“课题学习之最短路径问题”的进一步探讨
- 格式:pdf
- 大小:218.91 KB
- 文档页数:3
课题学习《最短路径问题》说课稿各位领导、专家、同仁们大家好:今天我说课的的内容是:人教八年级上册第13章第四节课题学习最短路径问题。
下面我将从:教材分析、学情分析、教学目标、教学重难点、教法、学法、教学手段、教学过程、板书设计、反思十个方面展开我的说课。
一、教材分析:本节课的内容是在学习了轴对称图形及两点之间线段最短知识的基础上学习的最短路径问题。
同时为我们今后解决坐标系下线段和最短的问题打下基础。
所以本节课的学习既是对前面所学知识的应用又为今后学习新知识做了铺垫,起到了呈上起下的作用。
二、学情分析1、已有的知识与能力:八年级学生已经学习了“两点之间线段最短”“垂线段最短”这些关于距离最短问题的解决依据。
也初步接触了逻辑推理证明的方法。
2、未接触的知识能力:由于八年级学生首次遇到线段和最小,所以无从下手,另外证明两条线段和最小时要选取另外一点,学生想不到、不会用,所以利用轴对称将最短路径问题转化为线段和最小问题,逻辑推理证明所求距离最短是本节课的难点。
3.综合能力方面:八年级学生这一阶段的学生思维能力发展较快,自我意识增强,有较强的求知欲和表现欲,在情感方面他们能进行自我教育。
经过一年多新课程理念的熏陶及实践,学生已有了初步的自主学习、合作探究的能力,但部分学生存在不自信,羞于表现等思想顾虑,但又希望能得到他人的肯定。
因此我的教学目标分了三层,照顾不同程度的学生。
在教学活动中尽量让他们参与到活动中来,减少他们的恐惧感,通过学生间的合作学习,降低他们的学习难度,使各层次的学生都有所收获,使他们体验到成功的喜悦。
通过以上教材与学情分析我制定了本节课教学目标:三、教学目标:1、知识与能力目标:(1)能利用轴对称解决简单的最短路径问题。
(2)能将实际问题中的“地点”、“河”抽象为数学中的“点”、“直线”,把实际问题抽象为数学问题。
2、过程与方法目标:(1)使学生经历提出问题——合作探究——动手操作——组间对比——理论证明——解决问题的过程。
13.4 课题学习最短路径问题(第一课时)一、内容和内容解析1.内容利用轴对称研究某些最短路径问题。
2.内容解析最短路径问题是人教版八年级上册第十三章第四节内容,本节课以一个实际问题为载体开展对“最短路径问题”的课题研究,让学生将实际问题抽象为数学中线段之和最小问题,并建立数学模型,学会用数学的眼光观察现实世界.初步了解利用图形变换——轴对称的方法来解决最值问题,体会用数学的思维思考现实世界。
从内容上来看,在本章节之前学生已经学习了“两点之间,线段最短”“三角形两边之和大于第三边”等相关理论,以及简单的轴对称知识,这为过渡到本节的学习起着铺垫作用。
本节课既轴对称知识运用的延续,从初中数学的角度来看,也是中考数学的热点问题之一,本节课的教学内容是解决中考最值综合问题的基础,具有承上启下作用。
本节课的教学重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题。
二、目标和目标解析1.目标(1)能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想。
(2)通过实际问题的提出,能够抽象为数学问题,并建立数学模型,利用所掌握的数学知识完成严谨的推理过程,然后再解决实际问题。
体会数学在实际生活中的价值。
2.目标解析达成目标 1 的标志是:学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线",把实际问题抽象为数学的线段和最小问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想。
达成目标 2 的标志是:课题学习本身是考察综合能力,注重现实背景,学生能从生活中自己发现问题,并抽象成数学模型,掌握转化的探究方法,将不熟悉的模型转化成所学过简单的数学模型,通过合作探究,解决问题。
三、教学问题诊断分析已形成的:我校八年级学生已经学习轴对称相关的简单知识,掌握了“两点之间,线段最短”“三角形两边之和大于第三边”等相关理论,思维活跃,敢于尝试,具备一定的动手操作能力和小组合作意识,同时也具备一定的数学抽象能力和数学建模能力。
课题学习---最短路径问题游戏规则发生了变化,如图,则小明按怎样的路线跑,去捡哪个位置的球,才能最快拿到球跑到终点处?问题1:前面我们已经解决了A、B两点在直线两侧的最短问题,下面请同学们思考并尝试,若这两点居于直线的同侧,该怎样找到那样的点P,使得AP与BP的和最小?问题2:若找到了那样的点,请证明结论的正确性(化异侧为同侧)点点l求.证明:如图,在直线上取一点P质,AP=PAB=AP+PB=AP+PB.由此可知:点距离最短学以致用(将军饮马)传说在古罗马时代的亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位将军专程去拜访他,向他请教一个百思不得其解的问题.A边岸的同侧该怎样走才能使路程最短?据说当时海伦略加思索就解决了它们,你知道问题的答案吗?l小明终点现如今,将军遇到了新的问题,你能够替代海伦帮助将军解决这个问题吗?(造桥选址问题)将军从图中的A 地出发,到一条笔直的河边l 饮马,然后淌水到B 地(要求淌水的距离最短).问到河边什么地方饮马并淌水可使他所走的路线全程最短?问题3:本问题又变成了点在直线两侧的问题,但一条直线拓宽成了一条河,请同学们思考,要饮马并淌水过河,饮马点M应选在何处,才能使从A到B的路径AMNB最短?问题4:如何证明你的结论?如图,由于河岸宽度是固定的,淌水的路径最短要与河岸垂直,因此路径AMNB中的MN的长度是固定的. 因此要使AM+MN+NB的值最小,只需AM+NB的值最小即可.如图,几何画板验证,然后使用逻辑推理问题探究经验基础上,把问题引向深入,使得平移变换自然呈现,进一步体现图形变换在最短路径问题中的价值。
《课题学习最短路径问题》的教学反思最短路径问题是新人教版的八年级教材内容,是新增加的内容,因此,在备课的过程中难以找到相关的课件或者习题,对于这部分内容的教学,怎样才能讲的透彻,是个值得深入钻研的问题,上了这一节课我有以下几点体会:一:教师要合理安排一节课的组织教学、检查复习、教学新知、巩固练习、课堂小结和布置作业等课堂教学环节的顺序和时间分配。
在一堂课中,要特别精心用好前20分钟左右的“黄金”教学时间,用于讲解新知、重点、难点内容,忌用黄金时间“去炒隔天的夹生饭”,保证学生有充分时间去当堂自学、练习、巩固新知,确保学生的主体地位。
这节课我先从学生身边的数学问题入手,“你从教室到操场有两条路可以走,你会选择走哪条?”“为什么要走这条,走这条路有什么优势?”让学生体会到了数学就在我们身边,为什么要学习最短路径。
这让学生引起了很大的学习兴趣,提高了学生的学习积极性。
二:课堂结构的安排,要主次分清,快慢得当。
教学中,要根据教学内容的深度、难度和学生的认知水平,合理分配时间段,合理把握教学节奏,有的课可合适加快节奏,有的课则需放慢节奏,有的内简易少花时间,有的内容则应多花时间;对于这一堂课而言,各个教学环节可有例外的节奏,开始时的基础训练,可以紧锣密鼓,营造一种热闹的气氛;使学生尽快集中思维,进入状态,当学生探得新知,总结规律时,则应放慢节奏。
特别是对于两点在直线的同侧时,要在直线上找一点使得它到两点的距离和最短,我让学生自己找一个点的对称点,并提出问题:你是怎样想到要找对称点的?它起了什么作用?“让学生解决这个问题,给学生足够的时间和空间进行探索,对于分散教学难点起了很大的作用,收到了很好的教学效果。
因此,一堂课内应视需要,时而似快马奔腾,时而似闭庭信步,使学生的思维有张有弛,快慢相间,提高效率。
三:“少”是相对于“多”而言的,“精”是相对于“杂”或“粗”而言的,所谓精讲,就是教师在充分把握教材、大纲和学生学习情况的基础上,讲解精辟透彻,画龙点睛,抓住实质和关键,讲在点子上。
第 1 页 共 2 页 13.4课题学习:最短路径问题13.4课题学习:最短路径问题学习目标:1、理解并掌握平面内一条直线同侧两个点到直线上的某一点距离之和为最小值时点的位置的确定。
2、能利用轴对称平移解决实际问题中路径最短的问题。
3、通过独立思考,合作探究,培养学生运用数学知识解决实际问题的基本能力,感受学习成功的快乐。
学习重点:将实际问题转化成数学问题,运用轴对称平移解决生活中路径最短的问题,确定出最短路径的方法。
学习难点:探索发现“最短路径”的方案,确定最短路径的作图及说理。
学习过程:一、创设情景,引入新知。
同学们:我们已经学习过“两点的所有连线中,。
”和“连接直线外一点与直线上各点的所有线段中,”等问题,我们称他们为最短路径问题。
二、自主学习,探究新知。
探索新知 (Ⅰ) 两点在一条直线同侧问题1 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?思考:为什么这样做就能得到最短距离呢?你如何验证PA+PB 最短呢?练习1、如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返 回P 处,请画出旅游船的最短路径.探究新知(Ⅱ)两点在一条直线异侧问题2、如图,要在燃气管道L 上修建一个泵站,分别向A 、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?练习2、已知:如图,A ,B 在直线L 的两侧,在L 上求一点P ,使得PA+PB 最小。
A B CPQ 山 河岸大桥B A 问题1 练习1 练习 2 问题2第 2 页 共 2 页 13.4课题学习:最短路径问题拓展新知(Ⅲ)(造桥选址问题中的最短路径问题)问题3、如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直)(平行变换)①怎样将实际问题转化为实际问题?②若直线重合,最短路径是什么?③若将直线平移开,怎样思考该问题?④怎样解决造桥选址问题?作法: 1.将点A 沿与和垂直的方向平移MN 的距离到A 2.连接AB 交河岸与点N ,在此处造桥MN ,所的路程AMNB就是最短路程。
课题学习最短路径问题一、内容和内容解析1.内容利用轴对称研究某些最短路径问题.2.内容解析最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为基础知识,有时还要借助轴对称、平移、旋转等变换进行研究.本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题.基于以上分析,确定本节课的教学重点是:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,培养学生解决实际问题的能力.二、目标和目标解析1.教学目标能利用轴对称解决简单的最短路径问题,体会图形的变换在解决最值问题中的作用,感悟转化思想,进一步获得数学活动的经验,增强应用意识.2. 教学目标解析学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线”,把实际问题抽象为数学问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.三、教学问题诊断分析最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手.对于直线异侧的两点,怎样在直线上找到一点,使这一点到这两点的距离之和最小,学生很容易想到连接这两点,所连线段与直线的交点就是所求的点.但对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,一些学生会感到茫然,找不到解决问题的思路.在证明“最短”时,需要在直线上任取一点(与所求作的点不重合),证明所连线段和大于所求作的线段和,学生想不到,不会用.教学时,教师可从“直线异侧的两点”过渡到“直线同侧的两点”,为学生搭建“脚手架”.在证明“最短”时,教师可告诉学生,证明“最大”“最小”这类问题,常常要另选一个量,通过与求证的那个“最大”“最小”的量进行比较来证明.由于另取的点具有任意性,所以结论对于直线上的每一点(C点除外)都成立本节课的教学难点是:如何利用轴对称将最短路径问题转化为线段和最小问题.四、教学过程设计1.创设问题情境问题1 如图,从A地到B地有三条路可供选择,你会选择哪条路距离最短?说说你的理由.师生活动:学生回答问题,说出理由:两点之间,线段最短.【设计意图】让学生回顾“两点之间,线段最短”,为引入新课作准备.问题2:如图,要在燃气管道l上修建一个泵站,分别向A、B两村供气,泵站修在管道的什么地方,可使所用的输气管线最短?师生活动:学生回答,连接AB,线段AB与l的交点即为泵站修建的位置.【设计意图】让学生进一步感受“两点之间,线段最短”,为把“同侧的两点”转化为“异侧的两点”做铺垫.2.将实际问题抽象为数学问题问题3 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?师生活动:学生尝试回答,并相互补充,最后达成共识:(1)将A,B 两地抽象为两个点,将河l 抽象为一条直线;(2)在直线l上找到一点C,使AC与BC 的和最小?【设计意图】学生通过动手操作,在具体感知轴对称图形特征的基础上,抽象出轴对称图形的概念.3.解决数学问题问题4 如图,点A,B 在直线l 的同侧,在直线l上找到一点C,使AC 与BC 的和最小?师生活动:学生独立思考,尝试画图,相互交流.如果学生有困难,教师可作如下提示:(1)如果点B在点A的异侧,如何在直线l上找到一点C,使AC 与BC的和最小(2)现在点B与点A在同侧,能否将点B移到l 的另一侧点处,且满足直线l上的任意一点C,都能保持?(3)你能根据轴对称的知识,找到(2)中符合条件的点吗?师生共同完成作图,如下图.作法:(1)作点B 关于直线l 的对称点B′;(2)连接AB′,与直线l 相交于点C.则点C 即为所求.【设计意图】教师一步一步引导学生,如何将同侧的两点转化为异侧的两点,为问题的解决提供思路,渗透转化思想.4.证明AC +BC “最短”问题4 你能用所学的知识证明AC +BC最短吗?师生活动:学生独立思考,相互交流,师生共同完成证明过程.证明:如图,在直线l 上任取一点(与点C 不重合),连接AC′,BC′,.由轴对称的性质知,,.∴,.在△中,,∴.即AC +BC 最短.追问1:证明AC +BC最短时,为什么要在直线l上任取一点(与点C但不重合)?师生活动:学生相互交流,教师适时点拨,最后达成共识:若直线l上任意一点(与点C不重合)与A,B两点的距离和都大于AC +BC,就说明AC +BC最小.【设计意图】让学生体会作法的正确性,提高逻辑思维能力.追问2:回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?师生活动:学生回答,相互补充.【设计意图】学生在反思中,体会轴对称的桥梁作用,感悟转化思想,丰富数学活动经验.5.巩固练习如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.师生活动:学生分析解题思路,独立完成画图,教师适时点拨.【设计意图】让学生进一步巩固解决最短路径问题的基本策略和基本方法.6.归纳小结教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)本节课研究问题的基本过程是什么?(2)轴对称在所研究问题中起什么作用?师生活动:教师引导,学生小结.【设计意图】:引导学生把握研究问题的基本策略和方法,体会轴对称在解决最短路径问题中的作用,感悟转化思想的重要价值.7.布置作业:教科书复习题13第15题.五、目标检测设计某实验中学八(1)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?【设计意图】考查学生解决“最短路径问题”的能力.。
八年级数学上册 13.4 课题学习最短路径问题说课稿(新版)新人教版一. 教材分析八年级数学上册13.4课题学习“最短路径问题”是新人教版教材中的一项重要内容。
这一节内容是在学生掌握了平面直角坐标系、一次函数、几何图形的性质等知识的基础上进行学习的。
本节课的主要内容是最短路径问题的研究,通过实例引导学生了解最短路径问题的背景和意义,学会利用图论知识解决实际问题。
教材中给出了两个实例:光纤敷设和城市道路规划,让学生通过解决这两个实例来理解和掌握最短路径问题的求解方法。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于平面直角坐标系、一次函数等知识有了一定的了解。
但是,对于图论知识以及如何利用图论解决实际问题还比较陌生。
因此,在教学过程中,我需要引导学生理解和掌握图论知识,并能够将其应用到实际问题中。
三. 说教学目标1.知识与技能目标:让学生了解最短路径问题的背景和意义,掌握利用图论知识解决最短路径问题的方法。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,让学生体验到数学在实际生活中的应用价值。
四. 说教学重难点1.教学重点:最短路径问题的求解方法。
2.教学难点:如何将实际问题转化为图论问题,并利用图论知识解决。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过解决实际问题来学习和掌握最短路径问题的求解方法。
2.教学手段:利用多媒体课件辅助教学,通过展示实例和动画效果,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示光纤敷设和城市道路规划的实例,引导学生了解最短路径问题的背景和意义。
2.新课导入:介绍图论中最短路径的概念和相关的数学知识。
3.实例分析:分析光纤敷设和城市道路规划两个实例,引导学生将其转化为图论问题。
4.方法讲解:讲解如何利用图论知识解决最短路径问题,包括迪杰斯特拉算法和贝尔曼-福特算法等。
13.4 课题学习最短路径问题一、解决“一线+两点”型最短路径问题的方法:(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所.例题1:在图中直线l上找到一点M,使它到A,B两点的距离和最小.注意:距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.【练习】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?警误区:利用轴对称解决最值问题应注意题目要求:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.二、解决“两线+一点”型最短路径问题的方法:解决“两线+一点”型最短路径问题,要作两次轴对称,从而构造出最短路径.例题2:如图,已知∠AOB内有一点P,试分别在边OA和OB上各找一点E、F,使得△PEF的周长最小。
试画出图形,并说明理由.三、解决“两线+两点”型最短路径问题的方法:解决“两线+两点”型最短路径问题,要每点做一次轴对称,从而构造出最短路径.例题3:圣林中学八年级举行元旦联欢会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a四、造桥选址问题:选址问题的关键是把各条线段转化到一条线段上.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.例题4:如图,村庄A、B位于一条小河的两侧,若河岸a、b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?注:在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.。