c -÷-==-,故此选项错误,符合题意;故选:A【题目点拨】此题主要考查了积的乘方、单项式乘以单项式、同底数幂的除法等运算知识,正确掌握运算法则是解题关键. 4、A【解题分析】分析:找出原命题的方面即可得出假设的条件.详解:有一个锐角不小于45°的反面就是:每个锐角都小于45°,故选A .点睛:本题主要考查的是反证法,属于基础题型.找到原命题的反面是解决这个问题的关键.5、B【分析】分别根据对应的法则逐一分析即可【题目详解】解:A. 33(2)8-=-a a ,故本选项不符合题意; B. 22()()()(+)=---=----a b a b b a b a b a ,故本选项符合题意;C. 222()2ab++=+a b a b ,故本选项不符合题意;D. 336()()--=-a a a ,故本选项不符合题意;故选:B【题目点拨】本题考查了积的乘方、平方差公式、完全平方公式、同底数幂的乘法等知识点,能正确求出每个式子的值是解此题的关键.【分析】根据最简二次根式的概念对每个选项进行判断即可.【题目详解】A 5==,不是最简二次根式,此选项不正确;B =C 23=,不是最简二次根式,此选项不正确;D ,不能再进行化简,是最简二次根式,此选项正确;故选:D .【题目点拨】本题考查了最简二次根式,熟练掌握概念是解题的关键.7、B【分析】先根据高线和三角形的内角和定理得:90,90DAC BAD BAD B ∠+∠=︒∠+∠=︒,再由余角的性质可得结论.【题目详解】90BAC ∠=︒90DAC BAD ∴∠+∠=︒∵AD 是△ABC 的高90ADB BAD B ∴∠=∠+∠=︒20DAC B ∴∠=∠=︒故选:B .【题目点拨】本题考查了直角三角形两锐角互余、三角形的内角和定理等知识点,熟记三角形的相关概念是解题关键. 8、B【解题分析】试题解析:A 、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形; B 、腰对应相等的两个等腰直角三角形,符合AAS 或ASA ,或SAS ,是全等形;C 、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D 、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选B .【题目点拨】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.【分析】根据轴对称定义:如果一个图形沿某条直线对折能与另一个图形重合,那么这两个图形关于这条直线成轴对称进行分析即可.【题目详解】A、其中一个图形不与另一个图形成轴对称,故此选项错误;B、其中一个图形与另一个图形成轴对称,故此选项正确;C、其中一个图形不与另一个图形成轴对称,故此选项错误;D、其中一个图形不与另一个图形成轴对称,故此选项错误;故选:B.【题目点拨】本题主要考查了轴对称,关键是掌握轴对称定义.10、A【分析】将原式转化为x2+2mx +32,再根据x2+2mx +32是完全平方式,即可得到x2+2mx +32=(x±3)2,将(x±3)2展开,根据对应项相等,即可求出m的值.【题目详解】原式可化为x2+2mx+32,又∵x2+2mx+9是完全平方式,∴x2+2mx+9=(x±3)2,∴x2+2mx+9= x2±6mx+9,∴2m=±6,m=±3.故选A.【题目点拨】此题考查完全平方式,掌握运算法则是解题关键11、C【分析】根据轴对称图形的概念即可确定答案.【题目详解】解:第一个图形不是轴对称图形,第二、三、四个图形是轴对称图形,共3个轴对称图形,故答案为C.【题目点拨】本题考查了轴对称图形的定义,掌握轴对称图形的定义是解答本题的关键.12、D【分析】证明△ADC≌△ADE,利用全等三角形的性质即可得出答案.【题目详解】在△ADC和△ADE中,∵AE ACCAD EAD AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△ADE(SAS),∴DC=DE,∠AED=∠C=90°,∠ADE=∠ADC,故A、B、C选项结论正确,D选项结论错误.故选:D.【题目点拨】本题考查了全等三角形的判定与性质,注意掌握全等三角形的判定定理及全等三角形的性质,对于选择题来说,可以运用排除法得解.二、填空题(每题4分,共24分)13、32【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=1.【题目详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=12AO•BE=12×4×3=6,S △AOC =12AO•OF=12×4×5=10, ∴S △AOB +S △AOC =6+10=16,∵S △ABC =S △AOB +S △AOC ,∴12BC•AD=16, ∴BC•AD=1,故答案为:1.【题目点拨】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.14、2522+ 54【分析】(1)根据题意,设出并找到B (4,-1)关于x 轴的对称点是B',其坐标为(4,1),算出AB′+AB 进而可得答案;(2)过A 点作AE ⊥x 轴于点E ,且延长AE ,取A'E=AE .做点F (1,-1),连接A'F .利用两点间的线段最短,可知四边形ABDC 的周长最短等于A'F+CD+AB ,从而确定C 点的坐标值.【题目详解】解:(1)设点B (4,-1)关于x 轴的对称点是B',可得坐标为(4,1),连接AB′,则此时△PAB 的周长最小,∵AB′=()()222431=25-+--,AB=()()222431=22-+-+,∴△PAB 的周长为2522+,故答案为:2522+;(2)过A 点作AE ⊥x 轴于点E ,且延长AE ,取A'E=AE .作点F (1,-1),连接A'F .那么A'(2,3). 设直线A'F 的解析式为y=kx+b ,则132k b k b -=+⎧⎨=+⎩,解得:45k b =⎧⎨=-⎩, ∴直线A'F 的解析式为y=4x-5,∵C点的坐标为(a,0),且在直线A'F上,∴a=54,故答案为:54.【题目点拨】本题考查最短路径问题,同时考查了根据两点坐标求直线解析式,运用解析式求直线与坐标轴的交点等知识.15、19﹣2【分析】利用完全平方公式计算.【题目详解】原式=18﹣2+1=19﹣2.故答案为19﹣2.【题目点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16、140°或80°【分析】分别讨论40°为顶角和底角的情况,求出即可.【题目详解】①当40°为顶角时,则这个等腰三角形的顶角的外角的度数为180-40=140°,②当40°为底角时,顶角为180240-⨯=100°,则这个等腰三角形的顶角的外角的度数为180-100=80°,故答案为140°或80°.【题目点拨】本题是对等腰三角形角度转换的考查,分类讨论是解决本题的关键.17、>.【分析】根据k <0,一次函数的函数值y 随x 的增大而减小解答.【题目详解】解:∵直线y kx b =+的k <0,∴函数值y 随x 的增大而减小.∵点11Ay -(,),2(3)B y ,是直线(0)y kx b k =+<上的两点,-1<3, ∴y 1>y 2,即120y y ->故答案为:>.【题目点拨】本题考查一次函数图象上点的坐标特征。
八年级上期末考试数学A卷(共100分)第I卷(选择题,共30分)、选择题(每小题3分,共30分,每小题均有四个选项,其中只有一个符合题目要求.)1.下列计算错误的是()A = 3 B. 2a a = 3a C. ■. 3》:6 = 3., 2 3 . -1D a a = a2.如果点p (m 1+2m) 在第二象限,那么m的取值范围是()1A 0 :: m -1B. - m ::: 0C. m :. 0 f 1D.m >-2223.1若式子「a •有意义,则点(a,b)在()VabA第一象限 B.第二象限 C.第三象限 D.第四象限4. 若x?+mx-15 = (x+3 ]x + n)则m的值是()A -5 B. 5 C. -2 D. 25. 小刚参加设计比赛成绩统计下表他这次设计成绩众数和中位数分别是()成绩(环)678910次数12232A.9, 8B. 8, 8 C 8, 9 D. 9, 8.56. 在函数ax b与y二bx - a 的图像在同一坐标系内的大致位置正确的是()m的取值范围是(3B. -1 : m48. 甲乙两地相距360千米,一轮船往返与甲乙两地之间,顺流用18小时,逆流用24小时,若轮船在静水中的速度为x千米/小时,水流速度为y千米/小时,则下列方程组中正确的是()9. 已知a=—1,贝U化简1-2a a2后的值是()1- 2A 2 B. <2 C 2+Q D. 2-臣10. 如图,方格纸中小正方形的边长为1,三角形ABC的三个顶点都在小正方形的格点上,小明在观察探究是发现:①三角形ABC的形状是等腰三角形;②三角形ABC的周长为2』10 +应:③三角形ABC的面积为5;④点C到AB边的距离为-v10 你认为小明观A丿18(x +y )=360 B.丿‘1&x +y )=360 cC.-1&x-y )=360 _D.-、24(x - y)= 360L24(x +y )=36024(x-y )=36018x-y l=36024 x y =360D. m -17.函数y二m 1x- 4m-3的图像经过第一、二、四象限,则5 ,察正确的序号有()A①②③④ B.①③④ C.①③④ D.①④二、填空题(每小题4分,共16分)11. 已知一个直角三角形其中两边长分别为 12. 如图直线y = kx • b 经过点A (-1,和点B ( -2,0 ),直线y = 2x 过点A ,则不等式2x . kx - b :■■ 0的 解集为 . 13. 如图,在3 3结果的正方形网格中标出了/ 1和/2,则/ 1+Z 2= .14•如图,数轴上与1,2对应的点分别为A,B ,点B 关于点A 的对称点为C,设点C 表示的数为X ,则 2+ —=X _________B O兀A(第12题图)三、解答题(本大题共6个小题,共54分) 15. 计算(每小题5分,共10分16. 解方程组(每小题6分,共12 分)⑴已知第四象限内的点Px ,y 满足方程组2二;m ,求 m 的取值范围.了-2x -1 5x 1一 I ------- — ------- 丈 1(2)解不等式组 3 2 把他的解集在数轴上表示出来5x -1 :: 3 x 117. (本小题满分6分在成都市开展的“美丽蓉城,创卫我同行”活动中,某校倡议七年级学生利用双休 日在各自社区参加义务劳动为了了解同学们的劳动情况,学校随机调查了部分同学 的劳动时间,并用得到的数据绘制成如下不完整的统计图标: (1) 求m 的值,并补全频数分布直方图。
2016—2017学年度第一学期期末测试卷八年级(初二)数学参考答案及评分意见一、选择题(本大题共8小题,每题3分,共24分)1.D ; 2.C ; 3.B ; 4.B ; 5.D ; 6.A ; 7.D ; 8.B .二、填空题(本大题共6小题,每题3分,共18分)9.x ≠2; 10.1; 11.10; 12.130°; 13.(﹣1,0);14.(0,2)或(0,﹣2)或(4,﹣2).三、解答题(本大题共4小题,每题6分,共24分)15.解:(1)原式=﹣4b ·a 4b 2÷(﹣2a )……………1分 =2a 4-1b 1+2……………2分 =2a 3b 3.……………3分 (2)原式=x [x (x -2y )+y 2]……………1分 =x (x 2-2xy +y 2)……………2分 =x (x -y )2.……………3分 16.解:(1)原式=2(1)(1)1a a a a -+-+……………1分 =221111a a a a -+=++.……………2分 当a =99时,原式=11991100=+.……………3分 (2)方程两边同乘(x +1)(x -1),得x (x +1)=3(x -1)+(x +1)(x -1).……………1分 解得x =2.……………2分 查验:当x =2时,(x +1)(x -1)≠0,∴x =2是原方程的解.……………3分 17.解:由题意,得60,80.x y xy --=⎧⎨+=⎩ ∴6,8.x y xy -=⎧⎨=-⎩……………2分 (1)原式=(x -y )2+2xy=62+2×(﹣8)=20.……………4分 (2)原式=x 2+y 2+2xy -2(x -y )=20+2×(﹣8)-2×6=﹣8.……………6分 18.(1)证:∵3×4=12,∴x a ·x b =x c .……………1分 即x a +b =x c . ∴a +b =c .……………3分 (2)解:由(1)知a +b =c ,∴a -c =﹣b .……………4分 ∴x a +3b -c =x 3b -b =x 2b =(x b )2=42=16.……………6分四、解答题(本大题共3小题,每题8分,共24分)19.解:(1)①a2+2ab+b2;②(a+b)2 ……………2分等式是a2+2ab+b2=(a+b)2 ……………4分(2)a2+3ab+2b2=(a+2b)(a+b) ……………6分对应的拼图是:……………8分20.解:(1)设每件乙种服装的进价为x元,每件甲种服装的进价为(x+20)元,那么依照题意,得2000800220x x=⨯+,解得x=80.……………2分经查验知,x=80是方程的解,且适合题意,∴x+20=100.……………3分∴每件甲种服装的进价为100元,每件乙种服装的进价为80元.……………4分(2)甲种服装的件数为2000÷100=20,乙种服装的件数为800÷80=10,……………5分设每件乙种服装的售价为y元,则依照题意,得20(130-100)+10(y-80)≥780,………6分解得y≥98.……………7分∴每件乙种服装的售价至少是98元.……………8分21.证:(1)在AB上截取AG=AF,连接DG.∵AD平分∠BAC,∴∠DAF=∠DAG.∵AD=AD,∴△ADF≌△ADG.……………1分∴∠AFD=∠AGD,FD=GD.……………2分∵FD=BD,∴GD=BD,∴∠DGB=∠B.…………3分∵∠DGB+∠AGD=180°.∴∠B+∠AFD=180°.……………4分(2)AE=AF+FD,其证明进程是:……………5分由(1)知∠B+∠AFD=180°.∵∠B+2∠DEA=180°.∴∠AFD=2∠DEA.……………6分在△DGE中,∠AGD=∠DEA+∠EDG,且∠AGD =∠AFD.∴∠DEA=∠EDG.……………7分∴DG=EG=FD.∴AE=AG+EG=AF+FD.……………8分五、探讨题(本大题共1小题,共10分)22.解:(1)①CF=BD,CF⊥BD.……………2分②当点D在线段BC的延长线上时,所画如图2所示.…………3分①中的结论仍然成立,其理由是:……………4分在△ABC中,AB=AC,∠BAC=90°,∴∠ACB=∠B=45°.在△ADF中,AD=AF,∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF.∴△ACF≌△ABD.∴CF=BD.……………5分∴∠ACF=∠B=45°.∴∠FCB=∠ACF+∠ACB=45°+45°=90°.∴CF⊥BD.……………6分(2)CF⊥BC,其证明进程是:……………7分过A作AE⊥AC交BC于E,那么∠CAE=90°.∵∠ACB=45°,∴∠AEC=45°.∴△ACE是等腰直角三角形,∴AC=AE.……………8分在△ADF中,AD=AF,∠DAF=90°,∴∠F AD-∠CAD=∠CAE-∠CAD.即∠CAF=∠EAD.∴△ACF≌△AED.∴∠ACF=∠AED=45°.……………9分∴∠FCB=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BC.……………10分。
八年级(上)期末数学试题A 卷(共100分) 一、选择题(每小题3分,共30分) 1、如果式子2-x 有意义,则x 的取值范围是( )A 、x =2B 、x ≤2C 、x >2D 、x ≥22、下列各式表示正确的是( )A 、525±=B 、525=±C 、525±=±D 、552-=-±)(3、下列说法错误的是( )A 、无理数的相反数还是无理数B 、无限小数都是无理数C 、整数和分数统称有理数D 、实数与数轴上的点一一对应4、若一直角三角形两边长分别为12和5,则第三边长为( )A 、13B 、13或119C 、13或15D 、155、方程012=-yx ,3x +y =0,2x +xy =1,3x +y -2=0,012=+-x x 中,二元一次方程对的个数是( )A 、5个B 、4个C 、3个D 、2个6、如图的两个统计图,女生人数多的学习是( )A 、甲校B 、乙校C 、甲、乙两校女生人数一样多D 、无法确定6题图 9题图 10题图7、在图中,不能表示y 是x 的函数的是( )A B C D8、平面直角坐标系中,将三角形各点的纵坐标都减去-3,横坐标保持不变,所得图形与原图形相比( )A 、向上平移了3个单位B 、向下平移了3个单位C 、向右平移了3个单位D 、向左平移了3个单位9、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x 、y 表示直角三角形的两直角边(x >y ),下列四个说法:①4922=+y x ,②x -y =2,③2xy +4=49,④x +y =9.其中说法正确的是( )A 、①②B 、①②③C 、①②④D 、①②③④10、如图,已知点A 的坐标为(0,1),点B 的坐标为(23,-2),点P 在直线y =-x 上运动,最大时点P 的坐标为( )A 、(2,-2)B 、(4,-4)C 、(25,25-) D 、(5,-5) 二、填空题(每小题4分,共16分)11、9的算术平方根是_______,16的平方根是_______.12、一种树苗栽种时的高度为80cm ,为研究它们的生产情况,测得数据如表:则按照表中呈现的规律,树苗的高度h 与栽种年数n 的关系式为______,栽种_______年后,树苗能长到280cm .13、若方程654=-+-n m n m y x 是二元一次方程,则m =______,n =_______.14、若一次函数y =2x +6与y =kx 图象的交点纵坐标为4,则k 的值为______.三、解答题(本大题共6个小题,共54分)15、(本小题满分12分,每题4分)(1)计算21)22()52)(52(2--++- (2)解方程组:⎩⎨⎧=+=-82332y x y x(3)已知253+=x ,253-=y ,求22y xy x +-的值.16、(本小题满分7分)如图,已知直角△ABC 的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积.17、(本小题满分7分)已知⎩⎨⎧==m y x 1,⎩⎨⎧==2y n x 都是关于x ,y 的二元一次方程y =x +b 的解,且422-+=-b b n m ,求b 的值.18、(本小题满分8分)某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另行收费,甲说:“我乘这种出租车走了8千米,付了17元”;乙说:“我乘这种出租车走了18千米,付了35元”.(1)请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?(2)若某人乘这种出租车行驶了x 千米,请写出付费w 元与x 的函数关系式.19、(本小题满分10分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、5、13;(3)在图3,A 、B 、C 是小正方形的顶点,求∠ABC .20、(本小题满分10分)如图,直线1l 过点A (0,3),点D (3,0),直线121:2+=x y l 与x 轴交于点C ,两直线1l ,2l 相交于点B .(1)求直线1l 的解析式和点B 的坐标;(2)求△ABC 的面积.B 卷(共50分)一、填空题(每小题4分,共20分)21、方程427123-=-)(x 的解为_______. 22、实数a 、b 、c 在数轴上的位置如图所示,化简下列代数式的 值=-+++--3322b c b b a c a )(_______.23、在Rt △ABC 中,∠BAC =90°,AB =AC =1,以AC 为腰在Rt △ABC 外部找一个点作等腰Rt △ACD ,则线段BD 的长为________.24、直线434+=x y 与x 轴、y 轴分别交于点A 、B ,M 是y 轴上一点,若将△ABM 沿AM 折叠, 点B 恰好落在x 轴上,则点M 的坐标为 .25、观察下列二次根式的化简:2111121111221-+=++=S ,. )()(3121121111312112111122222-++-+=+++++=S , )()()(4131131211211114131131211211112222223-++-++-+=++++++++=S …, 则=20172017S . 二、解答题(共3小题)26、(此题满分8分)已知A 、B 两地相距100km ,甲乙两人骑车同时分别从A ,B 两地相向而行,假设他们都保持匀速行驶,甲乙两人离A 地的距离s (千米)与骑车时间t (小时)满足的函数关系图象如图所示.(1)请分别写出甲乙两人的s 与t 之间的函数表达式(不要求写自变量的取值范围);(2)求1小时后,甲乙两人相距多少千米?(3)骑车多长时间后,甲乙两人相遇?27、(此题满分10分)(1)如图1,在△ABC 中,BC =3,AC =4,AB =5,D 为AB 边上一点,且△ACD 与△BCD 的周长相等,求AD 的长.(2)如图2,在△ABC 中,BC =a ,AC =b ,222AC BC AB +=,E 为BC 边上一点,且△ABE 与△ACE 的周长相等;F 为AC 边上一点,且△ABF 与△BCF 的周长相等,求CF CE ·(用含a ,b 的式子表示).28、(此题满分12分)已知一次函数y =2x -4的图象与x 轴、y 轴分别相交于点A 、B ,点P 在该函数的图象上,P 到x 轴、y 轴的距离分别为1d 、2d .(1)当P 为线段AB 的中点时,求21d d +的值;(2)直接写出21d d +的范围,并求当321=+d d 时点P 的坐标;(3)若在线段AB 上存在无数个P 点,使421=+ad d (a 为常数),求a 的值.。
2016-2017学年四川省成都市高新区八年级(上)期末数学试卷A卷(100分)一、选择题(每小题3分,共30分)1.(3分)9的平方根是()A.81B.±3C.3D.﹣32.(3分)在函数y=√x−3中,自变量x的取值范围是()A.x≥3B.x>3C.x≤3D.x<3 3.(3分)下列命题是真命题的是()A.任何实数都有平方根B.若a2=b2,则a=bC.√4=±2D.﹣8的立方根是﹣24.(3分)下列四组数据中,“不能”作为直角三角形的三边长的是()A.√2,√2,2B.3,4,6C.6,8,10D.5,12,13是方程2x﹣ay=3的一个解,那么a的值是()5.(3分)已知{x=1y=−1A.1B.3C.﹣3D.﹣16.(3分)对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.y的值随x的增大而增大D.当x=1时,y=037.(3分)如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,那么AD′为()A.√10B.√8C.√7D.√128.(3分)如图所示的象棋盘上,若“帅”位于点(1,﹣2)上,“相”位于点(3,﹣2)上,则“炮”位于点()A.(1,﹣2)B.(﹣2,1)C.(﹣2,2)D.(2,﹣2)9.(3分)如图,直线a∥b,直线c与直线a、b分别相交于点A,B,AD⊥b,垂足为D,若∠1=47°,则∠2=()A.57°B.53°C.47°D.43°10.(3分)某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往.如图,a,b分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数图象,则下列判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/小时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地二、填空题(本大题有4小题,每小题4分,共16分)11.(4分)满足﹣√2≤x<5的整数x是.12.(4分)有两名学员甲和乙练习射击,第一轮10枪打完后两人打耙的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计甲和乙两人中新手是;设方差分别为s甲2,s乙2,则s甲2s乙2(填“>”或“<”或“=”)13.(4分)一次函数的图象与直线y=x+l平行,且过点(1,3),此一次函数的表达式为.14.(4分)表1、表2分别给出了两条直线l1:y=k1x+b1与l2:y=k2x+b2上部分点的横坐标x和纵坐标y的对应值.表1x﹣4﹣3﹣2﹣1y﹣1﹣2﹣3﹣4表二x﹣4 ﹣3 ﹣2 ﹣1 y ﹣9 ﹣6 ﹣3 0则方程组{y =k 1x +b 1y =k 2x +b 2的解是 .三、解答题(共54分)15.(12分)计算下列各题:(1)3√27+15√75﹣6√13 (2)√18﹣√2+(1﹣√2)(1+√2) 16.(6分)解方程组:{2x +3y =16①x +4y =13②. 17.(6分)如图,在△ABC 中,AD ⊥BC 于点D ,点E 在CA 的延长线上,EG交AB 于点F 且EG ⊥BC 于点G ,AE=AF ,试说明AD 平分∠BAC .18.(10分)为了了解某学校初四年级学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m 名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m值.②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.19.(10分)列方程组解应用题我市某景点的门票价如表:1~5051~100100以上购费人数(人)12108每人门票价(元)某校八年级(1)(2)两个班共102人去游览该景点,其中(1)班人数较少,不到50人,(2)班人数较多,有50多人,如果两班都以班级为单位分别购票,则一共应付1118 元;如果两班联合起来作为一个团体购票,则可以节省不少的钱.两班各有学生多少人?联合起来购票能省多少钱?20.(10分)如图,直线l1的表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2的表达式为y=kx+b,l2经过点A,B,直线l1,l2交于点C.(1)求直线l2的解析表达式和点C的坐标;直接写出使得函数y=kx+b大于函数y=﹣3x+3的值的自变量x的取值范围;(2)如果点P在直线12上,满足△ADP的面积是△ADC面积的2倍,请求出点P的坐标;(3)在y轴上是否存在点Q,使得四边形QDBC周长最小?若存在,请直接写出点Q 的坐标:若不存在,说明理由.B卷(共50分)一、填空题(每小题4分,共20分)21.(4分)如果√x+y+(x﹣y+6)2=0,则2y﹣x的平方根是.22.(4分)实数a、b、c在数轴上的位置如图所示,化简下列代数式的值√a2﹣3= .√(c−a+b)2+|b+c|﹣√b323.(4分)如图,已知△ABC 中,∠A=60°,BD⊥AC于D,CE⊥AB于E,BD、CE交于点F,∠FBC、∠FCB的平分线交于点O,则∠BOC的度数为.24.(4分)某二元一次方程的解是{x=my=−3m+1(m为常数),若把x看做平面直角坐标系中一个点P的横坐标,y看作点P的纵坐标,下列5种说法:①点P(x,y)一定不在第三象限;②点P(x,y)可能是坐标原点;③点P (x,y)的纵坐标y随横坐标x增大而增大;④点P(x,y)的纵坐标y随横坐标x增大而减小:⑤横坐标x的值每增加1,纵坐标y的值就会减少3.其中正确的是(写出序号).25.(4分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正x的图象上,从左向右第3个正方形中的一方形都有一个顶点落在函数y=12个顶点A的坐标为(12,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则第4个正方形的边长是,S3的值为.二、解答题(共30分)26.(8分)如图,某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制的函数图象,其中日销售量y (千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.(1)直接写出y与x之间的函数关系式;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?27.(10分)一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D 分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)28.(12分)如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB 的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P 的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2016-2017学年四川省成都市高新区八年级(上)期末数学试卷参考答案与试题解析A卷(100分)一、选择题(每小题3分,共30分)1.(3分)9的平方根是()A.81B.±3C.3D.﹣3【解答】解:9的平方根是:±√9=±3.故选:B.2.(3分)在函数y=√x−3中,自变量x的取值范围是()A.x≥3B.x>3C.x≤3D.x<3【解答】解:由题意得,x﹣3≥0,解得x≥3.故选:A.3.(3分)下列命题是真命题的是()A.任何实数都有平方根B.若a2=b2,则a=bC.√4=±2D.﹣8的立方根是﹣2【解答】解:负数没有平方根,A是假命题;若a2=b2,则a=±b,B是假命题;√4=2,C是假命题;﹣8的立方根是﹣2,D是真命题,故选:D.4.(3分)下列四组数据中,“不能”作为直角三角形的三边长的是()A.√2,√2,2B.3,4,6C.6,8,10D.5,12,13【解答】解:A、∵(√2)2+(√2)2=22,∴此三角形为直角三角形,故选项错误;B、∵32+42≠62,∴此三角形不是直角三角形,故选项正确;C、∵62+82=102,∴此三角形为直角三角形,故选项错误;D、∵52+122=132,∴此三角形为直角三角形,故选项错误.故选:B.是方程2x﹣ay=3的一个解,那么a的值是()5.(3分)已知{x=1y=−1A.1B.3C.﹣3D.﹣1是方程2x﹣ay=3的一个解,【解答】解:∵{x=1y=−1∴{x=1满足方程2x﹣ay=3,y=−1∴2×1﹣(﹣1)a=3,即2+a=3,解得a=1.故选:A.6.(3分)对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.y的值随x的增大而增大时,y=0D.当x=13【解答】解:A、当x=﹣1时,y=﹣3x+1=4,∴它的图象必经过点(﹣1,4),A不符合题意;B、∵k=﹣3<0,b=1>0,∴它的图象经过第一、二、四象限,B不符合题意;C、∵k=﹣3<0,∴y值随x值的增大而减小,C不符合题意;D、当x=13时,y=﹣3x+1=0,D符合题意.故选:D.7.(3分)如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,那么AD′为()A.√10B.√8C.√7D.√12【解答】解:∵正方形ABCD的边长为2,∴BD=2√2,∵线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,∴BD′=BD=2√2,在Rt△ABD′中,AD′=√BD′2+AB2=√(2√2)2+22=2√3.故选:D.8.(3分)如图所示的象棋盘上,若“帅”位于点(1,﹣2)上,“相”位于点(3,﹣2)上,则“炮”位于点()A.(1,﹣2)B.(﹣2,1)C.(﹣2,2)D.(2,﹣2)【解答】解:如图,“炮”所在点的坐标为(﹣2,1).故选:B.9.(3分)如图,直线a∥b,直线c与直线a、b分别相交于点A,B,AD⊥b,垂足为D,若∠1=47°,则∠2=()A.57°B.53°C.47°D.43°【解答】解:∵AD⊥b,∴∠3=90°﹣∠1=90°﹣47°=43°,∵直线a∥b,∴∠2=∠3=43°.故选:D.10.(3分)某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往.如图,a,b分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数图象,则下列判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/小时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地【解答】解:骑车的同学比步行的同学晚出发30分钟,所以A正确;步行的速度是6÷1=6千米/小时,所以B正确;骑车的同学从出发到追上步行的同学用了50﹣30=20分钟,所以C正确;骑车的同学用了54﹣30=24分钟到目的地,比步行的同学提前6分钟到达目的地,故选:D.二、填空题(本大题有4小题,每小题4分,共16分)11.(4分)满足﹣√2≤x<5的整数x是﹣1,0,1,2,3,4 .【解答】解:∵1<√2<2,∴﹣√2≤x<5的整数x是:﹣1,0,1,2,3,4.故答案为:﹣1,0,1,2,3,4.12.(4分)有两名学员甲和乙练习射击,第一轮10枪打完后两人打耙的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计甲和乙两人中新手是乙;设方差分别为s甲2,s乙2,则s甲2<s乙2(填“>”或“<”或“=”)【解答】解:从图看出:甲选手的成绩波动较小,说明它的成绩较稳定.故乙是新手,其方差大,故答案为:乙;<.13.(4分)一次函数的图象与直线y=x+l平行,且过点(1,3),此一次函数的表达式为y=x+2 .【解答】解:∵一次函数的图象与直线y=x+1平行,∴设一次函数解析式为y=x+b,将(1,3)代入得,1+b=3,解得b=2,所以,一次函数解析式为y=x+2.故答案为:y=x+214.(4分)表1、表2分别给出了两条直线l 1:y=k 1x+b 1与 l 2:y=k 2x+b 2上部分点的横坐标x 和纵坐标y 的对应值.表1 x ﹣4 ﹣3 ﹣2 ﹣1 y ﹣1﹣2﹣3﹣4表二 x ﹣4 ﹣3 ﹣2 ﹣1 y﹣9﹣6﹣3则方程组{y =k 1x +b 1y =k 2x +b 2的解是 {x =−2y =−3 .【解答】解:由图表可知,当x=﹣2时,两个函数的函数值都是﹣3, 所以,方程组的解是{x =−2y =−3. 故答案为:{x =−2y =−3.三、解答题(共54分) 15.(12分)计算下列各题:(1)3√27+15√75﹣6√13(2)√18﹣√2+(1﹣√2)(1+√2)【解答】解:(1)原式=3×3√3+15×5√3﹣6×√33=9√3﹣√3﹣2√3 =6√3;(2)原式=3√2﹣√2+1﹣2=2√2﹣1.16.(6分)解方程组:{2x +3y =16①x +4y =13②.【解答】解:②×2得:2x+8y=26③, ③﹣①得:5y=10, 解得:y=2,把y=2代入②得:x+8=13, 解得:x=5,方程组的解为{x =5y =2.17.(6分)如图,在△ABC 中,AD ⊥BC 于点D ,点E 在CA 的延长线上,EG 交AB 于点F 且EG ⊥BC 于点G ,AE=AF ,试说明AD 平分∠BAC .【解答】证明:∵AD ⊥BC 于点D ,FF ⊥BC 于点F (已知), ∴∠ADC=90°,∠EFC=90°(垂直定义), ∴∠ADC=∠EFC (等量代换),∴AD ∥EF (同位角相等,两直线平行), ∴∠1=∠2(两直线平行,同位角相等), ∠4=∠5(两直线平行,同位角相等), 又∠3=∠5,∴∠3=∠4,又AE=AF,∴∠1=∠3=∠2,∴∠2=∠4,即:AD平分∠BAC.18.(10分)为了了解某学校初四年级学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m值.②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.【解答】解:(1)①∵课外阅读时间为2小时的所在扇形的圆心角的度数为90°, ∴其所占的百分比为90360=14, ∵课外阅读时间为2小时的有15人,∴m=15÷14=60;②依题意得:560×360°=30°;③第三小组的频数为:60﹣10﹣15﹣10﹣5=20, 补全条形统计图为:(2)∵课外阅读时间为3小时的20人,最多, ∴众数为 3小时;∵共60人,中位数应该是第30和第31人的平均数,且第30和第31人阅读时间均为3小时, ∴中位数为3小时;平均数为:10×1+15×2+20×3+10×4+5×560=2.75小时.19.(10分)列方程组解应用题 我市某景点的门票价如表:购费人数1~5051~100100以上(人)12108每人门票价(元)某校八年级(1)(2)两个班共102人去游览该景点,其中(1)班人数较少,不到50人,(2)班人数较多,有50多人,如果两班都以班级为单位分别购票,则一共应付1118 元;如果两班联合起来作为一个团体购票,则可以节省不少的钱.两班各有学生多少人?联合起来购票能省多少钱?【解答】解:设八年级(1)有x人,八年级(2)班有y人,,根据题意得:{x+y=10212x+10y=1118解得:{x=49,y=531118﹣102×8=302(元).答:八年级(1)有49人、八年级(2)班有53人,联合起来购票能省302元钱.20.(10分)如图,直线l1的表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2的表达式为y=kx+b,l2经过点A,B,直线l1,l2交于点C.(1)求直线l2的解析表达式和点C的坐标;直接写出使得函数y=kx+b大于函数y=﹣3x+3的值的自变量x的取值范围;(2)如果点P在直线12上,满足△ADP的面积是△ADC面积的2倍,请求出点P的坐标;(3)在y轴上是否存在点Q,使得四边形QDBC周长最小?若存在,请直接写出点Q 的坐标:若不存在,说明理由.【解答】解:(1)设直线l 2的表达式为:y=kx+b ,∵直线l 2经过点A (4,0),B (3,﹣32),∴{0=4k +b −32=3k +b, 解得{k =32b =−6, ∴直线l 2的表达式为:y=32x ﹣6,联立可得方程组{y =−3x +3y =32x −6, 解得{x =2y =−3, ∴C (2,﹣3),使得函数y=kx+b 大于函数y=﹣3x+3的值的自变量x 的取值范围为x >2; (2)∵直线l 1y=﹣3x+3与x 轴交于点D , ∴D (1,0),设P (m ,32m ﹣6),∵S △ADP =2S △ACD ,∴12×3×|32m ﹣6|=2×12×3×3, ∴m=0或8,∴点P 的坐标(0,﹣6)或(8,6); (3)D 点关于y 轴的对称点为(﹣1,0),设直线的表达式为:y=k1x+b1,依题意有{0=−k1+b1−3=2k1+b1,解得{k1=−1b1=−1,故直线的表达式为:y=﹣x﹣1,当x=0时,y=﹣1,故点Q 的坐标为(0,﹣1).B卷(共50分)一、填空题(每小题4分,共20分)21.(4分)如果√x+y+(x﹣y+6)2=0,则2y﹣x的平方根是±3 .【解答】解:根据题意得{x+y=0①x−y+6=0②,①+②得2x+6=0,解得x=﹣3,把x=﹣3代入①得y=3,所以2y﹣x=6﹣(﹣3)=9,所以2y﹣x的平方根为±3.故答案为±3.22.(4分)实数a、b、c在数轴上的位置如图所示,化简下列代数式的值√a2﹣3= ﹣b .√(c−a+b)2+|b+c|﹣√b3【解答】解:∵从数轴可知:a<b<0<c,|c|>|a|>|b|,∴原式=|a|﹣|c﹣a+b|+|b+c|﹣b=﹣a﹣c+a﹣b+b+c﹣b=﹣b,故答案为:﹣b.23.(4分)如图,已知△ABC 中,∠A=60°,BD⊥AC于D,CE⊥AB于E,BD、CE交于点F,∠FBC、∠FCB的平分线交于点O,则∠BOC的度数为150°.【解答】解:∵∠A=60°,BD⊥AC于D,CE⊥AB于E,∴∠ACE=∠ABD=30°,∠ABC+∠ACB=120°,∴∠FBC+∠FCB=60°,∵∠FBC、∠FCB的平分线交于点O,∴∠OBC+∠OCB=30°,∴∠BOC=150°故答案为150°.24.(4分)某二元一次方程的解是{x=my=−3m+1(m为常数),若把x看做平面直角坐标系中一个点P的横坐标,y看作点P的纵坐标,下列5种说法:①点P(x,y)一定不在第三象限;②点P(x,y)可能是坐标原点;③点P(x,y)的纵坐标y随横坐标x增大而增大;④点P(x,y)的纵坐标y随横坐标x增大而减小:⑤横坐标x的值每增加1,纵坐标y的值就会减少3.其中正确的是①④(写出序号).【解答】解:由x=m,得m=x,将m=x代入y=﹣2m+1,得y=﹣2x+1.y=﹣2x+1是一次函数,且经过第一、二、四象限,不经过第三象限,故①正确;一次函数y=﹣2x+1不经过原点,故②错误;由k=﹣2<0,可知y随x的增大而减小,故③错误,④正确.当x增加1时,y=﹣2(x+1)+1=﹣2x﹣2+1=﹣2x+1﹣2,即y的值减少2,故⑤错误;故答案为:①④.25.(4分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正x的图象上,从左向右第3个正方形中的一方形都有一个顶点落在函数y=12个顶点A的坐标为(12,4),阴影三角形部分的面积从左向右依次记为S1、.S2、S3、…、S n,则第4个正方形的边长是 6 ,S3的值为812x与正方形的边围成的三角形直角边底是高的2倍,【解答】解:易知:直线y=12∴后一个正方形的边长是前一个正方形边长的3倍,2∵A(12,4),∴第三个正方形的边长为4, ∴第四个正方形的边长为6;易知,一系列的阴影三角形均为相似三角形,相似比为94,S 2=42+62﹣12×4×4﹣12×2×6﹣12×6×(4+6)=8,∴S 3=8×(94)2=812. 故答案为:6、812.二、解答题(共30分)26.(8分)如图,某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制的函数图象,其中日销售量y (千克)与销售时间x (天)之间的函数关系如图甲所示,销售单价p (元/千克)与销售时间x (天)之间的函数关系如图乙所示.(1)直接写出y 与x 之间的函数关系式; (2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元? 【解答】解:(1)分两种情况:①当0≤x ≤15时,设日销售量y 与销售时间x 的函数解析式为y=k 1x , ∵直线y=k 1x 过点(15,30), ∴15k 1=30,解得k 1=2, ∴y=2x (0≤x ≤15);②当15<x ≤20时,设日销售量y 与销售时间x 的函数解析式为y=k 2x+b , ∵点(15,30),(20,0)在y=k 2x+b 的图象上, ∴{15k 2+b =3020k 2+b =0,解得:{k 2=−6b =120, ∴y=﹣6x+120(15<x ≤20);综上,可知y 与x 之间的函数关系式为: y={2x ,(0≤x ≤15)−6x +120,(15<x ≤20);(2)∵第10天和第15天在第10天和第20天之间,∴当10≤x ≤20时,设销售单价p (元/千克)与销售时间x (天)之间的函数解析式为p=mx+n ,∵点(10,10),(20,8)在p=mx+n 的图象上,∴{10m +n =1020m +n =8,解得:{m =−15n =12, ∴p=﹣15x+12(10≤x ≤20),当x=10时,p=10,y=2×10=20,销售金额为:10×20=200(元),当x=15时,p=﹣15×15+12=9,y=30,销售金额为:9×30=270(元).故第10天和第15天的销售金额分别为200元,270元;(3)若日销售量不低于24千克,则y ≥24. 当0≤x ≤15时,y=2x , 解不等式:2x ≥24, 得,x ≥12;当15<x ≤20时,y=﹣6x+120, 解不等式:﹣6x+120≥24, 得x ≤16, ∴12≤x ≤16,∴“最佳销售期”共有:16﹣12+1=5(天);∵p=﹣15x+12(10≤x ≤20),﹣15<0,∴p 随x 的增大而减小,∴当12≤x ≤16时,x 取12时,p 有最大值,此时p=﹣15×12+12=9.6(元/千克).答:此次销售过程中“最佳销售期”共有5天,在此期间销售单价最高为9.6元. 27.(10分)一节数学课后,老师布置了一道课后练习题:如图,已知在Rt △ABC 中,AB=BC ,∠ABC=90°,BO ⊥AC 于点O ,点P 、D 分别在AO 和BC 上,PB=PD ,DE ⊥AC 于点E ,求证:△BPO ≌△PDE .(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)【解答】(1)证明:∵PB=PD,∴∠2=∠PBD,∵AB=BC,∠ABC=90°,∴∠C=45°,∵BO⊥AC,∴∠1=45°,∴∠1=∠C=45°,∵∠3=∠PBC﹣∠1,∠4=∠2﹣∠C,∴∠3=∠4,∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°,在△BPO和△PDE中{∠3=∠4∠BOP=∠PEDBP=PD ∴△BPO≌△PDE(AAS);(2)证明:由(1)可得:∠3=∠4,∵BP平分∠ABO,∴∠ABP=∠3,∴∠ABP=∠4,在△ABP和△CPD中{∠A=∠C∠ABP=∠4PB=PD ∴△ABP≌△CPD(AAS),∴AP=CD.(3)解:CD′与AP′的数量关系是CD′=√23AP′.理由是:设OP=PC=x,则AO=OC=2x=BO,则AP=2x+x=3x,由△OBP≌△EPD,得BO=PE,PE=2x,CE=2x﹣x=x,∵∠E=90°,∠ECD=∠ACB=45°,∴DE=x,由勾股定理得:CD=√2x,即AP=3x,CD=√2x,∴CD′与AP′的数量关系是CD′=√2AP′328.(12分)如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB 的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P 的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【解答】解:(1)∵OA=6,OB=10,四边形OACB为长方形,∴C(6,10).设此时直线DP解析式为y=kx+b,把(0,2),C(6,10)分别代入,得{b=26k+b=10,解得{k=4 3b=2则此时直线DP解析式为y=43x+2;(2)①当点P在线段AC上时,OD=2,高为6,S=6;当点P在线段BC上时,OD=2,高为6+10﹣2t=16﹣2t,S=12×2×(16﹣2t)=﹣2t+16;②设P(m,10),则PB=PB′=m,如图2,∵OB′=OB=10,OA=6,∴AB′=√OB′2−OA2=8,∴B′C=10﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=103则此时点P的坐标是(103,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB﹣OD=10﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1=√82−62=2√7,∴AP1=10﹣2√7,即P1(6,10﹣2√7);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3E=√82−62=2√7,∴AP3=AE+EP3=2√7+2,即P3(6,2√7+2),综上,满足题意的P坐标为(6,6)或(6,2√7+2)或(6,10﹣2√7).。
成都嘉祥外国语学校初2018级八年级上期末考试A 卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分) 1.下列计算错误的是( )A. 39±= B . a a a 32=+ C . 2363=⨯ D . 413a a a =÷-2.如果点)21,(m m P +在第二象限,那么m 的取值范围是( )A. 210<<m B . 021<<-m C . 0<m D . 21>m 3.若式子aba 1+-有意义,则点),(b a 在( ) A.第一象限 B .第二象限 C .第三象限 D .第四象限 4.若))(3(152n x x mx x ++=-+,则m 的值是( )A. -5 B . 5 C . -2 D . 25.小刚参加设计比赛,成绩统计下表所示,则他本次射击成绩的众数和中位数分别是( )成绩(环) 6 7 8 9 10 次数12232A . 9,8B . 8,8C . 8,9D . 9,8.5 6.函数b ax y +=与a bx y +=的图象在同一坐标系内的大致位置正确的是( )A. B. C. D.7.函数)34()1(--+=m x m y 的图象经过第一、二象限,那么m 的取值范围是( ) A. 43<m B .431<<-m C . 1-<m D .1->m 8.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺流用18小时,逆流用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,在下列方程组中正确的是( ) A.⎩⎨⎧=-+360)(24360)(18y x y x B .⎩⎨⎧=+=+360)(24360)(18y x y x C .⎩⎨⎧=-=-360)(24360)(18y x y x D .⎩⎨⎧=+=-360)(24360)(18y x y x9.已知211-=a ,则化简221a a +-后的值是( )A . 2B .2C .22+D .22-10.如图,方格纸中小正方形的边长为1,ABC ∆的三个顶点都在小正方形的格点上,小明在观察探究时发现:①ABC ∆的形状是等腰三角形;②ABC ∆的周长是2102+;③点C 到AB 边的距离是1054。
你认为小明观察的结论正确的序号有( ) A .①②③④ B . ①②④ C . ①③④ D . ①④ 二、填空题(本大题共4个小题,每小题4分,共16分) 11.因式分解:=-34m m12.如图,直线b kx y +=经过点),1(m A -和点)0,2(-B ,直线x y 2=经过点A ,则不等式02<+<b kx x 的解集为13.如图,在33⨯的正方形网格中标出了1∠和2∠,则=∠+∠2114.如图,数轴上与1,2对应的点分别为A ,B ,点B 关于点A 的对称点为C ,设点C 表示的数为x ,则=+-xx 22第12题图 第13题图 第14题图 三、解答题(本大题共6个小题,共54分) 15.(每小题5分,本题满分10分) (1)解方程组⎩⎨⎧=+=-7231534y x y x (2)计算:1351520)31()21(22-----+--16.(每小题6分,本题满分12分)(1)若方程组⎩⎨⎧=++=+3414y x k y x 的解满足条件10<+<y x ,求k 的取值范围是多少?(2)解不等式组⎪⎩⎪⎨⎧+<-≤+--②①)1(3151215312x x x x 把它的解集在数轴上表示出来。
17.(本题6分)在某市开展的“美丽蓉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务活动。
为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成如下不完整的统计图表: (1)求m 的值,并补全頻数分布直方图。
(2)被调查同学劳动时间的中位数是 小时。
(3)求被调查同学的平均劳动时间。
某校七年级部分同学的劳动时间頻数分布表18.(本小题7分)如图,直线4:1+-=x y l 分别与x 轴,y 轴交于点D ,点A ,直线121:2+=x y l 与x 轴交于点C ,两直线21,l l 相交于点B ,连AC 。
(1)求点B 的坐标和直线AC 的解析式; (2)求ABC ∆的面积。
19.(本题满分9分)著名的恩施大峡谷(A )和世界级自然保护区星斗山(B )位于笔直的泸渝高速公路x 同侧,km AB 50=,A ,B 到直线x 的距离分别为km 10和km 40,要在泸渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客,小明设计了两种方案:图(1)是方案一的示意图(P A 与直线x 垂直,垂足为P ),P 到A 、B 的距离之和PB PA S +=1;图(2)是方案二的示意图(点A 关于直线X 的对称点是A ',连接A B '交直线x 于点P ),P 到A 、B 的距离之和PB PA S +=2. (1)求1S 、2S ,并比较它们的大小; (2)请说明2S 为最小;(3)拟建的恩施到张家界高速公路y 于泸渝高速公路垂直,建立如图(2)所示的直角坐标系,B 到直线y 的距离为km 30,请你在x 旁和y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小,并求出这个最小值。
图(1) 图(2) 图(3)20.(本小题10分)某公司装修需用A 型板材480块、B 型板材360块,A 型板材规格是cm cm 3060⨯,B 型板材规格是cm cm 3040⨯,现只能购得规格是cm cm 30150⨯的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法: (图1是裁法一得裁剪示意图)裁法一 裁法二 裁法三 A 型板材块数 1 2 0 B 型板材块数2mn设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y 张、按裁法三裁z 张,且所裁出的A 、B 两种型号的板材刚好够用.(1)上表中,=m ,=n ; (2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少张?图1B卷(50分)一、填空题(每题4分,共20分)21、已知关于x的不等式组521x ax-≥⎧⎨->⎩只有四个整数解,则实数a的取值范围是。
22、已知边长为4的正方形OABC在直角坐标系中,OA与y轴的夹角为30°,则点B的坐标是。
23、若22a b=+,22b a=+,且a b≠,则332a ab b-+的值为。
24、在平面直角坐标系中,平行四边形OABC的边OA在x的正半轴上,A、C两点的坐标分别是(2,0)、(1,2),点B在第一象限,将直线2y x=-沿y轴向上平移()0m m>个单位,若平移后的直线与边BC有交点,则m的取值范围是。
(22题图)(24题图)25、对于每个非零自然数n,x轴上有(),0nA x,(),0nB y,以n nA B表示这两点间的距离,其中nA,nB的横坐标分别是1121111nx yx y⎧+=+⎪⎪⎨⎪-=-⎪⎩的解,则112220162016...A B A B A B+++的值等于。
二、解答题(第26题8分,27题10分,28题12分,共30分)26、(本题满分8分)某同学在解答题目:“化简并求值22112aa a+-15a=,”时:解答过程是:22211111112=5a a aa a a a a a⎛⎫+-+-=+-=⎪⎝⎭;(1)请判断他的解答是否正确;如果不正确,请写出正确的解答过程。
(2)设()2222222211111111=1+++1++1++...+1++1223341Sn n+n为正整数),考察所求式子的结构特征:②求出与S最接近的整数是多少?27、(本小题10分)某公司有A型产品40件,B型产品60件,分配给甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都呢个卖完,量商店销售者两种产品每件的利润(元)如下表:(1)若公司要求总利润不低于17560元,说明有多少种不同分佩服方案,并将各种方案设计出来;(2)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润,甲店的B型产品以及乙店的A,B型产品的每件利润不变,28、(本题满分12分)已知,如图1,在平面直角坐标系xoy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3,过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E。
(1)求经过点E、D的直线解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC 交于点G,使得EF=2GO,请求出此时OG的长度。
(3)对于(2)中的点G,在直线ED上是否存点P,使得点P与点D、G构成的△DPG是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由。
xx。