成都市八年级上数学期末试题3
- 格式:doc
- 大小:271.00 KB
- 文档页数:6
2022-2023学年四川省成都市武侯区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)在﹣,,﹣3.2,,这五个数中,无理数的个数为()A.2B.3C.4D.52.(4分)成都市某一周内每天的最高气温为:6,8,10,10,7,8,8(单位:℃),则这组数据的极差为()A.2B.4C.6D.83.(4分)将直角三角形的三条边长同时扩大3倍,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.无法判断4.(4分)已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b<0B.k<0,b<0C.k<0,b>0D.k>0,b>05.(4分)举反例是一种证明假命题的方法,为说明命题“若m>n,则>1”是假命题,所举反例正确的是()A.m=6,n=3B.m=0.2,n=0.1C.m=2,n=1D.m=1,n=﹣16.(4分)射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭全部射完后,两人的成绩如图所示,根据图中信息,估计小明和小华两人中为新手的是()A.小明B.小华C.都为新手D.无法判断7.(4分)已知一次函数y=3x﹣1与y=2x图象的交点是(1,2),则方程组的解为()A.B.C.D.8.(4分)中国象棋历史悠久,战国时期就有关于它的正式记载,观察如图所示的象棋棋盘,我们知道,行“马”的规则是走“日”字对角(图中向上为进,向下为退),如果“帅”的位置记为(5,1),“马2退1”后的位置记为(1,4)(表示第2列的“马”向下走“日”字对角到达第1列的位置),那么“马8进7”后的位置可记为()A.(8,4)B.(7,4)C.(7,3)D.(7,2)二、填空题(本大題共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)计算:()3=.10.(4分)已知,都是方程ax﹣y=b的解,则a=,b=.11.(4分)如图是某灯具的镜面反射示意图,从光源点P处发出的光线PA,PB经弯曲的镜面反射后射出,且满足反射光线AC∥BD,若∠PAC=40°,PA⊥PB于点P,则∠PBD的度数为.12.(4分)若点A(x1,y1),B(x2,y2)在直线y=﹣3x+2上,且满足x1>x2,则y1y2(选填“>”或“<”).13.(4分)如图,在正方形ABCD的外面分别作Rt△ABE和Rt△BEF,其中∠AEB=∠EFB=90°,∠BEF =∠BAE=30°,BF=3,则正方形ABCD的面积是.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:(1+)(3﹣);(2)解方程组:.15.(8分)某校组织广播操比赛,打分项目(每项满分10分)包括以下几项,服装统一、进退场有序、动作规范,其中甲、乙两个班级的各项成绩(单位:分)分别如下:项目服装统一进退场有序动作规范班级甲班1088乙班899(1)填空:根据表中提供的信息,甲、乙两个班级各项成绩的这6个数据的众数是,中位数是;(2)如果将服装统一、进退场有序、动作规范这三项得分依次按30%,30%,40%的比例计算各班的广播操的比赛成绩,试问甲、乙两个班级哪个班的广播操比赛成绩较高?16.(8分)如图,在平面直角坐标系xOy中,点A的坐标为(2,4),点B的坐标为(5,2).(1)请在图中画出点B关于x轴的对称点B′,则点B′的坐标为;(2)在(1)的条件下,连接AB′交x轴于点C,则点C的坐标为;(3)在(2)的条件下,连接OA,BC,求证:OA∥BC.17.(10分)已知一次函数y=﹣x+4的图象分别与x轴,y轴相交于A,B两点.(1)分别求A,B两点的坐标;(2)点C在线段AB上,连接OC,若直线OC将△AOB的面积分成1:3两部分,求点C的坐标.18.(10分)在四边形ABCD中,∠BAD=90°,AB=AD.(1)如图1,若AB=2,BC=,CD=.i)连接BD,试判断△BCD的形状,并说明理由;ii)连接AC,过A作AE⊥AC,交CD的延长线于点E,求△ACE的面积;(2)如图2,若∠BCD=135°,BC=2,四边形ABCD的面积为,求CD的长.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)已知x,y满足则这个方程组的解为.20.(4分)估算﹣2.7的结果的整数部分是.21.(4分)如图,在数轴上,点A表示的数是1,点B表示的数是3,在数轴的上方作Rt△ABC,且∠ABC =90°,BC=1,以点A为圆心,AC的长为半径画弧,交数轴于D,E两点(其中点D在A的右侧),现将点D表示的数记为x,点E表示的数记为y,则代数式x2﹣2xy+y2的值为.22.(4分)古希腊几何学家海伦在他的著作《度量》中,给出了计算三角形面积的海伦公式,若一个三角形三边长分别为a、b、c,记p=,三角形的面积为S=.如图,在△ABC中,AC=5,BC=3,过C作CD⊥AC,且满足CD=AC(点D和B居于直线AC的异侧),连接AD,BD,若BD=2,则△ABC的面积为.23.(4分)定义:对于平面直角坐标系xOy中的不在同一条直线上的三点P,M,N,若满足点M绕点P 逆时针旋转90°后恰好与点N重合,则称点N为点M关于点P的“垂等点”.请根据以上定义,完成下列填空:(1)若点M在直线y=3x﹣3上,点P与原点O重合,且点M关于点P的“垂等点”N刚好在坐标轴上,则点N的坐标为;(2)如图,已知点A的坐标为(3,0),点C是y轴上的动点,点B是点A关于点C的“垂等点”,连接OB,AB,则OB+AB的最小值是.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)已知某景点的门票价格如表:购票人数/人1~5051~100100以上每张门票价/元12108某校八年级(一)、(二)两个班共102人去游览该景点,其中(二)班人数多于(一)班人数,且(一)班人数不少于(二)班人数的一半,如果两个班以班为单位各自购票,那么两个班要支付的总费用为1118元.(1)请通过列二元一次方程组的方法,分别求两个班的学生人数;(2)如果两个班合在一起统一购票,试问此时两个班需要支付的总费用将比以班为单位各自购票的方式节约多少呢?25.(10分)在Rt△ABC中,∠ACB=90°,点D为边AC上的动点,连接BD,将△ABD沿直线BD翻折,得到对应的△A′BD.(1)如图1,当AD⊥A′D于点D时,求证:BC=DC;(2)若BC=a,AC=2a.i)如图2,当B,C,A′三点在同一条直线上时,求AD的长(用含a的代数式表示);ii)连接AA′,A′C,当A′C=a时,求的值.26.(12分)如图,在平面直角坐标系xOy中,直线y=﹣x+4分别交x轴,y轴于点A,B,点C在x轴的负半轴上,且OC=OB,点P是线段BC上的动点(点P不与B,C重合),以BP为斜边在直线BC 的右侧作等腰Rt△BPD.(1)求直线BC的函数表达式;=S△ABC时,求点P的坐标;(2)如图1,当S△BPD(3)如图2,连接AP,点E是线段AP的中点,连接DE,OD.试探究∠ODE的大小是否为定值,若是,求出∠ODE的度数;若不是,请说明理由.。
四川省成都市新都区2023-2024学年八年级上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________A .()3052535x y x y =+⎧⎨+=-⎩B .()3052535x y x y =-⎧⎨+=+⎩C .()302535x y x y =⎧⎨+=+⎩D .()3052535x y x y =-⎧⎨+=-⎩二、填空题三、解答题(1)画出ABC V 关于x 轴对称的图形A B C '''V ,并写出顶点B '的坐标;(2)在y 轴上求作一点P ,使PC PB +的值最小,并求出最小值.16.杨升庵,四川新都人,明代文学家、学者、官员,他的著作数量之繁多,范围之广博,内容之丰富,在整个中国文化史上都鲜有人比肩,堪称是一位百科全书式的学者.某校开展了“弘扬升庵精神,学习传统文化”读书活动,为了解学生课外阅读中国古代文学作品情况,随机调查了50名同学平均每周课外阅读用时,如图是根据调查所得的数据绘制的统计图的一部分,请根据以上信息,解答下列问题(1)补全条形统计图;(2)在这次调查的数据中,平均每周课外阅读所用时间的众数是小时,中位数是小时;(3)若该校共有1600名学生,根据以上调查结果估计该校全体学生平均每周课外古诗词阅读用时不低于3小时的同学共有多少人?17.如图,已知CF AE ⊥,AB AE ⊥,180ABC DFC ∠+∠=︒(1)求证∶DF BC ∥;(2)若CF 平分BCE ∠,3EF CD == ,求CF 的长度18.如图,直线3y kx =+经过点()1,4B -和点()5,A m ,与x 轴交于点C(1)求k ,m 的值;(2)求AOB V 的面积;(3)若点P 在x 轴上,当PBC V 为等腰三角形时,直接写出此时点P 的坐标四、填空题23.如图,在平面直角坐标系中,ABC V 的顶点坐标分别为()4,1A -,()0,5B ,()0,1C ,点D 与点A 关于y 轴对称,连接BD ,在边AB 上取一点E ,在BD 的延长线上取一点F ,并且满足AE DF =,连接EF 交边AD 于点G ,过点G 作EF 的垂线交y 轴于点H ,则点H 的坐标为五、解答题24.“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具,某汽车销售公司计划购进一批新能源汽车尝试进行销售;据了解,2辆A 型汽车、3辆B 型汽车的进价共计80万元;3辆A 型汽车、2辆B 型汽车的进价共计95万元(1)求A ,B 两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划购进以上两种型号的新能源汽车(两种型号的汽车均购买)共20辆,且A (型汽车不超过6辆,根据市场调查,销售1辆A 型汽车可获利0.8万元,销售1辆B 型汽车可获利0.5万元,请问怎么安排采购方案获利最大?25.如图,在平面直角坐标系中,直线l 与x 轴交于点()4,0A -,与y 轴交于点()0,2B ,已如点()2,0C -.(1)求直线l 的表达式;(2)点P 是直线l 上一动点,且BOP △和COP V 的面积相等,求点P 坐标;(3)在平面内是否存在点Q ,使得ABQ V 是以AB 为底的等腰直角三角形?若存在,请求出所有符合条件的点Q 的坐标;若不存在,请说明理由. 26.在ABC V 中,,90AB BC ABC =∠=o ,点D 是边AC 上一点,连接DB ,过点C 作直线BD 的垂线,垂足为点E(1)如图1,若AF BD ⊥于点F ,求证:CE BF =;(2)如图2,在线段EC 上截取EG EB =,连接AG 交BD 于点H ,求证:2CG EH =;(3)如图3,若点D 为AC 的中点,点M 是线段BC 延长线上的一点,连接DM ,求CM ,BM ,DM 的数量关系。
八年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.点(3,5)关于y轴对称的点是( )A. (3,-5)B. (-3,5)C. (-3,-5)D. 以上都不是2.计算(a2)3的结果是( )A. a5B. a6C. a8D. 3 a23.要使分式有意义,则x的取值范围是( )A. x≠1B. x>1C. x<1D. x≠-14.由下列各组长度的线段,能构成三角形的是( )A. 4cm,6cm,8cmB. 2cm,5cm,9cmC. 7cm,8cm,15cmD. 1cm,3cm,5cm5.如图,四个图形中,是轴对称图形的有( )A. B. C. D.6.七边形的内角和是( )A. 360°B. 540°C. 720°D. 900°7.计算(4x+2)(2x-1)的结果是( )A. 8x2-2B. 8x2-x-2C. 8x2+4x-2D. 8x2-2x-28.下列计算正确的是( )A. 2a+3b=5abB. (x+2)2=x2+4C. (ab3)2=ab6D. (-1)0=19.把三角形的面积分为相等的两部分的是()A. 三角形的角平分线B. 三角形的中线C. 三角形的高D. 以上都不对10.分式与的最简公分母是( )A. 6x4y2B. 3x2y2C. 18x4y2D. 6x4y311.如果等腰三角形的两边长是6cm和3cm,那么它的周长是( )A. 9cmB. 12cmC. 12cm或15cmD. 15cm12.若x2n=2,则x6n的值为( )A. 6B. 8C. 9D. 12二、填空题(本大题共6小题,共18.0分)13.据科学测算,肥皂泡的泡壁厚度大约为0.00071m,用科学记数法表示为______.14.分解因式:xy+x= ______ .15.如图,x=______.16.(x+y)2=______.17.多边形的外角和等于______,三角形的内角和等于______.18.(1)4-2=______;(2)(-)2=______;(3)(1+π)0=______.三、计算题(本大题共3小题,共25.0分)19.计算下列各题(1)-4ab(2)解方程=(3)分解因式:x2y-y20.解方程:-=2.21.先化简,再求值:(2x-y)2+(x-y)(x-y),其中x=1,y=-1.四、解答题(本大题共3小题,共21.0分)22.计算下列各题(1)约分(2)+23.如图,已知O是AB的中点,∠A=∠B,求证:△AOC≌△BOD.24.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.答案和解析1.【答案】B【解析】解:点(3,5)关于y轴对称的点的坐标是(-3,5),故选:B.根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.2.【答案】B【解析】解:(a2)3=a6.故选:B.直接利用幂的乘方运算法则求出答案.此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.3.【答案】A【解析】解:由题意得,x-1≠0,解得x≠1.故选:A.根据分母不等于0列式计算即可得解.本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.【答案】A【解析】解:A、4+6>8,能构成三角形,故此选项正确;B、2+5<9,不能构成三角形,故此选项错误;C、7+8=15,不能构成三角形,故此选项错误;D、1+3<5,不能构成三角形,故此选项错误.故选:A.根据三角形三边关系定理:三角形两边之和大于第三边可得答案.此题主要考查了三角形三边关系,关键是掌握在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5.【答案】C【解析】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.【答案】D【解析】解:根据多边形的内角和可得:(7-2)×180°=900°.故选:D.利用多边形的内角和=(n-2)•180°即可解决问题.本题考查了对于多边形内角和定理.熟记“n边形的内角和为(n-2)•180°”是解题的关键.7.【答案】A【解析】解:(4x+2)(2x-1)=2(2x+1)(2x-1)=2[(2x)2-12]=8x2-2.故选:A.先把原式转化为平方差公式形式2(2x+1)(2x-1),然后利用平方差公式进行计算即可.本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.8.【答案】D【解析】解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(-1)0=1.故正确.故选:D.A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1.此题考查了整式的有关运算公式和性质,属基础题.9.【答案】B【解析】解:把三角形的面积分为相等的两部分的是三角形的中线.故选:B.根据等底等高的两个三角形面积相等知,三角形的中线把三角形的面积分为相等的两部分.三角形的中线是三角形的一个顶点与对边中点连接的线段,它把三角形的面积分为相等的两部分.10.【答案】D【解析】解:分式与的最简公分母是6x4y3;故选:D.确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.11.【答案】D【解析】解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故选:D.题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.12.【答案】B【解析】解:x6n=(x2n)3=23=8,故选:B.根据(a m)n=a mn(m,n是正整数)可得x6n=(x2n)3,再代入x2n=2可得答案.此题主要考查了幂的乘方,关键是掌握(a m)n=a mn(m,n是正整数).13.【答案】7.1×10-4【解析】解:0.0007=7.1×10-4,故答案为:7.1×10-4.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【答案】x(y+1)【解析】解:xy+x=x(y+1).故答案为:x(y+1).直接提取公因式x,进而分解因式得出即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.15.【答案】65°【解析】解:x=(180°-50°)=65°,故答案为:65°.根据三角形的内角和即可得到结论.本题考查了三角形的内角和,熟练掌握三角形的内角和=180°是解题的关键.16.【答案】x2+2xy+y2【解析】解:(x+y)2=x2+2xy+y2.故答案为:x2+2xy+y2.完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.依此即可求解.考查了完全平方公式,完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.17.【答案】360° 180°【解析】解:多边形的外角和是360°,三角形三个内角的和等于180°.故答案为:360°,180°.根据多边形的外角和定理、三角形的内角和定理,可得答案.本题考查了多边形的外角和、三角形的内角和,熟记多边形的外角和定理、三角形的内角和定理是解题关键.18.【答案】 1【解析】解:(1)4-2=;(2)(-)2=;(3)(1+π)0=1.故答案为:(1);(2);(3)1.(1)直接利用负指数幂的性质计算得出答案;(2)直接利用有理数的乘方运算法则计算得出答案;(3)直接利用零指数幂的性质计算得出答案.此题主要考查了实数运算,正确掌握相关运算法则是解题关键.19.【答案】解:(1)-4ab=-4ab×a3b6=a4b7(2)∵=∴2x=x+5∴x=5检验:当x=5时,x(x+5)≠0∴原方程的解是x=5.(3)x2y-y=y(x2-1)=y(x+1)(x-1)【解析】(1)按照积的乘方和单项式乘以单项式的运算法则进行计算即可;(2)方程两边同时乘以x(x+5)或者交叉相乘即可化为整式方程,解完之后检验;(3)先提取公因式y,再利用平方差公式分解即可.本题分别考查了整式的乘法、解分式方程与因式分解,这些都是对基础计算能力的考查,难度不大.20.【答案】解:去分母得:x+1=2x-14,解得:x=15,经检验x=15是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.【答案】解:原式=4x2-4xy+y2+x2-y2=5x2-4xy,当x=1,y=-1时,原式=5×12-4×1×(-1)=5+4=9.【解析】先根据完全平方公式和平方差公式展开,再合并同类项即可化简原式,继而将x、y的值代入计算可得.本题主要考查整式的混合运算-化简求值,解题的关键是掌握整式的混合运算顺序和运算法则.22.【答案】解:(1)===-,(2)+=+=,【解析】(1)找出分子、分母的公因式,然后再把分子分母分别写出乘积的形式,约去公因式即可,(2)异分母的分式相加,先通分,再按同分母的分式的加法的法则进行计算即可.考查分式的约分和通分,约分关键找出分子、分母的公因式,通分则需要找出几个分母的最简公分母.23.【答案】解:∵O是AB的中点,∴AO=BO,在△AOC和△BOD中,,∴△AOC≌△BOD(ASA).【解析】两角及其夹边分别对应相等的两个三角形全等,据此可得△AOC≌△BOD.本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.24.【答案】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠A=∠D.【解析】求出BF=CE,根据SAS推出△ABF≌△DCE即可.本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.。
2023-2024学年四川省成都市锦江区重点中学八年级(上)期末数学试卷一、选择题1.在实数3.14159, 5,−4,π,227中,无理数有( )A. 1个B. 2个C. 3个D. 4个2.下列各式中正确的是( )A. 9=±3 B. 3−27=−3 C. ± 16=4 D. (−2)2=−23.满足下列条件的△ABC 是直角三角形的是( )A. ∠A :∠B :∠C =3:4:5B. a :b :c =1:2:3C. ∠A =∠B =2∠CD. a =1,b =2,c = 34.下列语句正确的有个( )①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a ,b 外一点P ,画直线c ,使c//a ,且c//b④若直线a//b ,b//c ,则c//a .A. 4B. 3C. 2D. 15.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?“意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x 人,物品的价格为y 元,可列方程组为( )A. {8x−3=y 7x +4=y B. {8x +3=y 7x−4=y C. {8x =y−37x =y−4 D. {8x =y +37x =y +46.在平面直角坐标系中,已知点M(a,b),N(4,7),MN//x 轴,则一定有( )A. a =4B. a =−4C. b =−7D. b =77.已知一次函数y =kx +b ,函数值y 随自变量x 的增大而减小,且kb <0,则函数y =kx +b 的图象大致是( )A. B.C. D.8.乐乐和姐姐一起出去运动,两人同时从家出发.沿相同路线前行,途中姐姐有事返回,乐乐继续前行,5分钟后也原路返回,两人恰好同时到家,乐乐和姐姐在整个运动过程中家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论中错误的是( )A. 两人前行过程中的速度为180米/分B. m的值是15,n的值是2700C. 姐姐返回时的速度为90米/分D. 运动18分钟时,两人相距800米二、非选择题9.若x−2+(y+1)2=0,则(x+y)2023=______.10.如图,点E,F分别在AB,CD上,AF⊥CE,垂足为O,∠BFD=∠C.若AF=4,BF=3,则点F到直线AB的距离为______.11.如图,在平面直角坐标系中,直线y=2x+1与直线y=−3x+m相交于点P,若点P的横坐标为1,则关于x,y的二元一次方程组{y=2x+1y=−3x+m的解是______.12.如果点A(3,a),B(2,b)在函数y=2x+1图象上,则a______b.(请在横线上选择>,<,=,≤,≥填写)13.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是______.14.计算:(1)183+|2−2|+20230−(12)−1;(2){x3−y+12=14x−(2y−5)=11.15.如图,在平面直角坐标系中,A(2,4),B(3,1),C(−2,−1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1,并直接写出点C1的坐标;(2)求△ABC的面积;(3)点P(a,a−2)与点Q关于x轴对称,若PQ=8,直接写出点P的坐标.16.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为______;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据______来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.17.如图,在△ABC中,点D在BC上,点E在AC上,AD交BE于F.已知EG//AD交BC于G,EH⊥BE交BC于H,∠HEG=50°.(1)求∠BFD的度数;(2)若∠BAD=∠EBC,∠C=41°,求∠BAC的度数.18.直线AB:y=x+3分别与x,y轴交于A,B两点、过点B的直线交x轴正半轴于点C,且OB:OC=3:1.(1)直接写出点A、B、C的坐标;(2)在线段OB上存在点P,使点P到B,C的距离相等,求出点P的坐标:(3)在第一象限内是否存在一点E,使得△BCE为等腰直角三角形,若存在,直接写出E点坐标;若不存在,说明理由.19.已知x=y+3,则x2−2xy+y2的值为______.20.如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为3;图2将正方形AB并列放置后构造新正方形,测得阴影部分面积为23;若将3个正方形A和2个正方形B并列放置后构造新正方形如图3(图2,图3中正方形AB纸片均无重叠部分),则图3阴影部分面积是______.21.对于实数a,b,定义运算“※”:a※b={ab,(a<b)a2+b2,(a≥b),例如3※4,因为3<4.所以3※4=3×4=12.若x,y满足方程组{x−4y=−82x+y=29,则x※y=______.22.如图,在Rt△ABC中,∠BAC=90°,点D在BC上,点E在AB上,∠EDB=∠ADC,点F在BC上,∠AFE=2∠FAC,∠DAF=60°,AF=4,AD=3,则ED=______.23.如图,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,则DE的长为______.24.已知2辆A型车和1辆B型车载满货物一次可运货10吨.用1辆A型车和2柄B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a柄和B型车b辆,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:(1)1辆A型车和1辆B型车载满贷物一次分别可运货物多少吨?(2)请帮助物流公司设计租车方案.(3)若A型车每辆车租金每次100元,B型车每辆车租金每次120元.请选出最省钱的租车方案并求出最少的租车费.25.阅读理解:若x满足(30−x)(x−10)=160,求(30−x)2+(x−10)2的值.解:设30−x=a,x−10=b,则(30−x)(x−10)=ab=160,a+b=(30−x)+(x−10)=20,(30−x)2 +(x−10)2=a2+b2=(a+b)2−2ab=202−2×160=80解决问题:(1)若x满足(2020−x)(x−2016)=2.则(2020−x)2+(x−2016)2=______;(2)若x满足(2021−x)2+(x−2018)2=2020,求(2021−x)(x−2018)的值;(3)如图,在长方形ABCD中,AB=20,BC=12,点E、F是BC、CD上的点,且BE=DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为160平方单位,则图中阴影部分的面积和为______平方单位.26.如图1,已知直线l1:y=kx+b与直线l2:y=4x交于点M,直线l1与坐标轴分别交于A,C两点,且3点A坐标为(0,7),点C坐标为(7,0).(1)求直线l1的函数表达式;(2)在直线l2上是否存在点D,使△ADM的面积等于△AOM面积的2倍,若存在,请求出点D的坐标,若不存在,请说明理由;(3)若点P是线段OM上的一动点(不与端点重合),过点P作PB//x轴交CM于点B,设点P的纵坐标为m,以点P为直角顶点作等腰直角△PBF(点F在直线PB下方),设△PBF与△MOC重叠部分的面积为S,求S与m之间的函数关系式,并写出相应m的取值范围.答案和解析1.【答案】B【解析】解:5和π是无理数,共2个.故选:B.根据无理数的定义即可解答.本题主要考查了无理数,掌握“无限不循环小数叫做无理数”是解题的关键.2.【答案】B【解析】解:A、9=3,错误;B、3−27=−3,正确;C、±16=±4,错误;D、(−2)2=|−2|=2,错误,故选B原式利用立方根、平方根定义计算即可得到结果.此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.3.【答案】D【解析】解:A、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形;B、∵12+22≠32,∴△ABC不是直角三角形;C、∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,∴∠A=∠B=75°,∠C=37.5°,∴△ABC不是直角三角形;D、∵12+(3)2=22,∴△ABC是直角三角形.故选:D.根据三角形内角和定理判断A、C即可;根据勾股定理的逆定理判断B、D即可.本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.4.【答案】D【解析】解:①任意两条直线的位置关系不是相交就是平行,说法错误,还有重合;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c//a,且c//b,说法错误;④若直线a//b,b//c,则c//a,说法正确;故选:D.根据任意两条直线的位置关系是相交、平行和重合;过直线外一点有且只有一条直线和已知直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.此题主要考查了平行线,关键是掌握平行公理:过直线外一点有且只有一条直线和已知直线平行;推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5.【答案】A【解析】解:设有x人,物品的价格为y元,根据题意得:{8x−3=y7x+4=y,故选:A.根据“每人出8钱,则剩余3钱;如果每人出7钱,则差4钱”列出方程组即可.考查了二元一次方程组的知识,解题的关键是找到等量关系并列出二元一次方程组,难度不大.6.【答案】D【解析】解:根据平行于x轴的直线上的点纵坐标相等可知:b=7,故选:D.根据平行于x轴的直线上点的纵坐标相等即可解答.本题考查了坐标与图形的性质,平行于x轴的直线上的点纵坐标相等是关键.7.【答案】A【解析】解:一次函数y=kx+b,∵函数值y随自变量x的增大而减小,∴k<0,∴函数图象过第二、四象限.∵kb<0,∴b>0,∴函数图象与y轴的交点在x轴上方,即图象经过第一、二、四象限.故选:A.根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第一、二、四象限.本题考查了一次函数性质,一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b),熟记一次函数的图象与k、b的关系是解题的关键.8.【答案】D【解析】解:由图可得,两人前行过程中的速度为3600÷20=180(米/分),故选项A不合题意;m的值是20−5=15,n的值是180×15=2700,故选项B不合题意;姐姐返回时的速度为:2700÷(45−15)=90(米/分),故选项C不合题意;运动18分钟时两人相距:180×(18−15)+90×(18−15)=810(米),故选项D符合题意,故选:D.根据题意和图象中的数据可以判断各选项中的说法是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】1【解析】解:由题意得,x−2=0,y+1=0,解得x=2,y=−1,所以(x+y)2023=(2−1)2023=1.故答案为:1.根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.【答案】125【解析】解:∵∠BFD=∠C,∴BF//CE,∵AF⊥CE,即∠COF=90°,∴∠AFB=∠COF=90°,∴AB=AF2+BF2=5,设点F 到直线AB 的距离为ℎ,且AF =4,BF =3,AB =5,∴S △AFB =12AF ⋅FB =12AB ⋅ℎ,∴12×4×3=12×5×ℎ,∴ℎ=125,故答案为:125.首先证明BF//CE ,再证明∠AFB =90°,利用勾股定理求出AB ,最后运用面积法可求出点F 到直线AB 的距离.本题主要考查了平行线的判定与性质及点到直线的距离,勾股定理,熟练应用平行线的判定与性质和点到直线的距离计算方法进行计算是解决本题的关键.11.【答案】{x =1y =3【解析】解:∵直线y =2x +1与直线y =−3x +m 相交于点P ,若点P 的横坐标为1,∴对于直线y =2x +1,当x =1时,y =3,∴点P 的坐标为(1,3),∴二元一次方程组{y =2x +b y =−3x +6的解为{x =1y =3故答案为:.{x =1y =3.首先根据直线y =2x +1与直线y =−3x +m 相交于点P ,点P 的横坐标为1可求出点P 的坐标为(1,3),然后再根据一次函数与二元一次方程组之间的关系可得出答案.此题主要考查了二元一次方程组和一次函数之间的关系,理解二元一次方程组的解即为两个一次函数图象的交点坐标是解答此题的关键.12.【答案】<【解析】解:∵函数y = 2x +1中,k = 2>0,∴y 随x 的增大而增大,∵ 3<2,∴a <b .故答案为:<.根据一次函数k 大于0时,y 随x 的增大而增大解答即可.本题考查了一次函数图象上点的坐标特征,确定函数的增减性是解答本题的关键.13.【答案】S1+S2=S3【解析】解:设大圆的半径是r3,则S3=πr23;设两个小圆的半径分别是r1和r2,则S1=πr21,S2=πr22.由勾股定理,知(2r3)2=(2r1)2+(2r2)2,得r23=r21+r22.所以S1+S2=S3.故答案为S1+S2=S3.分别计算大圆的面积S3,两个小圆的面积S1,S2,根据直角三角形中大圆小圆直径(2r3)2=(2r1)2+(2r2)2的关系,可以求得S1+S2=S3.本题考查了勾股定理的正确运算,在直角三角形中直角边与斜边的关系,本题中巧妙地运用勾股定理求得:(2r3)2=(2r1)2+(2r2)2是解题的关键.14.【答案】解:(1)原式=18+2−2+1−29=2+2−2+1−2=1;(2)原方程组整理得:{2x−3y=9①2x−y=3②,②−①得:2y=−6,解得:y=−3,将y=−3代入②得2x+3=3,解得:x=0,故原方程组的解为{x=0y=−3.【解析】(1)利用二次根式的运算法则,绝对值的性质,零指数幂及负整数指数幂计算即可;(2)将原方程组整理后利用加减消元法解方程组即可.本题考查实数的运算及解二元一次方程组,熟练掌握相关运算法则及解方程组的方法是解题的关键.15.【答案】解:(1)如图,△A1B1C1即为所求,点C1的坐标(2,−1).故答案为:(2,−1);(2)S△ABC=5×5−12×4×5−12×1×3−12×5×2=8.5.(3)∵点P(a,a−2)与点Q关于x轴对称,若PQ=8,∴a−2=±4,∴a=6或−2,∴点P的坐标为(6,3)或(−2,−3).【解析】(1)利用轴对称变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)把三角形的面积看成矩形面积仅为掌握三个三角形面积即可;(3)构建方程求出a可得结论.本题考查作图−轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,灵活运用所学知识解决问题.16.【答案】解:(1)18;(2)中位数;(3)300×1+1+2+3+1+230=100(名),答:该部门生产能手有100名工人.【解析】解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)见答案.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计算该部门生产能手的人数.本题考查条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:(1)∵EH⊥BE,∴∠BEH=90°,∵∠HEG=50°,∴∠BEG=40°,又∵EG//AD,∴∠BFD=∠BEG=40°;(2)∵∠BFD=180°−∠AFB=∠BAD+∠ABE,∠BAD=∠EBC,∴∠BFD=∠EBC+∠ABE=∠ABC=40°,∵∠C=41°,∴∠BAC=180°−∠ABC−∠C=180°−40°−41°=99°.【解析】本题考查了三角形的内角和定理,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.(1)根据垂直的定义可得∠BEH=90°,然后求出∠BEG=40°,再根据两直线平行线,同位角相等可得∠BFD=∠BEG;(2)根据三角形内角和定理和平角定义可得∠BFD=∠BAD+∠ABE,由∠BAD=∠EBC得到∠BFD=∠ABC,然后根据三角形的内角和定理列式计算即可得解.18.【答案】解:(1)把y=0代入y=x+3得:0=x+3,解得:x=−3,∴A(−3,0),把x=0代入y=x+3得:y=3,∴B(0,3),∴OB=3,∵OB:OC=3:1,∴OC=1,∴C(1,0);(2)连接PC,∵点P到B,C的距离相等,∴PB=PC,设PB=PC=x,则OP=3−x,在Rt△OPC中,根据勾股定理可得:OC2+OP2=PC2,∴12+(3−x)2=x2,,解得:x=53∴PB=5,3∴OP=3−x=4,3∴P(0,4);3(3)①当BC=CE时,过点E作EF⊥x轴于点F,∵△BCE为等腰直角三角形,∴∠BCE=90°,∴∠BCO+∠FCE=90°,∵∠BCO+∠OBC=90°,∴∠FCE=∠OBC,∵∠FCE=∠OBC,∠BOC=∠CFE=90°,BC=CE,∴△OBC≌△FCE,∴CF=OB=3,OC=EF=1,∴E(4,1);②当BC=BE时,过点E作EG⊥y轴于点G,和①同理可证:△OBC≌△GEB,∴BG=OC=1,OB=GE=3,∴E(3,4)③当BE=CE时,过点E作EN⊥y轴于点N,过点E作EM⊥x轴于点M,∵OB=3,OC=1,∴BC=OC2+OB2=10,根据勾股定理可得:BE2+CE2=2BE2=BC2=10,解得:BE=5,∵EN⊥y轴,EM⊥x轴,∠MON=90°,∴四边形OMEN为矩形,∴ON=EM,∠MEN=90°,则∠CEM+∠CEN=90°,∵∠BEC=∠BEN+∠CEN=90°,∴∠BEN=∠CEM,∵∠BEN=∠CEM,∠BNE=∠CME=90°,BE=CE,∴△BNE≌△CME,∴BN=CM,NE=ME,设ON=ME=NE=x,则BN=3−x,∵BN2+NE2=BE2,∴(3−x)2+x2=5,解得:x1=1,x2=2,∴ON=2或ON=1(舍),∴E(2,2);综上:E(4,1)或E(3,4)或E(2,2).【解析】(1)把y=0代入y=x+3求出x的值,即可得出点A的坐标;把x=0代入y=x+3求出y的值,即可求出B的坐标;根据OB:OC=3:1,求出OC=1,即可求出点C的坐标;(2)连接PC,设PB=PC=x,则OP=3−x,在Rt△OPC中,根据勾股定理可得:OC2+OP2=PC2,据此列出方程求出x的值,进而得出OP,即可求出点P的坐标;(3)根据题意进行分类讨论:①当BC=CE时,过点E作EF⊥x轴于点F,通过证明△OBC≌△FCE,得出CF=OB=3,OC=EF=1,即可得出点E的坐标;②当BC=BE时,过点E作EG⊥y轴于点G,和①同理可证:△OBC≌△GEB,BG=OC=1,OB=GE=3,即可求出点E坐标;③当BE=CE时,过点E 作EN⊥y轴于点N,过点E作EM⊥x轴于点M,通过证明△BNE≌△CME,设ON=ME=NE=x,则BN=3−x,根据勾股定理列出方程求解即可.本题主要考查了一次函数图象上点的坐标,全等三角形的判定和性质,勾股定理,正确画出辅助线,构造全等三角形和直角三角形求解是解题的关键.19.【答案】9【解析】解:∵x=y+3,∴x−y=3,∴x2−2xy+y2=(x−y)2=32=9.故答案为:9.先利用完全平方公式变形得到原式=(x−y)2,然后利用整体代入的方法计算.本题主要考查了完全平方公式.熟练掌握完全平方公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.20.【答案】49【解析】解:设正方形A的边长为a,正方形B的边长为b.∴a2−b2=3,(a+b)2−a2−b2=23.∴2ab=23.∵图3阴影部分的面积=(2a+b)2−3a2−2b2=4a2+4ab+b2−3a2−2b2=a2−b2+4ab,∴图3阴影部分的面积=3+2×2ab=3+2×23=49.故答案为:49.设正方形A的边长为a,正方形B的边长为b,根据图1可得a2−b2=3;根据图2可得(a+b)2−a2−b2=23.那么图3阴影部分的面积=(2a+b)2−3a2−2b2,化简后整理计算即可.本题考查完全平方公式的应用.根据图形得到相应的等式是解决本题的关键.用到的知识点为:(a+b)2 =a2+2ab+b2.21.【答案】13【解析】解:方程组{x−4y=−8 ①2x+y=29 ②,①+②×4得:9x=108,解得:x=12,把x=12代入②得:y=5,则x※y=12※5=122+52=13,故答案为:13求出方程组的解得到x与y的值,代入原式利用题中的新定义计算即可求出值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.【答案】1【解析】解:作FM⊥AB于M,延长ED至N使∠DNF=60°,设∠FAC=α,∵∠BAC=90°,FM⊥AB,∴MF//AC,∴∠MFA=∠FAC=α,∵∠AFE=2∠FAC=2α,∴∠MFA=∠MFE=α,∴∠AEF=∠EAF=90°−α,∴△AEF为等腰三角形,∴EF=AF=4,∵∠FDN=∠EDB,∠EDB=∠ADC,∴∠FDN=∠ADC,在△DAF和△DNF中,{∠ADF=∠NDF∠DNF=∠DAF=60°,DF=DF∴△DAF≌△DNF(AAS),∴NF=AF=4,DN=AD=3,∵EF=AF=4,∴EF=NF=4,∵∠DNF=60°,∴△ENF是等边三角形,∴EN=NF=4,∴ED=EN−DN=4−3=1.故答案为:1.作FM⊥AB于M,延长ED至N使∠DNF=60°,设∠FAC=α,首先证明△AEF为等腰三角形,然后证△DAF≌△△DNF,根据全等三角形的性质得NF=AF=4,DN=AD=3,从而得出NF=EF,即可得△ENF是等边三角形,求出EN,由ED=EN−DN即可求解.此题主要考查了全等三角形的性质与判定等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.23.【答案】35或317【解析】解:①当点D在线段BC上时,如图,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△ADC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35.②当点D在CB的延长线上时,如图,连接BE.同法可证△DBE是直角三角形,EB=CD=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,故答案为:35或317.分两种情形①当点D在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题.②当点D在CB的延长线上时,如图3中,同法可得DE2=153,即可解决问题.本题考查了等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.24.【答案】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:{2x+y=10x+2y=11,解方程组,得:{x=3y=4,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=31−4b3,∵a、b都是正整数,∴{a=9b=1,或{a=5b=4,或{a=1b=7,答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,∴方案一需租金:9×100+1×120=1020(元);方案二需租金:5×100+4×120=980(元);方案三需租金:1×100+7×120=940(元);∵1020>980>940,∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.【解析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.本题主要考查了二元一次方程组和二元一次方程的实际应用,此题型是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.25.【答案】解:(1)12;(2)设2021−x =a ,x−2018=b ,则(2021−x )2+(x−2018)2=a 2+b 2=2020,a +b =(2021−x)+(x−2018)=3,所以(2021−x)(x−2018)=ab =12[(a +b )2−(a 2+b 2)]=12×(32−2020)=−20112;答:(2021−x)(x−2018)的值为−20112;(3)384.【解析】解:(1)设2020−x =a ,x−2016=b ,则(2020−x)(x−2016)=ab =2,a +b =(2020−x)+(x−2016)=4,所以(2020−x )2+(x−2016)2=a 2+b 2=(a +b )2−2ab =42−2×2=12;故答案为:12;(2)设2021−x =a ,x−2018=b ,则(2021−x )2+(x−2018)2=a 2+b 2=2020,a +b =(2021−x)+(x−2018)=3,所以(2021−x)(x−2018)=ab =12[(a +b )2−(a 2+b 2)]=12×(32−2020)=−20112;答:(2021−x)(x−2018)的值为−20112;(3)由题意得,FC =(20−x),EC =(12−x),∵长方形CEPF 的面积为160,∴(20−x)(12−x)=160,∴(20−x)(x−12)=−160,∴阴影部分的面积为(20−x )2+(12−x )2,设20−x =a ,x−12=b ,则(20−x)(x−12)=ab =−160,a +b =(20−x)+(x−12)=8,所以(20−x )2+(x−12)2=(20−x )2+(12−x )2=a 2+b 2=(a +b )2−2ab =82−2×(−160)=384;故答案为:384.(1)根据题目提供的方法,进行计算即可;(2)根据题意可得,a 2+b 2=2020,a +b =(2021−x)+(x−2018)=3,将ab 化成=12[(a +b )2−(a 2+b 2)]的形式,代入求值即可;(3)根据题意可得,(20−x)(12−x)=160,即(20−x)(x−12)=−160,根据(1)中提供的方法,求出(20−x )2+(12−x )2的结果就是阴影部分的面积.本题考查完全平方公式的应用,阅读理解题目中提供的方法,是类比、推广的前提和关键.26.【答案】解:(1)∵直线l 1:y =kx +b 与坐标轴分别交于A(0,7),C(7,0),∴{b =77k +b =0,∴{b =7k =−1,∴直线l 1的函数表达式为:y =−x +7;(2)联立l 1:y =−x +7和l 2:y =43x ,解得,{x =3y =4,∴M(3,4),如图1,过点M 作ME ⊥x 轴于E ,∴OE =3,ME =4,根据勾股定理得,OM =5,设D(3n,4n),①当点D 在射线OM 上时,△ADM 的面积等于△AOM 面积的2倍,且边AM 和OM 上的高相同,∴DM =2OM =10,∴OD =15,∴(3n )2+(4n )2=152,∴n =3或n =−3,由于点D 在第一象限内,∴n =3,∴D(9,12);②当点D 在射线MO 上时,△ADM 的面积等于△AOM 面积的2倍,且边AM 和OM 上高相同,∴DM =2OM ,∴OM =OD =5,∴(3n )2+(4n )2=52,∴n =1或n =−1,由于点D 在第三象限内,∴n =−1,∴D(−3,−4),即点D(9,12)或(−3,−4);(3)∵点P 的纵坐标为m ,∴P(34m,m),∵PB//x 轴,∴B(7−m,m),∴PB =7−m−34m =7−74m ,∵以点P 为直角顶点作等腰直角△PBF ,∴PF =PB =7−74m ,当7−74m =m 时,m =2811;①当0<m <2811时,如图2,记PF 与x 轴相交于G ,BF 与x 轴相交于H ,∴PG =m ,FG =PF−PG =7−74m−m =7−114m ,∵△PBF 是等腰直角三角形,∴∠F =∠PBF =45°,∵PB//x 轴,∴∠GHF =45°=∠F ,∴FG =HG ,∴S =S △PBF −S △FGH =12PB 2−12FG 2=12[(7−74m )2−(7−114m )2]=−94m 2+7m ;②当2811≤m <4时,如图3,S =S △PBF =12PB 2=12(7−74m )2=4932m 2−494m +492【解析】此题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,等腰直角三角形的性质,用分类讨论的思想解决问题是解本题的关键.(1)将点A,C坐标代入直线y=kx+b中,求解,即可得出结论;(2)先求出点M的坐标,再分点D在射线OM和射线MO上,利用面积的关系求出OD,即可得出结论;m,再分两种情况,利用面积公式,即可得出结论.(3)先表示出PF=PB=7−74。
2023-2024学年四川省成都市高新区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列各数中,属于无理数的是()A.B.C.D.0.572.(4分)下列运算正确的是()A.B.C.D.3.(4分)下面4组数值中,是二元一次方程3x+y=10的解是()A.B.C.D.4.(4分)如图,这是一个利用平面直角坐标系画出的某学校的示意图,如果这个坐标系以正东方向为x轴的正方向,以正北方向为y轴的正方向,并且综合楼和教学楼的坐标分别是(﹣4,﹣1)和(1,2)则食堂的坐标是()A.(3,5)B.(﹣2,3)C.(2,4)D.(﹣1,2)5.(4分)甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:,,,,则成绩最稳定的是()A.甲B.乙C.丙D.丁6.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,CD是斜边的高,则CD 的长为()A.B.C.5D.107.(4分)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=80°,城市规划部门想新修一条道路CE,要求CF=EF,则∠C的度数为()A.30°B.40°C.50°D.80°8.(4分)关于一次函数y=﹣2x+4,下列说法正确的是()A.函数值y随自变量x的增大而减小B.图象与x轴交于点(4,0)C.点A(1,6)在函数图象上D.图象经过第二、三、四象限二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)一块面积为3m2的正方形桌布,其边长为m.10.(4分)在平面直角坐标系xOy中,点A的坐标是(2,3),若AB∥x轴,且AB=4,则点B的坐标是.11.(4分)下表是小明参加一次“青春风采”才艺展示活动比赛的得分情况:项目书法舞蹈演唱得分859070总评分时,按书法占40%,舞蹈占30%,演唱占30%考评,则小明的最终得分为.12.(4分)若直线y=x向上平移m个单位长度后经过点(3,5),则m的值为.13.(4分)如图,有两棵树,一棵高12米,另一棵高7米,两树相距12米,一只小鸟从一棵树的树梢A飞到另一棵树的树梢B,则小鸟至少要飞行米.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解方程组:.15.(8分)学校组织七、八年级学生参加体育综合素质评价测试,已知七、八年级各有160人,现从两个年级分别随机抽取8名学生的测试成绩(单位:分)进行统计.七年级:89,87,91,91,93,98,94,97八年级:98,84,92,93,95,95,88,95整理如下:年级平均数中位数众数七年级92.5x91八年级92.594y根据以上信息,回答下列问题:(1)填空:x=,y=;(2)甲同学说:“这次测试我得了93分,位于年级中等偏上水平”,你认为甲同学在哪个年级,并简要说明理由;(3)若规定测试成绩不低于90分为“优秀”,估计该学校这两个年级测试成绩达到“优秀”的学生总人数.16.(8分)在平面直角坐标系xOy中,△ABC的顶点A(1,1),B(3,2),C(2,3)均在正方形网格的格点上.(1)画△ABC关于y轴的对称图形△A1B1C1;(2)已知点D的坐标为(3,﹣3),判断△ABD的形状,并说明理由.17.(10分)某单位准备购买一种水果,现有甲、乙两家超市进行促销活动,该水果在两家超市的标价均为13元/千克.甲超市购买该水果的费用y(元)与该水果的质量x(千克)之间的关系如图所示;乙超市该水果在标价的基础上每千克直降3元.(1)求y与x之间的函数表达式;(2)现计划用290元购买该水果,选甲、乙哪家超市能购买该水果更多一些?18.(10分)如图,在△ABC中,∠BAC=90°,AB=AC.点D是△ABC所在平面内一点,且∠ADB=90°.(1)如图1,当点D在BC边上,求证:AD=CD;(2)如图2,当点D在△ABC外部,连接CD,若AB=5,AC=CD,求线段BD的长;(3)如图3,当点D在△ABC内部,连接CD,若∠ADC=∠BDC,AD=3,求点D到BC的距离.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)如图,数轴上的点A表示的实数是.20.(4分)已知直线y=﹣3x与y=x+n(n为常数)的交点坐标为(1,m),则方程组的解为.21.(4分)如图,在平面直角坐标系xOy中,△ABC的顶点坐标分别为A(0,3),B(0,1),C(﹣4,0),点D在y轴右侧,若以A,B,D为顶点的三角形与△ABC全等,则点D的坐标为.22.(4分)在Rt△ABC中,∠BAC=90°,BD=AD=2,在BC的延长线上有一点E使得AE=AD,过点E作AC的垂线,垂足为F,若∠FEA=67.5°,则CE =.23.(4分)定义:若三个正整数a,b,c满足a<b,a2+b2=c2,且c﹣b=2,则称(a,b,c)为“偶差”勾股数组.例如:(6,8,10),(8,15,17)都是“偶差”勾股数组.令m=a+b+c,将m从小到大排列,分别记为m1,m2,m3,…,m n(n为正整数),则m20的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)2023年12月4日至10日,国际乒联混合团体世界杯在四川成都举行,在此期间,成都某酒店对三人间及双人间客房进行优惠大酬宾,优惠方案为:三人间为每天每间360元,双人间为每天每间300元,一个40人的旅游团于2023年12月4日在该酒店入住,住了一些三人间及双人间客房,且每个客房正好住满.(1)若旅游团一天共花去住宿费5100元,求该旅行团租住了三人间、双人间各多少间?(2)设有x人住三人间,这个团一天共花去住宿费y元,请求出y与x的函数表达式.25.(10分)如图1,在边长为2的正方形ABCD中,点E是射线BC上一动点,连接AE,以AE为边在直线AE右侧作正方形AEFG.(1)当点E在线段BC上,连接DG,求证:BE=DG;(2)当点E是线段BC的中点,连接CF,求线段CF的长;(3)如图2,点E在线段BC的延长线上,连接BG,若ED的延长线恰好经过BG的中点P,求线段EP的长.26.(12分)如图,直线l1:y=﹣x+3与x轴,y轴分别交于A,B两点,点C坐标为(﹣5,﹣2),连接AC,BC,点D是线段AB上的一动点,直线l2过C,D两点.(1)求△ABC的面积;(2)若点D的横坐标为1,直线l2上是否存在点E,使点E到直线l1的距离为,若存在,求出点E的坐标,若不存在,请说明理由;(3)将△BCD沿直线CD翻折,点B的对应点为M,若△ADM为直角三角形,求线段BD 的长.参考答案一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.C;2.D;3.D;4.B;5.C;6.A;7.B;8.A;二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.;10.(6,3)或(﹣2,3);11.32.16;12.2;13.13;三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(1)4;(2).;15.92;95;16.(1)见解答.(2)△ABD为直角三角形,理由见解答.;17.(1)y1与x之间的函数解析式为y1=;(2)在甲商店购买更多一些.;18.(1)证明见解析.(2);(3).;一、填空题(本大题共5个小题,每小题4分,共20分)19.1+; 20.;21.(4,4)或(4,0);22.2﹣2;23.1012;二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(1)此旅游团住了三人间客房10间,住了双人间客房5间;(2)y与x的函数表达式为y=﹣30x+6000.;25.(1)证明见解答;(2)线段CF的长为;(3)EP=3.;26.(1)S△ABC=15;(2)存在,点E的坐标为或;(3)BD的长为或﹣.。
2023–2024学年上期八年级数学A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列实数中,属于无理数的是()A.0B.C.D.2.下列各组数中,不能构成直角三角形三边的是()A.7,24,25B.9,12,15C.1,,3D.0.3,0.4,0.53.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为,黑棋(乙)的坐标为,则白棋(甲)的坐标为()A.B.C.D.4.下列运算,结果正确的是()A.B.C.D.5.如图,在下列给出的条件中,不能判定的是()A.B.C.D.6.下列命题是真命题的是()A.两个锐角之和一定是钝角B.各边对应相等的两个多边形一定全等C.D.实数和数轴上的点是一一对应的7.如图所示,一圆柱高8cm,底面半径为2cm,在圆柱下底面的点A有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,沿圆柱侧面爬行的最短路程是(π取3)()A.6cm B.10cm C.D.8.关于一次函数,下列结论错误的是()A.y的值随x值的增大而减小B.图象过定点C.函数图象经过第二、三、四象限D.当时,第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.若,则x=______.10.一个正比例函数的图象经过点,,则a的值为______.11.如图,阴影部分的直角三角形面积为______.12.如图,,,EF平分∠BEC,,则∠DEG的度数为______.13.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?其大思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x人,y 辆车,可列方程组为______.三、解答题(本大题共6个小题,共48分,解答过程写在答题卡上)14.(本小题满分12分,每题6分)(1)计算:;(2)解方程组:15.(本小题满分8分)如图是一个8×8的正方形网格.(1)在此正方形网格中建立平面直角坐标系,使点A的坐标为,点B的坐标为(2)将点A向下平移5个单位,再关于y轴对称得到点C,求点C坐标;(3)画出,并求其面积.16.(本小题满分8分)为丰富市民假日休闲活动体验,以全民运动方式欢度国庆,2023年中秋和国庆期间,在天府新区兴隆湖畔,拉开了一场持续8天的“万千气象·公园城市生活节”,其中包含了城市路跑赛、水上潮运会、营地生活节、湖畔音乐节、国潮市集等多项主题活动,展现了公园城市美好生活场景.为了解现场游客的游玩时间,随机抽取部分游客进行调查,并将调查结果绘制成如下两幅不完整的统计图.(1)本次调查被抽查的总人数为______人,并补全条形统计图.(2)本次活动游客游玩时间的中位数是______,众数是______.(3)若国庆节当天有4000名市民参与活动,请估计游玩时间在4小时及以上的市民共有多少人?17.(本小题满分10分)如图,在平面直角坐标系xOy中,直线:与x轴,y轴分别交于A,B两点,与直线:交于点C.(1)求点A,B,C的坐标;(2)设点D在线段OC上,过点D作轴交直线于点E,过点D作轴于点F,过点E作轴于点G.若四边形DEGF为正方形,求点D的坐标.18.(本小题满分10分)在中,,过点B作交直线AC于D,延长BD至E,使,连接AE,CE.(1)如图1,若,求∠CAE的度数;(2)若,试探究∠CAE与∠CBD的数量关系并说明理由;(3)如图2,若,,求的面积.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.若,则的算术平方根是______.20.方程组的解为,则被遮盖的■表示的数为______.21.如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知大正方形的边长为,小正方形的边长为1,连接四条线段得到如图2新的图案,则阴影部分的面积为______.22.定义:若实数a,b满足(k为常数),则称点为“k倍幸福点”,如点为“3倍幸福点”.在平面直角坐标系xOy中,点,点B为直线l:上两点,其中点B为“k倍幸福点”,且的面积为,则k的值为______.23.如图,在中,,BC=3,AC=4,E为线段BC上一动点(点E不与B,C重合),F为线段AC上一动点(点F不与A,C重合),且始终满足,则的最小值为______.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(本小题满分8分)2014年10月,四川天府新区正式获批成为第11个国家级新区.近十年来,天府新区全面践行新发展理念,努力推进公园城市先行区建设.为庆祝四川天府新区获批国家级新区10周年,甲、乙两个服装厂特推出以“奋楫扬帆启新程·喜迎新区十周年”为主题的文化衫,设甲服装厂的销售总费用为(元),乙服装厂的销售总费用为(元),销售量为x(件),,与x的函数关系式如图所示:(1)请分别求出,与x的函数关系式.(2)若当甲、乙服装厂的销售量相同且销售总费用相差150元时,则销售量是多少件?25.(本小题满分10分)在中,,,点D是平面内一点(不与点A,B,C重合),连接BD,CD,,连接AD.将沿直线AD翻折,得到,连接CG.(1)如图1,点D在∠ABC内部,BD交AC于点E,点F是BD上一点,且,连接AF.①求证:;②若,,求点G到直线BC的距离;(2)如图2,点D在∠BAC的内部,试探究BD,AD,CG之间的数量关系并说明理由.26.(本小题满分12分)如图1,在平面直角坐标系xOy中,直线:与直线交于点,直线与x轴,y轴分别交于点B,点C,的面积为.(1)求直线的表达式;(2)如图2,过点作直线分别交直线,于点E,点F,设点E在第三象限.①连接AD,设的面积为,的面积为,若,求点E的坐标;②当的面积最小时,求点E的坐标.2023-2024学年上期八年期末考试数学参考答案A卷一、选择题题号12345678答案C C B D A D B D 二、填空题9.16 10.2 11.15 12.38° 13.三、解答题14.解:(1)原式(2)化简得:①×3+②得:,解得:,把代入①得:,∴原方程组的解为.15.解:(1)如图所示:(2)点A向下平移5个单位得到点,关于y轴对称的点(3)16.解:(1)80,如图(2)3小时,3小时(3)(人)答:游玩时间在4小时及以上的市民共有1600人。
2023-2024学年四川省成都市青羊区树德实验学校八年级(上)期末数学试卷一、选择题:本题共8小题,每小题4分,共32分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.公元前500年,古希腊毕达哥拉斯学派的希伯索斯发现了边长为1的正方形的对角线长不能用有理数表示,为了纪念他,人们把这些数取名为无理数.下列各数中,属于无理数的是( )A. B. 0 C. D.2.在平面直角坐标系中,点所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.下列几组数据能作为直角三角形的三边长的是( )A. 2,3,4B. ,,C. ,,D. ,,4.下列命题中,假命题是( )A. 相等的角是对顶角B. 三角形内角和为C. 实数和数轴上点是一一对应的D. 两条直线平行,同旁内角互补5.甲、乙两人在相同的条件下做投篮训练,他们各投了5组,每组10次,两人投中的平均数为,方差,;则投篮的命中率较稳定的是( )A. 两人一样稳定B. 甲C. 乙D. 无法判断6.已知一次函数,则该函数的图象大致是( )A. B. C. D.7.已知直线,将一块含角的直角三角板按如图所示的方式放置,并且顶点A,C分别落在直线a,b上,若,则的度数是( )A. B. C. D.8.我国古代数学专著《孙子算经》中记载了一道题,“一百马,一百瓦,大马一拖三,小马三拖一,大马小马各几何?”大意是,100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马?有多少匹小马?设有大马x匹,小马y匹,根据题意列方程组正确的是( )A. B.C. D.二、填空题:本题共10小题,每小题4分,共40分。
9.27的立方根是______,9的平方根是______.10.若式子在实数范围内有意义,则x的取值范围是______.11.如图,在中,,,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则的度数是______.12.如图,直线与直线都经过点,则关于x,y的方程组的解是______.13.图1是第七届国际数学教育大会的会徽图案,它是由一串有公共顶点O的直角三角形如图2所示演化而成的.如果图2中的…,那么的长为______.14.比较大小:______15.关于x,y的方程组与有相同的解,则的值为______.16.定义:对于给定的一次函数、b为常数,且,把形如的函数称为一次函数的“新生函数”.已知一次函数,若点在这个一次函数的“新生函数”图象上,则m的值是______;若点在这个一次函数的“新生函数”图象上,则n的值是______.17.如图,在中,,,,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠,使点B的对应点始终落在边AC上,若为直角三角形,则BM 的长为______.18.如图,在等腰中,,,D、E两点分别是边AC、AB上的动点,且,将线段DE绕点D顺时针旋转得到线段DF,连接BF,若,则线段BF长度的最小值为______.三、解答题:本题共8小题,共78分。
2022-2023学年四川省成都市锦江区八年级(上)期末数学试卷一.选择题(本大题共8小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)的相反数是()A.﹣B.±C.﹣5D.52.(4分)估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间3.(4分)满足下列条件时,△ABC不是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5C.AB=,BC=4,AC=5D.∠A=40°,∠B=50°4.(4分)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是()A.B.C.D.5.(4分)下列四个命题中,是真命题的是()A.有理数与数轴上的点是一一对应的B.三角形的一个外角大于任何一个内角C.两条直线被第三条直线所截,同旁内角互补D.平面内点A(﹣1,2)与点B(﹣1,﹣2)关于x轴对称6.(4分)如图是在4×4的小正方形组成的网格中,画的一张脸的示意图,如果用(0,4)和(2,4)表示眼睛,那么嘴的位置可以表示为()A.(1,1)B.(﹣1,1)C.(2,1)D.(1,2)7.(4分)甲、乙、丙、丁四人进行射箭测试,每人测试10次,射箭成绩的平均数都是8.8环,方差分别为,,,,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁8.(4分)下列图象中,是一次函数y=kx+b(其中k>0,b<0)的图象的是()A.B.C.D.二.填空题(本大题共5小题,每小题4分,共20分)9.(4分)若,则3a+2b=.10.(4分)在平面直角坐标系xOy中,点P在第四象限内,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是.11.(4分)如图,在△ABC中,DE∥BC,∠AED=75°,∠A=60°,则∠B的度数为.12.(4分)《九章算术》中有一个“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB+AC=9尺,BC=3尺,则AC=尺.13.(4分)如图,在△ABC中,AB=AC=5,观察尺规作图的痕迹,若BE=2,则BC的长是.三.解答题(本大题共5小题,共48分,解答过程写在答题卡上)14.(8分)计算:(1);(2).15.(10分)用适当的方法解下列方程组.(1);(2).16.(10分)如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;(2)若点D与点C关于原点对称,则点D的坐标为;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.17.(10分)习近平总书记指出,“红色是中国共产党、中华人民共和国最鲜亮的底色”,要用好红色资源,赓续红色血脉,为引导广大青少年树立正确的世界观、人生观、价值观,传承红色基因,某校组织了一次以“赓续红色血脉,强国复兴有我”为主题的演讲比赛,比赛成绩分为以下5个等级:A.100分、B.90分、C.80分、D.70分、E.60分,比赛结束后随机抽取部分参赛选手的成绩,整理并绘制成如图统计图,请你根据统计图解答下列问题:(1)所抽取学生比赛成绩的众数是分,中位数是人分;(2)求所抽取学生比赛成绩的平均数;(3)若参加此次比赛的学生共100名,且学校计划为比赛成绩进入A、B两个等级的学生购买奖品,请估计学校共需要准备多少份奖品?18.(10分)如图,直线y=kx+b与x轴、y轴分别交于点A和点B,点C在线段AO上,将△ABC沿BC 所在直线折叠后,点A恰好落在y轴上点D处,若OA=4,OD=2.(1)求直线AB的解析式.(2)求S△ABC:S△OCD的值.(3)直线CD上是否存在点P使得∠PBC=45°,若存在,请直接写出P的坐标.一、填空题(本大题共5小题,每小题4分,共20分)19.(4分)如果,那么x y的值是.20.(4分)如图,在平面直角坐标系中,A(8,0),B(0,16),P是线段AB上的一个动点,则OP取得最小值时,点A关于OP的对称点坐标是.21.(4分)若方程组,则=.22.(4分)如图,在平面直角坐标系xOy中,已知∠AOB=90°,∠A=60°,点A的坐标为(﹣2,2),若直线y=﹣2x+2沿x轴平移m个单位后与△AOB仍有公共点,则m的取值范围是.23.(4分)已知△ABC中,AC=8,,BC边上的高AG=5,D为线段AC上的动点,在BC上截取CE=AD,连接AE,BD,则AE+BD的最小值为.二、解答题(本大题共3小题,满分30分.解答过程写在答题卡上)24.(10分)某公司组织员工去三星堆参观,现有A,B两种客车可以租用.已知3辆A客车和1辆B客车可以坐220人,2辆A客车和3辆B客车坐的人数一样多.(1)请问A,B两种客车分别可坐多少人?(2)已知该公司共有300名员工.①请问如何安排租车方案,可以使得所有人恰好坐下?②已知A客车160元一天,B客车120元一天,请问该公司租车最少花费多少钱?25.(10分)已知△ABC是边长为6的等边三角形,D为AB中点.(1)如图1,连接CD,E为线段CD上的一个动点,以BE为边长向下作等边三角形BEF,连接AF,证明:AF=CE.(2)在(1)的条件下,求BF+AF的最小值.(3)如图2,G,H分别为BC,AC上的动点,连接BH,AG交于点I,∠AIH=60°,连接HD交AG 于点J,连接BJ并延长交AC于点K,KH=KJ,试探究BD,BJ,BG的数量关系.26.(10分)在平面直角坐标系中,直线MN交x轴正半轴于点M,交y轴负半轴于点N(0,﹣3),∠ONM =30°,作线段MN的垂直平分线交x轴于点A,交y轴于点B.(1)如图1,求直线MN的解析式和A点坐标;(2)如图2,过点M作y轴的平行线l,P是l上一点,若S△ANP=6,求点P坐标;(3)如图3,点Q是y轴的一个动点,连接QM、AQ,将△MAQ沿AQ翻折得到△M1AQ,当△M1MN 是等腰三角形时,求点Q的坐标.。
八年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列各数中,为无理数的是( )A. B. C. D.2.关于的叙述正确的是( )A.在数轴上不存在表示的点 B. =C. 与最接近的整数是2D. =3.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A. 方差B. 中位数C. 众数D. 平均数4.如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是()A. ∠2=∠5B. ∠1=∠3C. ∠5=∠4D. ∠1+∠5=180°5.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A. 80°B. 70°C. 85°D. 75°6.二元一次方程组的解是( )A. B. C. D.7.若一次函数y=(k-2)x+1的函数值y随x的增大而增大,则()A. k<2B. k>2C. k>0D. k<08.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为( )A. B.C. D.9.如图,在矩形AOBC中,A(-2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为( )A.B.C. -2D. 210.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A. 0.7米B. 1.5米C. 2.2米D. 2.4米二、填空题(本大题共9小题,共36.0分)11.若关于x、y的二元一次方程3x-ay=1有一个解是,则a=______.12.若|3x﹣2y+1|+=0,则xy的算术平方根是_____.13.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是______.14.如图,在Rt△ABC中,∠C=90°,AC=3,AB=5,分别以点A,B为圆心,大于AB的长为半径画弧,两弧交点分别为点P,Q,过P,Q两点作直线交BC于点D,则CD的长是______.15.函数y=-x的图象与函数y=x+1的图象的交点在第______象限.16.如图,数轴上点A表示的数为a,化简:a+=______.17.对于实数a,b,定义运算“※”:a※b=,例如3※4,因为3<4.所以3※4=3×4=12.若x,y满足方程组,则x※y=______.18.如图,将长方形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,则BC的长为______.19.用若干个形状和大小完全相同的长方形纸片围成正方形.如图①所示的大正方形是由四个长方形纸片围成的,其中阴影部分小正方形的面积为12;如图②所示的大正方形是由八个长方形纸片围成的,其中阴影部分小正方形的面积为8;如图③所示的大正方形是由十二个长方形纸片围成的,则其中阴影部分小正方形的面积为______.三、计算题(本大题共1小题,共10.0分)20.解下列方程组:(1)(2)四、解答题(本大题共8小题,共74.0分)21.计算下列各题:(1)计算:×-(1-)2(2)计算:6×+(π-2019)0-|5-|-()-222.某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A,B,C,D,E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)这30名职工捐书本数的众数是______本,中位数是______本;(3)求这30名职工捐书本数的平均数是多少本?并估计该单位750名职工共捐书多少本?23.如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.(1)求证:△ABC是等腰三角形;(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.24.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)若小李11月份上网20小时,他应付多少元的上网费用?(2)当x≥30,求y与x之间的函数关系式;(3)若小李12月份上网费用为135元,则他在该月份的上网时间是多少?25.如图,直角坐标系xOy中,一次函数y=-x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,3).(1)求m的值及l2的解析式;(2)求S△AOC-S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.26.某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?27.(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,①则线段BC,DC,EC之间满足的等量关系式为______;②求证:BD2+CD2=2AD2;(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.28.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是二元一次方程组的解(OB>OC).(1)求点A和点B的坐标;(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.①当0<t<3时,求m关于t的函数关系式;②当m=时,求点P的横坐标t的值.答案和解析1.【答案】C【解析】解:,,是有理数,是无理数.故选:C.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】D【解析】解:A、数轴上的点既可以表示有理数,也可以表示无理数,所以在数轴上存在表示的点,故选项错误;B、=2,故选项错误;C、与最接近的整数是3,故选项错误;D、=2,故选项正确.故选:D.根据数轴上的点与实数是一一对应的关系,实数的加法法则,二次根式的化简的计算法则计算即可求解.考查了实数与数轴,实数的加法,二次根式的化简,关键是熟练掌握计算法则计算即可求解.3.【答案】A【解析】解:有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的方差,故选:A.根据各自的定义判断即可.此题考查了统计量的选择,弄清方差表示的意义是解本题的关键.4.【答案】B【解析】【分析】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.根据平行线的判定方法一一判断即可.【解答】解:∵∠2=∠5,∴a∥b,∵∠4=∠5,∴a∥b,∵∠1+∠5=180°,∴a∥b.故选B.5.【答案】A【解析】解:∵∠1=∠3=55°,∠B=45°,∴∠4=∠3+∠B=100°,∵a∥b,∴∠5=∠4=100°,∴∠2=180°-∠5=80°,故选:A.想办法求出∠5即可解决问题;本题考查平行线的性质,三角形内角和定理,三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.【答案】B【解析】解:,①+②得:2x=0,解得:x=0,把x=0代入①得:y=2,则方程组的解为,故选:B.方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.【答案】B【解析】【分析】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.根据一次函数的性质,可得答案.【解答】解:由题意,得k-2>0,解得k>2.故选:B.8.【答案】D【解析】解:由题意可得,,故选:D.根据题意可以列出相应的方程组,从而可以解答本题.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.9.【答案】A【解析】解:∵A(-2,0),B(0,1).∴OA=2、OB=1,∵四边形AOBC是矩形,∴AC=OB=1、BC=OA=2,则点C的坐标为(-2,1),将点C(-2,1)代入y=kx,得:1=-2k,解得:k=-,故选:A.根据矩形的性质得出点C的坐标,再将点C坐标代入解析式求解可得.本题主要考查一次函数图象上点的坐标特征,解题的关键是掌握矩形的性质和待定系数法求函数解析式.10.【答案】C【解析】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.11.【答案】4【解析】解:把代入方程得:9-2a=1,解得:a=4,故答案为:4.把x与y的值代入方程计算即可求出a的值.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12.【答案】【解析】解:∵|3x-2y+1|+=0,∴,解得:,则xy=2,2的算术的平方根是,故答案为:利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可求出所求.此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.13.【答案】x=2【解析】解:∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2.故答案为x=2.一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.14.【答案】【解析】解:连接AD,如图,∵∠C=90°,AC=3,AB=5,∴BC==4,由作法得PQ垂直平分AB,∴DA=DB,设CD=x,则DB=DA=4-x,在Rt△ACD中,x2+32=(4-x)2,解得x=,即CD的长为.故答案为.连接AD,如图,先利用勾股定理计算出BC=4,利用基本作图得到PQ垂直平分AB,所以DA=DB,设CD=x,则DB=DA=4-x,利用勾股定理得到x2+32=(4-x)2,然后解方程即可.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.15.【答案】二【解析】解:函数y=-x的图象应该在二、四象限,函数y=x+1的图象在一、二、三象限,因此他们的交点一定在第二象限.根据一次函数的函数式来判断直线所在的象限.本题中考查的是根据一次函数的函数式来判断直线所在的象限.如果设一次函数为y=kx+b,那么有:当k>0,b>0,这时此函数的图象经过第一、二、三象限.当k>0,b<0,这时此函数的图象经过第一、三、四象限.当k<0,b>0,这时此函数的图象经过第一、二、四象限.当k<0,b<0,这时此函数的图象经过第二、三、四象限.16.【答案】2【解析】解:由数轴可得:0<a<2,则a+=a+=a+(2-a)=2.故答案为:2.直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.此题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题关键.17.【答案】13【解析】解:方程组,①+②×4得:9x=108,解得:x=12,把x=12代入②得:y=5,则x※y=12※5==13,故答案为:13求出方程组的解得到x与y的值,代入原式利用题中的新定义计算即可求出值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】3++【解析】解:由题意,得:∠3=180°-2∠1=45°,∠4=180°-2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++,故答案为:3++.由题意知∠3=180°-2∠1=45°、∠4=180°-2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x ,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.19.【答案】44-16【解析】解:图①中阴影边长为=2,图②阴影边长为=2,设矩形长为a,宽为b,根据题意得,解得,所以图③阴影面积为(a-3b)2=44-16,故答案为:44-16.三个图中阴影部分都是正方形,根据前两个阴影面积列方程组求矩形的边长,再计算图③阴影面积.本题考查一元一次方程组和完全平方公式的应用,确定数量关系是解答的关键.20.【答案】解:(1)②-①×2得:x=6,把x=6代入①得:y=-3,则方程组的解为;(2)①+②得:x=,解得:x=,把x=代入①得:y=-,则方程组的解为.【解析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.【答案】解:(1)原式=-(1-2+3)=2-4+2=4-4;(2)原式=2+1+5-3-4=2-.【解析】(1)根据二次根式的乘法法则和完全平方公式计算;(2)先根据零指数幂、负整数指数幂和绝对值的意义计算,然后化简后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.【答案】解:(1)D组人数=30-4-6-9-3=8.;(2)6;6;(3)平均数==6(本),该单位750名职工共捐书:7506=4500(本).【解析】【分析】本题考查条形统计图,样本估计总体,平均数,众数,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)求出D组人数画出条形图即可.(2)根据众数,中位数的定义即可判断.(3)根据平均数的定义,求出平均数即可解决问题.【解答】解:(1)见答案;(2)众数是6本,中位数是6本.故答案为6,6.(3)见答案.23.【答案】(1)证明:∵AF平分∠DAC,∴∠DAF=∠CAF,∵AF∥BC,∴∠DAF=∠B,∠CAF=∠ACB,∴∠B=∠ACB,∴△ABC是等腰三角形;(2)解:∵AB=AC,∠B=40°,∴∠ACB=∠B=40°,∴∠BAC=100°,∴∠ACE=∠BAC+∠B=140°,∵CG平分∠ACE,∴ACE=70°,∵AF∥BC,∴∠AGC=180°-∠BCG=70°.【解析】(1)根据角平分线定义得到∠DAF=∠CAF,根据平行线的性质得到∠DAF=∠B,∠CAF=∠ACB,于是得到结论;(2)根据三角形的内角和得到∠BAC=100°,由三角形的外角的性质得到∠ACE=∠BAC+∠B=140°,根据角平分线定义得到ACE=70°,根据平行线的性质即可得到结论.本题考查了等腰三角形的判定与性质,平行线的性质,角平分线的定义,熟练掌握等腰三角形的判定定理的解题的关键.24.【答案】解:(1)根据题意,从图象上看,30小时以内的上网费用都是60元;(2)当x≥30时,设函数关系式为y=kx+b,则,解得,,故函数关系式为y=3x-30;(3)由135=3x-30解得x=55,故12月份上网55个小时.【解析】根据图象可知:每月上网30小时以内收费60元;超过30小时按超过时间多少收费.(1)20<30,故付费60元;(2)根据A点和C点坐标,用待定系数法求解析式;(3)求y=135时,x的值即可.此题考查一次函数的应用,注意分段函数中自变量的取值范围.25.【答案】解:(1)把C(m,3)代入一次函数y=-x+5,可得3=-m+5,解得m=4,∴C(4,3),设l2的解析式为y=ax,则3=4a,解得a=,∴l2的解析式为y=x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=3,CE=4,y=-x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC-S△BOC=×10×3-×5×4=15-10=5;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(4,3)时,k=;当l2,l3平行时,k=;当11,l3平行时,k=-;故k的值为或或-.【解析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=3,CE=4,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC-S△BOC的值;(3)分三种情况:当l3经过点C(2,3)时,k=;当l2,l3平行时,k=;当11,l3平行时,k=-;于是得到结论.本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.26.【答案】解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据题意得:w=10a+20(120-a)=-10a+2400;(3)根据题意得,a≤90,由(2)得,w=-10a+2400,∵-10<0,w随a的增大而减小,∴a=90时,w有最小值w最小=-10×90+2400=1500(元).答:12月份该店需要支付这两种水果的货款最少应是1500元.【解析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式;(3)根据甲种水果不超过90千克,可得出a的取值范围,再利用一次函数的性质即可解决最值问题.本题考查了二元一次方程组的应用、以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.27.【答案】BC=DC+EC【解析】(1)①解:BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=EC,∴BC=DC+BD=DC+EC,;故答案为:BC=DC+EC;②证明:∵Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=∠ACB+∠ACE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(2)解:作AE⊥AD,使AE=AD,连接CE,DE,如图2所示:∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE===6,∵∠DAE=90°,∴AD=AE=DE=6.(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.本题是四边形综合题目,考查的是全等三角形的判定和性质、等腰直角三角形的性质、勾股定理、直角三角形的判定等知识;本题综合性强,熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.28.【答案】解:(1)方程组的解为:,∵OB>OC,∴OB=6,OC=5,∴点B的坐标为:(6,0),过点A作AM⊥x轴于M,如图1所示:∵∠OAB=90°且OA=AB,∴△AOB是等腰直角三角形,∴OM=BM=AM=OB=×6=3,∴点A的坐标为:(3,3);(2)①过点C作CN⊥x轴于N,如图2所示:∵t=4时,直线l恰好过点C,∴ON=4,CN===3,∴点C的坐标为:(4,-3),设直线OC的解析式为:y=kx,把C(4,-3)代入得:-3=4k,∴k=-,∴直线OC的解析式为:y=-x,∴R(t,-t),设直线OA的解析式为:y=k′x,把A(3,3)代入得:3=3k′,∴k′=1,∴直线OA的解析式为:y=x,∴Q(t,t),∴QR=t-(-t)=t,即:m=t;②分三种情况:当0<t<3时,m=t,m=,则t=,解得:t=2;当3≤t<4时,设直线AB的解析式为:y=px+q,把A(3,3)、B(6,0)代入得,解得:,∴直线AB的解析式为:y=-x+6,∴Q(t,-t+6),R(t,-t),∴m=-t+6-(-t)=-t+6,∵m=,∴-t+6=,解得:t=10>6(不合题意舍去);当4≤t<6时,设直线BC的解析式为:y=ax+b,把B(6,0)、C(4,-3)代入得,解得:,∴直线BC的解析式为:y=x-9,∴Q(t,-t+6),R(t,t-9),∴m=-t+6-(t-9)=-t+15,∵m=,∴-t+15=,解得:t=;综上所述,满足条件的点P的横坐标t的值为2或.【解析】(1)求出方程组的解为,得出OB=6,OC=5,点B的坐标为:(6,0),过点A作AM⊥x轴于M,则△AOB是等腰直角三角形,得出OM=BM=AM=OB=3,即可得出答案;(2)①过点C作CN⊥x轴于N,由题意得出ON=4,由勾股定理得出CN==3,得出点C的坐标为:(4,-3),由待定系数法求出直线OC的解析式为:y=-x,得出R(t,-t),由待定系数法直线OA的解析式为:y=x,得出Q(t,t),即可得出结果;②分三种情况:当0<t<3时,m=t,m=,则t=,解得:t=2;当3≤t<4时,由待定系数法求出直线AB的解析式为:y=-x+6,得出Q(t,-t+6),R(t,-t),得出方程-t+6=,解方程即可;当4≤t<6时,由待定系数法求出直线BC的解析式为:y=x-9,得出Q(t,-t+6),R(t,t-9),得出方程,解方程即可.本题是四边形综合题目,考查了坐标与图形性质、二元一次方程组的解法、待定系数法确定一次函数解析式、等腰直角三角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,有一定难度,熟练掌握待定系数法求一次函数的解析式是解题的关键.。
2022-2023学年四川省成都市郫都区八年级(上)期末数学试卷一、选择题(本题共8小题,共32分)1. 下列各数中,为无理数的是( )A. 327- B. 0 C. D. 3.5&【答案】C【解析】【分析】根据无理数的定义,逐项判断即可得出答案.【详解】解:A 、327-是有理数,故不符合题意;B 、0是有理数,故不符合题意;C D 、3.5&是有理数,故不符合题意.故选:C .【点睛】本题考查了无理数,解本题的关键在熟练掌握无理数的定义及常见的无理数(含p 的数、开方开不尽的数、无限不循环小数).2. 下列各组线段中,能够组成直角三角形的是( )A. 3,5,7B. 5,7,12C. 7,14,15D. 9,12,15【答案】D【解析】【分析】利用勾股定理逆定理,逐一进行判断即可.【详解】22A 3592534+=+=Q 、,2749=,222357\+¹,\以3,5,7为边不能组成直角三角形,故本选项不符合题意;B 、2257254974+=+=Q ,212144=,2225712\+¹,\以5,7,12为边不能组成直角三角形,故本选项不符合题意;C 、2271449196245+=+=Q ,215225=,22271415\+¹,\以7,14,15为边不能组成直角三角形,故本选项不符合题意;D 、2291281144225+=+=Q ,215225=,22291215\+=,\以9,12,15为边能组成直角三角形,故本选符合题意;故选:D .【点睛】本题考查勾股定理逆定理.熟练掌握三角形两短边的平方和等于第三边的平方时,三角形是直角三角形,是解题的关键.3. 下列运算正确是( )A.=B. +=C. =D. 2=±【答案】B【解析】【分析】根据二次根式的性质及运算法则,即可一一判定.【详解】A2=+,故本选项不符合题意;B.+=,故本选项符合题意;=2=,故本选项不符合题意;故选:B .【点睛】本题考查了二次根式的性质及运算,熟练掌握和运用二次根式的性质及运算法则是解决本题的关键.4. 如图,在平面直角坐标系xOy 中有一点被墨迹遮挡了,这个点的坐标可能是( )A. ()2,3 B. ()2,3- C. ()2,3-- D. ()2,3-【答案】B【解析】【分析】根据象限内点的坐标特征,对选项一一进行分析,即可得出答案.【详解】解:由图可知,这个点在第二象限,()23Q ,在第一象限,的故A 不符合题意;()23-Q ,在第二象限,故B 符合题意;()23--Q ,在第三象限,故C 不符合题意;()23-Q ,在第四象限,故D 不符合题意.故选:B .【点睛】本题考查了象限内点的坐标特征,熟练掌握象限内点的坐标特征是解本题的关键.象限内点的坐标特征:第一象限(正,正),第二象限(负,正),第三象限(负,负),第四象限(正,负).5. 已知正比例函数(3)y m x =-,其中y 的值随x 的值增大而减小,则m 的取值范围是( )A. 3m < B. 3m > C. 0m > D. 0m <【答案】A【解析】【分析】根据正比例函数中y 的值随x 的值增大而减小,可知比例系数(3)0m -<,由此即可求解.【详解】解:Q 正比例函数(3)y m x =-,其中y 的值随x 的值增大而减小,30m \-<,3m \<,故选:A .【点睛】本题主要考查正比例函数图形的性质,理解正比例函数图形的增减性是解题的关键.6. 下列命题是假命题的是( )A. 全等三角形的面积相等B. 两直线平行,同位角相等C. 如果两个角相等,那么它们是对顶角D. 如果一个三角形是等腰三角形,那么这个三角形的两个底角相等【答案】C【解析】【分析】根据全等三角形的性质、平行线的性质、对顶角的定义及等腰三角形的性质进行判断即可.【详解】A 、全等三角形的面积相等,是真命题,不符合题意;B、两直线平行,同位角相等,是真命题,不符合题意;C、两个角相等,它们不一定是对顶角,故本选项说法是假命题,符合题意;D、如果一个三角形是等腰三角形,那么这个三角形的两个底角相等,是真命题,不符合题意;故选:C.【点睛】本题考查命题的真假判断,熟练掌握基础知识,正确判断出真假命题是解题的关键.7. 某中学青年志愿者协会的10名志愿者,一周的社区志愿服务时间如下表所示:时间/h23456人数13231关于志愿者服务时间的描述正确的是()A. 众数是6B. 平均数是4C. 中位数是3D. 方差是1【答案】B【解析】【分析】根据中位数,众数,平均数和方差的定义,逐一判断选项即可.【详解】解:∵志愿者服务时间为3小时的人数为3个人,志愿者服务时间为5小时的人数为3个人,∴志愿者服务时间的众数为3和5,故A错误;∵2133425361410´+´+´+´+´=,∴平均数是4,故B正确;∵时间从小到大排序,第5、6个数都是4,∴中位数为4,故C错误;∵()()()()()22222 1243342443541641.410´-+´-+´-+´-+´-=,∴方差为1.4,故D错误,故选B.【点睛】本题主要考查中位数,众数,平均数和方差的定义,熟练掌握上述定义和计算方法是解题的关键.8. 《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为( )A. 15022503x y y x ì+=ïïíï+=ïî B. 15022503x y y x ì-=ïïíï-=ïîC. 2502503x y x y +=ìïí+=ïî D. 2502503x y x y -=ìïí-=ïî【答案】A【解析】【分析】设甲需持钱x ,乙持钱y ,根据题意可得,甲的钱+乙所有钱的一半=50,乙的钱+甲所有钱的23=50,据此列方程组可得.【详解】解:设甲需持钱x ,乙持钱y ,根据题意得15022503x y y x ì+=ïïíï+=ïî,故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.二、填空题(本题共10小题,共40分)9. 实数-18的立方根是_____【答案】12-【解析】【分析】直接根据立方根的定义求解即可.【详解】解:∵311=28æö--ç÷èø,∴实数-18的立方根是12-.故答案为:12-.【点睛】本题考查了立方根的定义,立方根的定义,熟练掌握定义是解答本题的关键.如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根;如果一个正数x 的平方等于a ,即x 2=a ,那么x 叫做a 的算术平方根.10. 如图,图中所有四边形都是正方形,三角形是直角三角形,若正方形A ,C 的面积分别为12,16,则正方形B 的面积是___________.【答案】4【解析】【分析】根据正方形的面积与边长的关系,可知C B A S S S =+,则B C A S S S =-由此即可求解.【详解】解:根据勾股定理的几何意义,可知B C A S S S =-,∴16124B S =-=故答案为:4.【点睛】本题主要考查勾股定理,理解并掌握勾股定理的意义是解题的关键.11. 将直线3y x =-向上平移1个单位长度,平移后直线的表达式为_________.【答案】31y x =-+【解析】【分析】根据一次函数图象上下移动时解析式的变化规律求解即可.【详解】将直线3y x =-向上平移1个单位,得到的直线的解析式为31y x =-+,故答案为:31y x =-+.【点睛】本题考查了一次函数图象与几何变化,熟练掌握一次函数图象平移时,解析式的变化规律是解题的关键.12. 如图,在ABC V 中,AB AC =,36ABC Ð=°,AD 平分外角EAC Ð,则EAD Ð的度数为________.【答案】36°##36度【解析】【分析】根据AB AC =,得出ABC C Ð=Ð,根据三角形外角的性质得出12ABC C EAC Ð=Ð=Ð,根据角平分线的性质得出12EAD DAC EAC =Ð=Ð,即可得出36EAD ABC Ð=Ð=°.【详解】AB AC =Q ,ABC C \Ð=Ð,EAC ABC C Ð=Ð+ÐQ ,12ABC C EAC \Ð=Ð=Ð,AD Q 平分外角EAC Ð,12EAD DAC EAC \Ð=Ð=Ð,36EAD ABC \Ð=Ð=°,故答案为:36°.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,角平分线的定义,掌握以上知识是解题的关键.13. 如图,直线4y x =-+与直线21y x =+相交于点A ,则关于x 、y 的方程组421y x y x =-+ìí=+î的解是___________.【答案】13x y =ìí=î【解析】【分析】根据两条直线的交点的意义,结合图形即可求解.【详解】解:Q 直线4y x =-+与直线21y x =+相交于点()1,3A ,\方程组421y x y x =-+ìí=+î的解是13x y =ìí=î,故答案为:13x y =ìí=î.【点睛】本题主要考查一次函数图像的交点和方程组的解,理解两条直线的交点坐标的意义,结合图像分析是解题的关键.14._______12.【答案】<【解析】的大小,得到31<,从而求解.【详解】解:∵23<<∴031<-<12<故答案为:<.【点睛】本题考查无理数的估算和实数的大小比较,正确进行估算是本题的解题关键.15. 若关于x ,y 的二元一次方程组5x y k x y k +=ìí-=î的解也是二元一次方程2324x y +=的解,则k 的值为___________.【答案】2【解析】【分析】先求出方程组的解,将解代入二元一次方程2324x y +=中,进行求解即可【详解】解:5x y k x y k +=ìí-=î①②, +①②,得26x k =,解得:3x k =,把3x k =代入②,得3k y k -=,解得:2y k =,所以方程组的解是32x k y k =ìí=î,Q 关于x ,y 的二元一次方程组5x y k x y k+=ìí-=î的解也是二元一次方程2324x y +=的解,6624k k \+=,2k \=.故答案为:2.【点睛】本题考查根据方程组的解的情况,求参数的值.正确求出方程组的解,是解题的关键.16. 如图,圆柱形玻璃杯高为22cm ,底面周长为30cm ,在杯内壁离杯上沿3cm 的点B 处粘有一粒面包渣,此时一只蚂蚁正好在杯外壁,离杯底5cm 与面包渣相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________cm (杯壁厚度不计).【答案】25【解析】【分析】将杯子侧面展开,作B 关于EF 的对称点B ¢,连接AB ¢,利用勾股定理进行求解即可.【详解】解:如图将杯子侧面展开,作B 关于EF 的对称点B ¢,则:AF FB AF FB AB ¢¢+=+³,∴当,,A F B ¢三点共线时,AF FB +的值最小.由题意,得:3015cm 2B D =¢=, 3BE BE ¢==,()225320cm AD =-+=,连接B A ¢,则B A ¢即为最短距离,25(cm)B A ¢===.故答案为:25.【点睛】本题考查轴对称,勾股定理的应用.解题的关键是将立体图形展开为平面图形,利用轴对称的性质,解决线段和最小问题.17. 如图,四边形ABCD 的对角线AC 垂直平分BD 于点E ,点F 为CD 边上一点,且DF 2CF =,103ADF S =V,AB =4AE =,则AF 的长度为____________.【解析】【分析】根据线段垂直平分线的性质可得AD AB ==,再由勾股定理可得DE 的长,再由DF 2CF =,可得32ADC ADF S S =V V ,从而得到152AC DE ×=,进而得到,AC CE 的长,再由勾股定理求出DC ,然后根据勾股定理逆定理可得90ADC Ð=°,再求出DF ,然后根据勾股定理,即可求解.【详解】解:AC Q 垂直平分BD ,90AED CED \Ð=Ð=°,AD AB ==,4AE =Q,2DE \===,2=Q DF CF ,32CD DF \=,32ADC ADF S S \=V V ,103ADF S =V Q ,5ADC S \=V ,152AC DE \×=,1252AC \×=,5AC \=,541CE AC AE \=-=-=,DC \===在ADC △中,(222225AD CD +=+=,22525AC ==,222AD CD AC \+=,ADC \V 是直角三角形,90ADC \Ð=°,23DF DC =Q ,DC =DF \=,AF \===,.【点睛】本题主要考查了线段垂直平分线的性质,勾股定理及其逆定理,二次根式的化简,熟练掌握线段垂直平分线的性质,勾股定理及其逆定理是解题的关键.18. 对于平面直角坐标系xOy 中的点P 与图形M ,N 给出如下定义:点P 到图形M 上的各点的最小距离为m ,点P 到图形N 上各点的最小距离为n ,当m n =时,称点P 为图形M 与图形N 的“等长点”.如:点()20E -,,()00O ,,()20F ,中,点O 就是点E 与点F 的“等长点”,已知点()20A ,,()22B ,,()22C -,,连接BC ,若点P 既是点O 与点A 的“等长点”,也是线段OA 与线段BC 的“等长点”,则点P 的坐标为____________.【答案】()11P ¢,或()11P ¢¢-,【解析】【分析】根据题意画出图形,根据线段的垂直平分线的性质,结合图形求解.【详解】解:如下图:根据题意:()11P ¢,或()11P ¢¢-,符合题意,故答案为:()11P ¢,或()11P ¢¢-,.【点睛】本题考查了坐标与图形的性质,数形结合思想是解题的关键.三、解答题(本题共8小题,共78分)19. (12;(2)解方程组:25114317x y x y -=-ìí+=î.【答案】(12;(2)方程组的解为23x y =ìí=î【解析】【分析】(1)根据二次根式的混合运算法则即可求解;(2)根据解二元一次方程组的方法即可求解.【详解】解:(12+2=+2=+2=-+2=+;(2)25114317x y x y -=-ìí+=î解:方程2511x y -=-两边同时乘以2得,41022x y -=-,∴原方程组变形得,410224317x y x y -=-ìí+=î,∴(43)(410)17(22)x y x y +--=--得,1339y =,∴3y =,把3y =代入2511x y -=-得,25311x -´=-,∴2x =,∴原方程组的解为23x y =ìí=î.【点睛】本题主要考查二次根式的混合运算,解二元一次方程组,掌握二次根式混合运算法则和加减消元法是解题的关键.20. 如图,在平面直角坐标系xOy 中有A ,B ,C 三点的坐标分别为()1,2,()3,0,()2,4.(1)在平面直角坐标系中描出A ,B ,C 三点,连接AB ,BC ,AC ;(2)求线段BC 的长;(3)点A 与点B 关于直线l 成轴对称,请在平面直角坐标系中画出直线l .【答案】(1)见解析(2)BC =(3)见解析【解析】【分析】(1)根据、、A B C 三点的坐标描点,然后再连线即可;(2)根据两点之间的距离公式计算即可;(3)利用网格的特点,作直线AB 的垂直平分线即可.【小问1详解】解:如图,即为所求;【小问2详解】解:∵()3,0B ,()2,4C ,∴BC ==【小问3详解】解:如图,直线l 即为所求.【点睛】本题考查了点的坐标、作图—轴对称变换、两点之间的距离公式、网格的特点,解本题的关键在正确作图,并熟练掌握网格的特点.21. 某公司要招聘一名职员,根据实际需要,从学历、能力和态度三个方面对甲、乙、丙三名应聘者进行子测试,测试成绩如表:应聘者项目甲乙丙学历788能力789态度965(1)如果将学历、能力和态度三项得分按111∶∶的比例确定录用人选,那么被录用的应聘者是 ;(2)根据实际需要,公司将学历、能力和态度三项得分按221∶∶的比例确定各人的测试成绩,那么谁将被录用?并说明理由.(3)如果你是这家公司的招聘负责人,请按你认为的各项“重要程度”设计出三项得分比例,以此为依据确定录用者,并简要叙述你这样设计比例的理由.【答案】(1)甲 (2)丙将被录用,理由见解析(3)将学历、能力和态度三项得分按122∶∶的比例确定各人的测试成绩,确定录用者,理由:因为工作态度比学历更重要(答案不唯一)【解析】【分析】(1)求出各人的总分即可得出答案;(2)根据加权平均数的定义列式计算得出三人的平均成绩,再比较大小即可得出答案;(3)将学历、能力和态度三项得分按122∶∶的比例确定各人的测试成绩确定录用者即可.小问1详解】解:甲的得分为77923(++=分),乙的得分为88622(++=分),丙的得分为89522(++=分),2322>Q ,即甲>乙=丙,\甲将被录用.故答案为:甲;【小问2详解】解:丙将被录用,理由如下:甲的平均分为727297.4221´+´+=++(分),乙的平均分为828267.6221´+´+=++(分),丙的平均分为829257.8221´+´+=++(分),7.87.67.4>>,\丙将被录用;【小问3详解】解:将学历、能力和态度三项得分按122∶∶的比例确定各人的测试成绩,确定录用者,因为工作态度比学历更重要.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.22. 如图,在平面直角坐标系xOy 中,直线1l :28y x =-+与x 轴,y 轴分别交于点A ,【点B ,直线2l :y x b =+与y 轴交于点C ,与直线1l 交于点D ,且点D 的横坐标为2.(1)求直线2l 的函数表达式;(2)点P 是x 轴上的一个动点,过点P 作x 轴的垂线,与直线1l 交于点M ,与直线2l 交于点N ,若13MN BC =,求线段OP 的长.【答案】(1)直线2l 的函数表达式为2y x =+(2)PO 长是83或43【解析】【分析】(1)先求出点D 的坐标,再利用待定系数法求出直线2l 的函数表达式即可;(2)设P 的坐标是(),0a ,先表示出MN ,再求出BC ,根据13MN BC =求出a 的值,即可得到线段OP 的长.小问1详解】∵点D 的横坐标为2,且D 在1l 上,D \的纵坐标是2284y =-´+=,D \的坐标是()2,4,D Q 在2l 上,∴42b =+,2b \=,\直线2l 的函数表达式为2y x =+;【小问2详解】设P 的坐标是(),0a ,M \的纵坐标是28a -+,N 的纵坐标是2a +,∴()22836MN NP MP a a a =-=+--+=-,当0x =时,288y x =-+=,22y x =+=,的【∴点()0,8B ,点()0,2C ,∴826BC OB OC =-=-=,∵13MN BC =,∴136623a -=´=,83a \=或43a =.PO \的长是83或43.【点睛】此题考查了一次函数综合题,用到了待定系数法、一次函数图象的交点问题等知识,熟练掌握一次函数的相关知识是解题的关键.23. 在长方形ABCD 中,6AB =,8AD =,点E 是AD 边上的一点,将ABE V 沿BE 折叠,点A 的对应点为点F ,射线EF 与线段BC 交于点G .(1)如图1,当E 点和D 点重合时,求证:BG DG =;(2)如图2,当点F 正好落在矩形的对角线AC 上时,求CG 的长度;(3)如图3,连接DF ,CF ,若DF CF =,求CDF V 的面积.【答案】(1)见解析(2)74CG =(3)24CDF S =-V 【解析】【分析】(1)利用矩形的性质,得到//AD BC ,进而得到ADB DBC Ð=Ð,根据折叠的性质,得到ADB BDF Ð=Ð,从而得到BDF DBC Ð=Ð,即可得证;(2)利用矩形的性质,折叠的性质,易证CG CF =,BFG V 是直角三角形,在Rt BFG △中利用勾股定理进行求解即可;(3)作FM CD ^于M ,交AB 于N ,易得四边形BCMN 是矩形,在Rt BNF V 中,利用勾股定理求出NF 的长,进而求出FM 的长,再利用面积公式进行求解即可.【小问1详解】证明:Q 四边形ABCD 是矩形,//AD BC \,ADB DBC Ð=Ð\,由折叠得:ADB BDF Ð=Ð,BDF DBC \Ð=Ð,BG DG \=;【小问2详解】解:Q 四边形ABCD 是矩形,90BAD \Ð=°,AD BC ∥,EAF ACB \Ð=Ð,由折叠知:90BFE BAD Ð=Ð=°,AE EF =,6BF AB ==,90BFG \Ð=°,EAF AFE Ð=Ð,CFG AFE Ð=ÐQ ,ACB CFG \Ð=Ð,CG GF \=,设CG GF x ==,则8BG x =-,在Rt BFG △中,由勾股定理得,222BG FG BF -=,222(8)6x x \--=,74x \=,74CG \=;【小问3详解】如图,作FM CD ^于M ,交AB 于N ,90NMC \Ð=°,DF CF =Q ,12DM CM CD \==,Q 四边形ABCD 是矩形,90ABC BCD \Ð=Ð=°,\四边形BCMN 是矩形,3BN CM \==,90MNB Ð=°,8MN BC ==,在Rt BNF V 中,3BN =,6BF AB ==,FN \===8FM MN FN \=-=-,(11682422CDF S CD FM \=×=´´-=-V 【点睛】本题考查矩形与折叠问题,同时考查了等腰三角形的判定和性质,勾股定理.熟练掌握矩形的性质和折叠的性质,是解题的关键.24. 某一蔬菜经营商从蔬菜批发市场批发了黄瓜和茄子共50千克到菜市场去卖,黄瓜和茄子当天的批发价与零售价如表所示:品名黄瓜茄子批发价(元/千克)4.84零售价(元/千克)7.25.6(1)若批发黄瓜和茄子共花220元,则黄瓜和茄子各多少千克?(2)设批发了黄瓜x 千克,卖完这批黄瓜和茄子的利润是W 元,求W 与x 的函数关系式.【答案】(1)批发黄瓜25千克,批发茄子25千克(2)W 与x 的函数关系式是0.880W x =+【解析】【分析】(1)设批发黄瓜a 千克,则批发茄子()50a -千克,根据题意列一元一次方程求解即可;(2)根据利润=每千克利润×数量列函数关系式即可求解.【小问1详解】解:设批发黄瓜a 千克,则批发茄子()50a -千克,由题意可得:()4.8450220a a +-=,解得25a =,5025a \-=(千克),答:批发黄瓜25千克,批发茄子25千克;【小问2详解】解:由题意可得,()()()7.2 4.8 5.64500.880W x x x =-+-´-=+,即W 与x 的函数关系式是0.880W x =+.【点睛】本题考查一元一次方程的应用、一次函数的应用,理解题意找准等量关系,正确列出方程和函数关系式是解答的关键.25. 如图,在ABC V 中,90BAC Ð=°,AB AC =,点D 为BC 中点,连接AD ,点E 在线段AC 上,连接BE ,与AD 交于点F ,过点A 作BE 的垂线,分别交BE ,BC 于点G ,H .(1)求证:BDF ADH △≌△;(2)若AE AF =,求证:2BF AG =;(3)在(2)的条件下,若2AE =,求BC 的长.【答案】(1)见解析(2)见解析(3)4BC =+【解析】【分析】(1)90BAC Ð=°,AB AC =,点D 为BC 中点,可得AD BD DC ==,GAF DBF Ð=Ð,根据角边角即可求证;(2)如图所示,连接FH ,可得45DAC C Ð=Ð=°,122.52FAG DAC Ð=Ð=°,由(1)的全等可证Rt DHF △是等腰三角形,由此可证FAH V 是等腰三角形,且FG AH ^,由此即可求;(3)由(2)可知AE AF FH ==,Rt DHF △是等腰三角形,可求出AD ,由此即可求解.【小问1详解】证明:AB AC =Q ,90BAC Ð=°,AB AC =,点D 为BC 中点,,∴AD CB ^,BD CD =,45ABD ACD Ð=Ð=°,∴AD BD DC ==,AH BE ^Q ,∴90AGF BDF Ð=Ð=°,∵AFG BFD Ð=Ð,∴GAF DBF Ð=Ð,在,BDF ADH △△中,DBF DAH DB DABDF ADH Ð=Ðìï=íïÐ=Ðî,∴(ASA)BDF ADH △≌△.【小问2详解】证明:如图所示,连接FH ,=Q AE AF ,AG EF ^,AG \平分EAF Ð,AD BC ^Q ,45C Ð=°,∴45DAC C Ð=Ð=°,∴122.52FAG DAC Ð=Ð=°,∴9022.567.5AHD Ð=°-°=°,∵(ASA)BDF ADH △≌△,DF DH \=,BF AH =,45DFH DHF \Ð=Ð=°,∴67.54522.5AHF AHD DHF Ð=Ð-Ð=°-°=°,∴22.5FAG FHA Ð=Ð=°,∴FA FH =,FG AH ^Q,∴AG GH =,∴2BF AH AG ==.【小问3详解】解:2AE =,由(2)可知2AE AF FH ===,且DHF △是等腰直角三角形,∴222DF DH FH +=,∴DF DH ==,∴2BD AD CD AF DF ===+=+,∴(2224BC BD ==´=+.【点睛】本题主要考查等腰直角三角形,全等三角形,角平分线的综合,理解题意,掌握等腰直角三角形的性质,全等三角形的判断和性质,角平分线的性质是解题的关键.26. 在直角坐标系xOy 中,直线1l :4y x =-+与x 轴、y 轴分别交于点A ,点B .直线2l :()=0y mx m m +>与x 轴,y 轴分别交于点C ,点D ,直线1l 与2l 交于点E .(1)若点E 坐标为2,3n æöç÷èø.①求m 的值;②点P 在直线2l 上,若3AEP BDE S S =V V ,求点P 的坐标;(2)点F 是线段CE 的中点,点G 为y 轴上一动点,是否存在点F 使CFG △为以FC 为直角边的等腰直角三角形.若存在,求出m 的值,若不存在,请说明理由.【答案】(1)①2m =;②点P 的坐标为438,1515æöç÷èø或1662,1515æöç÷èø (2)存在,3=7m【解析】【分析】(1)把点E 的坐标代入4y x =-+求出10=3n ,再把点E 的坐标代入y mx m =+,即可求出m ;当点P 在AB 下方时,取AM h =,作直线l AB ∥,过点A 作AM l ^于点M ,过点M 作MN x ^轴于点N ,则直线l 和直线CD 的交点即为点P ,进而求解,当点P 在AB 上方时,同理可解;(2)证明FNG FMC @V V ,得到FN FM =即可求解.【小问1详解】解:①当23x =时,210=4=4=33y x -+-+,即点210,33E æöç÷èø,将点E 的坐标代入y mx m =+得:210+=33m m ,解得:2m =;解:由题意可知,()0,4B 、()1,0C -、210,33E æöç÷èø,2BD \=,2=3E x ,则12332223BDE AEP S S =´´´==V V ,由A 、E的坐标得:==AE 设PAE △底边AE 上的高为h ,则11222PAE S AE h h =´´==V ,解得:=h ,由直线AB 的表达式知,4OA OB ==,则45BAC Ð=°,取AM h =,作直线l AB ∥,过点A 作AM l ^于点M ,过点M 作MN x ^轴于点N ,则直线l 和直线CD 的交点即为点P ,则Rt AMN △为等腰直角三角形,则3====5MN AM h AN ,则点173,55M æö-ç÷èø,设直线l 的表达式为:=+y x r -,的将点M 的坐标代入上式并解得:14=5r ,则直线l 的表达式为:14=+5y x -,联立直线l 和22y x =+并解得14153815x y ì=ïïíï=ïî,即点P 的坐标为1438,1515æöç÷èø;当点P 在直线AB 上方时,同理可得:点1662,1515P æöç÷èø,综上,点P 的坐标为:438,1515æöç÷èø或1662,1515æöç÷èø;【小问2详解】解:存在,理由如下:设点(),4E n n -+,则点14,22n n F --æöç÷èø,过点F 分别向x 轴、y 轴作垂线,垂足分别为点M 、N ,CFG Q V 为以FC 为直角边的等腰直角三角形,则FC FG =,=90GFC а,=90NFG GFM Ð+аQ ,=90GFM MFC Ð+а,=NFG MFC \ÐÐ,==90FNG FMC ÐаQ ,FC FG =,()FNG FMC AAS \@V V,FN FM \=,即41=22n n --,解得:52n =,则点53,22E æöç÷èø,将点E 的坐标代入y mx m =+并解得:3=7m .【点睛】本题考查一次函数的综合运用、等腰直角三角形的性质和全等三角形的性质和判定及面积的计算,分类讨论是解题的关键.。
成都市8年级上期期末调研考试八年级数学A 卷(100分)一.选择题(30分,本大题共10小题,每小题3分)。
1.下列各式中,错误..的是( ) (A).283-= ( B).222-=-( C).283-=- ( D).222=2.若⎩⎨⎧==21y x 是二元一次方程3=-y ax 的解,则a 的值是( )(A)-5 (B) 5 (C) 2 (D) 1 3.下列说法正确的是( )(A)1的平方根是-1 (B)2是-4的算术平方根 (C)16的平方根是±4 (D)-5是25的算术平方根 4.若点)1,3(++m m p 在平面直角坐标系的x 轴上,则点p 的坐标为( )(A) (4,0) (B)(-4,0) (C) (2,0) (D) (0,-2) 5.下列说法正确的是( )(A)两组对边分别相等的四边形是平行四边形(B)一组对边相等,另一组对边平行的四边形是平行四边形 (C)平行四边形既是中心对称图形,又是轴对称图形 (D)两条对角线互相垂直的四边形是平行四边形. 6.边长为1的正方形的对角线的长是( ) (A)整数 (B) 分数 (C) 有理数 (D) 无理数数图象,下列说7.如图,是某人骑自行车的行驶路程s (千米)与行驶时间t (时)的函法不正确的是( )(A)从0时到3时,行驶了30千米 (B)从1时到2时,匀称前进 (C)从1时到2时,原地不动(D)从0时到1时与从2时到3时的行驶速度相同. 8.下列四组线段中,能构成直角三角形的是( )(A)4㎝,5㎝,6㎝ (B)8㎝,12㎝,15㎝ (C)6㎝,8㎝,10㎝ (D)7㎝,15㎝,17㎝ 9.若从某观察站得到的数据中,取出3322,11,x f x f x f 个个个,则这组数据的平均数是( )(A)321332211f f f x f x f x f ++++ (B)3321x x x ++ (C) 3332211x f x f x f ++ (D) 3321f f f ++10.下列四边形:①等腰梯形;②矩形;③菱形;④正方形;⑤平行四边形,其中对角线一定相等的有( ) (A) ① ② ③ (B) ② ③ ④ (C) ③ ④ ⑤ (D) ① ② ④ 二、填空题:(每小题3分,共15分) 11.()25= ; ()332= 。
12.如图,直线l 过正方形ABCD 的顶点B ,点A 、点C 到直线l 的距离分别是3和4,则该正方形的边长是 。
10 20 30t (时)1 23S(千米)13.在平面直角坐标系中,直线34-=x y 与x 轴的交点坐标为 ,与y 轴的交点坐标是 。
14.若一个多边形的各边均相等,周长为60㎝,且内角和为720o ,则它的边长为 ㎝。
15.如图,C 、D 是两个村庄,分别位于湖的南北两端A 和B 的正东方向上,且D 位于C 的北偏东30o 方向上,若CD=4km ,则AB=km 。
三、(第16题10分,第17题6分,共16分) 16.解答下列各题:(每小题5分,共10分) (1)解方程组:⎩⎨⎧=-=+,82,25y x y x (2)化简:221332+- 17、某校八年级三班组织了一次数学测验,全班学生成绩的分布情况如图:利用上图提供的信息,解答下列问题:(1)全班学生总人数为 名。
(2分)(2)全班学生数学成绩的众数是 分,全班学生数学成绩为众数的有 名。
(2分) (3)全班学生数学成绩的中位数是 分。
(2分) 四、(第18题10分,第19题9分,共19分) 18、在如图的方格中,每个小正方形的边长都是1。
(1)△ABC 与△A 1B 1C 1是否构成中心对称图形?若是,请在图中画出对称中心O ;(2分) (2)在图中画出将△A 1B 1C 1沿直线DE 向上平移5格得到的△A 2B 2C 2;(2分)(3)要使△A 2B 2C 2与△CC 1C 2重合,需将△A 2B 2C 2绕点C 2顺时针旋转,则至少要旋转 度;(2分) (4)请计算出△ABC 的周长和面积。
(4分)24 68 10 12 0第一组80859095100分数学生数第二组ACBD第15题图34C BA D 第12题图19.如图,在平行四边形ABCD 中,E 为BC 上一点,且AB=AE.(1)求证:△ABC ≌△EAD;(5分)(2)若AE 平分∠DAB ,∠EAC=20o ,试求∠ACD 的度数。
(4分) 五、(每小题10分,共20分)20。
如图,在梯形ABCD 中,AD ∥BC ,E 是梯形内一点,ED ⊥AD 于D ,DE 的延长线交BC 于F ,∠EBC=∠EDC ,∠ECB=45o 。
(1)求证:BE=CD ;(6分)(2)若DC=4,∠DCB=60o ,求DE 的长。
(4分) 21。
如图,在平面直角坐标系中,直线1l :x y 34=与直线2l :b kx y += 相交于点A ,点A 的横坐标为3,直线2l 交y 轴于点B ,且OB OA 21=。
(1)试求直线2l 函数表达式。
(6分) (2)若将直线1l 沿着x 轴向左平移3个单位,交 y 轴于点C ,交直线2l 于点D ;试求 △BCD 的面积。
(4分)。
B 卷(共50分)一、填空题:(每小题5分,共20分) 22、设实数x 、y满足0)4(52=-+++y x y x ,则=xy 。
23、在平面直角坐标系中,已知直线m n mx y (+=<0,n >0),若点A (-2,1y )、(-3,2y )、C (1,3y )在直线n mx y +=上,则 1y 、2y 、3y 的大小关系为: (请用“<”符号连接)。
24、如图 ,在平面直角坐标系中,点B 坐标为(0,2),若AB=4,且∠ABO=150o ,则点A 的坐标为 。
A BDC 1B 1A 1CABDC FExOAB11yL 2E25.如图,已知菱形11D ABC 的边长1a =1cm,∠D 1 AB=60o,则菱形221D C AC 的边长2a = cm,四边形 332D C AC 也是菱形,…如此下去,菱形665D C AC 的边长6a = cm. 二.列方程组解应用题:(共10分)26.经营户小熊在某蔬菜批发市场上了解到以下信息:蔬菜品种 红辣椒 黄瓜 西红柿 茄子 批发价(元/千克) 4 1.2 1.6 1.1 零售价(元/千克)51.42.01.3他共用128元钱从从市场上批发了红辣椒和西红柿共50千克到菜市场上去卖,当天用零售价卖完. (1)请计算出小熊批发的红辣椒和西红柿各多少千克?(7分) (2)请你计算出小熊能赚多少钱?(3分). 三.(共10分)27.如图,ON 为∠AOB 中的一条射线,点P 在边OA 上,PH ⊥OB 于H,交ON 于点Q,PM ∥OB 交ON 于点M,MD ⊥OB 于点D,QR ∥OB 交MD 于点R,连结PR 交QM 于点S. (1)求证:四边形PQRM 为矩形;(5分) (2)若OP=21PR,试探究∠AOB 与 ∠BON 的数量关系,并说明理由.(5分)四.(共10分)28.如图,矩形OABC 在平面直角坐标系内(O 为坐标原点),点A 在x 轴上,点C 在y 轴上,点B 的坐标为(-2,32),点E是BC 的中点,点H 在OA 上,且AH=21,过点H 且平行于y 轴的HG 与EB 交于点G,现将矩形折叠,使顶点C 落在HG 上 ,并与HG 上的点D 重合,折痕为EF,点F 为折痕与y 轴的交点.(1)求∠CEF 的度数和点D 的坐标;(3分) (2)求折痕EF 所在直线的函数表达式;(2分)(3)若点P 在直线EF 上,当△PFD 为等腰三角形时,试问满足条件的点P 有几个,请求出点P 的坐标,并写出解答过程.(5分)xyo11B(0,2)DBHR MNP SQOABC 1C 2 C 3D 3D 2D 1A(备用图) 参考答案: A 卷一、1.A 2.B 3.C 4.C 5.A 6.D 7.B 8.C 9.A 10.D 二. 11. 5 , 2 12. 5 13. (43,0) (0,-3) 14. 10 15.32 三.16.(1).解:①+②,得:,333=x 11=x . 把11=x 代入①,得:14=y .所以,原方程组的解是: ⎩⎨⎧==1411y x(2).解:原式=222324+⨯-=()1234+-2=227. 17.(1)50 (2) 95 20 (3) 92.5四.18. (1) 是 (2)略 (3) 90 (4) L △ABC =222232522++++=++AC BC AB=13225++ S △AB =52521=⨯⨯(平方单位) 19.(1).证明:∵四边形ABCD 是平行四边形∴BC=AD, BC ∥AD.∴∠BEA=∠EAD ∵在△ABE 中,AB=AE, ∴∠BEA=∠B ∴∠B=∠EAD在△ABC 和△EAD 中,⎪⎩⎪⎨⎧=∠=∠=AD BC EAD B EA AB ∴△ABC ≌△EAD.(2). ∵AE 平分∠DAB ,∴∠EAB=∠EAD. ∵△ABC ≌△EAD. ∴∠EBA=∠EAD,又∠BEA=∠B ∴∠B=∠EAD ∴∠B=∠EAB=∠BEA=60o. ∵∠EAC=20 ∴∠BAC=∠BAE+∠EAC=60o+20o=80o. ∴∠ACD=∠BAC=∠EAC=80o. 五.20.(1)证明:证△BEF ≌△DCF 即可.(2)DE=232-. 21.(1).10314-=x y (2) 5147.B 卷(50分)一、22. 2 23、3y <1y <2y 24、(2,322+)或(-2,322+) 25、[]1)3(139;3-⋅=n n a二、26.(1)600,800==b a (2)4,7xy FCEB GAH O DxyFCEB GAHO D三、27(1)略 (2) ∠AOB=3∠NOB 。
(提示:利用矩形对角线相等且互相平分知OP=21PR=PS 。
) 四、28.(1)∠CEF=60o D (23-233)。
(2).33+-=x y (3)满足条件的点P 有4个。
分别是 (235,23-)、(233,23-)、(233,23+-)、(233,21-)。