苏州市高新区2018-2019年八年级下期末考试数学试卷及答案
- 格式:doc
- 大小:277.00 KB
- 文档页数:7
2018-2019学年江苏省苏州八年级(下)期末数学模拟试卷一、选择题:(每题2分)1.(2分)已知点M(﹣2,3)在双曲线y=上,则下列各点一定在该双曲线上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(2,3)D.(3,2)2.(2分)下列计算中,正确的是()A.B.C.D.3.(2分)如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()A.12 B.20 C.24 D.324.(2分)下列说法正确的是()A.对应边都成比例的多边形相似B.对应角都相等的多边形相似C.边数相同的正多边形相似D.矩形都相似5.(2分)有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.6.(2分)最简二次根式与是同类二次根式,则a为()A.a=6 B.a=2 C.a=3或a=2 D.a=17.(2分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC 于点E、O,连接CE,则CE的长为()A.3 B.3.5 C.2.5 D.2.88.(2分)已知y=+﹣3,则xy=()A.﹣15 B.﹣9 C.9 D.159.(2分)如图,已知点A是一次函数y=2x的图象与反比例函数y=的图象在第一象限内的交点,AB⊥x轴于点B,点C在x轴的负半轴上,且∠ACB=∠OAB,△OAB的面积为4,则点C的坐标为()A.(﹣8,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)10.(2分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④∠GAE=45°;⑤S△FGC=3.6.则正确结论的个数有()A.2 B.3 C.4 D.5二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)一元二次方程x2﹣4x=0的解是.12.(2分)点(3,a)在反比例函数y=图象上,则a=.13.(2分)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若CD=2EF=4,BC=4,则∠C等于.14.(2分)已知关于x的方程的解是正数,则m的取值范围是.15.(2分)如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数y=(x>0)的图象上,则点C的坐标为.16.(2分)某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线AC=cm.17.(2分)如图,将一宽为1dm的矩形纸条沿BC折叠,若∠CAB=30°,则折叠后重叠部分的面积为dm2.18.(2分)如图,正方形CDEF内接于Rt△ABC,AE=1,BE=2,则正方形的面积是.三、简答题(本大题共10小题,共64分,解答应写出必要的计算过程、推算步骤或文字说明)19.(4分)计算:(﹣)2+﹣2.20.(8分)解方程:(1)2x 2﹣5x ﹣3=0; (2)+=.21.(5分)先化简,再求值:÷(a ﹣1+),其中a 是方程x 2﹣x =6的根.22.(6分)某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了部分学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数为度.(2)请把条形统计图补充完整.(3)若该校有学生1200人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?23.(6分)阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.24.(6分)如图,在平面直角坐标系xOy中,一次函数y1=kx的图象与反比例函数y2=图象交于A、B两点.(1)根据图象,求一次函数和反比例函数解析式;(2)根据图象直接写出kx>的解集为;(3)若点P在y轴上,且满足以点A、B、P为顶点的三角形是直角三角形,试直接写出点P所有可能的坐标为.25.(6分)如图,在△ABC中,AB=12cm,BC=8cm,BD平分∠ABC交AC于点D,DE∥BC 交AB于点E.(1)求证:BE=ED;(2)求AE的长.26.(7分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.27.(8分)如图,在平面直角坐标系中,点A的坐标为(1,1),OA=OC,∠OAC=90°,点D为x轴上一动点,以AD为边在AD的右侧作正方形ADEF.(1)如图(1)当点D在线段OC上时(不与点O、C重合),则线段CF与OD之间的数量关系为;位置关系为.(2)如图(2)当点D在线段OC的延长线上时,(1)中的结论是否成立?若成立,请说明理由;若不成立,请举一反例.28.(8分)如图,在平面直角坐标系中,直线y=﹣4与x轴交于点A,与y轴交于点B,点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从A出发沿AB以每秒1个单位长的速度向点B匀速运动,当点P、Q运动时,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q 同时出发,当点Q到达点B时停止运动,点P也随之停止,设点P、Q运动的时间为t秒(t>0).(1)点Q的坐标是(,)(用含t的代数式表示);(2)当点E在BO上时,四边形QBED能否为直角梯形?若能,求出t的值;若不能,请说明理由;(3)当t为何值时,直线DE经过点O.参考答案与试题解析一、选择题:(每题2分)1.(2分)已知点M(﹣2,3)在双曲线y=上,则下列各点一定在该双曲线上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(2,3)D.(3,2)【解答】解:∵M(﹣2,3)在双曲线y=上,∴k=﹣2×3=﹣6,A、3×(﹣2)=﹣6,故此点一定在该双曲线上;B、﹣2×(﹣3)=6≠﹣6,故此点一定不在该双曲线上;C、2×3=6≠﹣6,故此点一定不在该双曲线上;D、3×2=6≠﹣6,故此点一定不在该双曲线上;故选:A.2.(2分)下列计算中,正确的是()A.B. C. D.【解答】解:A、二次根式的加法,实质上是合并同类二次根式,不是同类二次根式,不能合并,故A错误;B、二次根式相除,等于被开方数相除,故B正确;C、根号外的也要相乘,等于9,故C错误;D、根据=|a|,等于3,故D错误.故选:B.3.(2分)如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()A.12 B.20 C.24 D.32【解答】解:过C点作CD⊥x轴,垂足为D,∵点C的坐标为(3,4),∴OD=3,CD=4,∴OC===5,∴OC=BC=5,∴点B坐标为(8,4),∵反比例函数y=(x>0)的图象经过顶点B,∴k=32,故选:D.4.(2分)下列说法正确的是()A.对应边都成比例的多边形相似B.对应角都相等的多边形相似C.边数相同的正多边形相似D.矩形都相似【解答】解:A、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误;B、对应角都相等的多边形,属于形状不唯一确定的图形,故错误;C、边数相同的正多边形,形状相同,但大小不一定相同,故正确;D、矩形属于形状不唯一确定的图形,故错误.故选:C.5.(2分)有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.【解答】解:∵五张形状、质地、大小完全相同的卡片上,正面分别画有:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆,卡片的正面图形既是中心对称图形,又是轴对称图形的有:线段、圆,∴从中任意抽取一张,那么抽出卡片的正面图形既是中心对称图形,又是轴对称图形的概率是:.故选:B.6.(2分)最简二次根式与是同类二次根式,则a为()A.a=6 B.a=2 C.a=3或a=2 D.a=1【解答】解:由题意可得a2+3=5a﹣3解得a=2或a=3;当a=3时,a2+3=5a﹣3=12,不是最简根式,因此a=3不合题意,舍去.因此a=2.故选:B.7.(2分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC 于点E、O,连接CE,则CE的长为()A.3 B.3.5 C.2.5 D.2.8【解答】解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.8.(2分)已知y=+﹣3,则xy=()A.﹣15 B.﹣9 C.9 D.15【解答】解:由题意得,x﹣5≥0且10﹣2x≥0,解得x≥5且x≤5,所以,x=5,y=﹣3,xy=5×(﹣3)=﹣15.故选:A.9.(2分)如图,已知点A是一次函数y=2x的图象与反比例函数y=的图象在第一象限内的交点,AB⊥x轴于点B,点C在x轴的负半轴上,且∠ACB=∠OAB,△OAB的面积为4,则点C的坐标为()A.(﹣8,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)【解答】解:∵A在直线y=2x上,∴设AB=2x,OB=x,∵△OAB的面积为4,∴•x•2x=4,解得:x=2,∴AB=4,OB=2,∵AB⊥OB,∴∠ABO=∠ABO=90°,∵∠ACB=∠OAB,∴△AOB∽△CAB,∴=,∴=,∴OC=6,即C的坐标是(﹣6,0),故选:B.10.(2分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④∠GAE=45°;⑤S△FGC=3.6.则正确结论的个数有()A.2 B.3 C.4 D.5【解答】解:∵正方形ABCD中,AB=6,∴AD=CD=BC=6,∵CD=3DE,∴CD=2,DE=4,∵△ADE沿AE对折至△AFE,∴AF=AD=6,ED=EF=2,∠AFE=∠D=90°,∴∠AFG=90°,在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL),所以①正确;∴BG=FG,设BG=x,则GF=x,CG=6﹣x,在Rt△CGE中,GE=GF+EF=x+2,CE=4,CG=x,∵CG2+CE2=GE2,∴x2+42=(x+2)2,解得x=3,∴BG=3,∴CG=BC﹣BG=3,∴BG=CG,所以②正确;∵GF=CG=3,∴∠GFC=∠GCF,而∠BGF=∠GFC+∠GCF,∴∠BGF=2∠GCF,∵Rt△ABG≌Rt△AFG,∴∠BGA=∠FGA,∴∠BGF=2∠BGA,∴∠BGA=∠GCF,∴AG∥CF,所以③正确;∵△ADE沿AE对折至△AFE,∴∠DAE=∠F AE,∵Rt△ABG≌Rt△AFG,∴∠BAG=∠F AG,∴∠EAF+∠GAF=(∠DAF+∠BAF)=×90°=45°,即∠GAE=45°,所以④正确;作FH⊥GC于H,如图,∴FH∥EC,∴△GFH∽△GEC,∴=,即=,解得FH=,∴S△GCF=×3×=3.6,所以⑤正确.故选:D.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)一元二次方程x2﹣4x=0的解是x1=0,x2=4.【解答】解:由原方程,得x(x﹣4)=0,解得x1=0,x2=4.故答案是:x1=0,x2=4.12.(2分)点(3,a)在反比例函数y=图象上,则a=2.【解答】解:∵点(3,a)在反比例函数y=图象上,∴a==2.故答案为:2.13.(2分)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若CD=2EF=4,BC=4,则∠C等于45°.【解答】解:连接BD,∵E、F分别是AB、AD的中点,∴BD=2EF,∵CD=2EF=4,∴DB=4,∵42+42=(4)2,∴∠CDB=90°,∴∠C=45°.14.(2分)已知关于x的方程的解是正数,则m的取值范围是m>﹣6且m≠﹣4.【解答】解:解关于x的方程得x=m+6,∵x﹣2≠0,解得x≠2,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.15.(2分)如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数y=(x>0)的图象上,则点C的坐标为(3,6).【解答】解:∵四边形ABCD是矩形,顶点A的坐标为(1,2),∴设B、D两点的坐标分别为(1,y)、(x,2),∵点B与点D在反比例函数y=(x>0)的图象上,∴y=6,x=3,∴点C的坐标为(3,6).故答案为:(3,6).16.(2分)某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线AC=20cm.【解答】解:∵等腰梯形的对角线相等,EF、HG、GF、EF均为梯形的中位线,∴EF=HG=GF=EF=A C.又∵EF+HG+GF+EF=40cm,即2AC=40cm,则AC=20cm.对角线AC=20cm.故答案为:20.17.(2分)如图,将一宽为1dm的矩形纸条沿BC折叠,若∠CAB=30°,则折叠后重叠部分的面积为1dm2.【解答】解:作CD⊥AB,∵CG∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BC A.∴AB=A C.又∵∠CAB=30°,∴在Rt△ADC中,AC=2CD=2dm,∴AB=2dm,S△ABC=AB×CD=1dm2.故答案为:1.18.(2分)如图,正方形CDEF内接于Rt△ABC,AE=1,BE=2,则正方形的面积是.【解答】解:∵根据题意,易得△ADE∽△EFB,∴BE:AE=BF:DE=EF:AD=2:1,∴2DE=BF,2AD=EF=DE,由勾股定理得,DE2+AD2=AE2,解得:DE=EF=,故正方形的面积是()2=,故答案为:.三、简答题(本大题共10小题,共64分,解答应写出必要的计算过程、推算步骤或文字说明)19.(4分)计算:(﹣)2+﹣2.【解答】解:原式=3+4﹣3=3+.20.(8分)解方程:(1)2x2﹣5x﹣3=0;(2)+=.【解答】解:(1)由原方程,得(x﹣3)(2x+1)=0,解得x1=3,x2=﹣;(2)去分母并整理,得3(x﹣1)+(x+1)=6解得x=2.经检验,x=2是原方程的根.所以原方程的解为x=2.21.(5分)先化简,再求值:÷(a﹣1+),其中a是方程x2﹣x=6的根.【解答】解:解方程x2﹣x=6得到:x1=3,x2=﹣2,因为a是方程x2﹣x=6的根,所以a=3或a=﹣2.÷(a﹣1+),=÷,=×,=.当a=3时,原式==.当a=﹣2时,原式==﹣.22.(6分)某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了部分学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为40%,其所在扇形统计图中对应的圆心角度数为144度.(2)请把条形统计图补充完整.(3)若该校有学生1200人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?【解答】解:(1)本次抽查的学生人数是:15÷30%=50(人);喜欢A:篮球的人数是:50﹣15﹣5﹣10=20(人),则最喜欢A项目的人数所占的百分比为×100%=40%,在扇形统计图中A项目对应的圆心角度数是360°×=144°;故答案为:40%、144;(2)补图如下:(3)根据题意得:1200×=120(人).答:全校最喜欢踢毽子的学生人数约是120人.23.(6分)阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.【解答】解:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.24.(6分)如图,在平面直角坐标系xOy中,一次函数y1=kx的图象与反比例函数y2=图象交于A、B两点.(1)根据图象,求一次函数和反比例函数解析式;(2)根据图象直接写出kx>的解集为x<﹣2或0<x<2;(3)若点P在y轴上,且满足以点A、B、P为顶点的三角形是直角三角形,试直接写出点P所有可能的坐标为(0,4)、(0,﹣4)、(0,2)、(0,﹣2).【解答】解:(1)把B(2,﹣2)代入y1=kx得k=﹣1,∴一次函数解析式为y1=﹣x;把B(2,﹣2)代入y2=得m=2×(﹣2)=﹣4,∴反比例函数解析式为y2=﹣;(2)把x=﹣2代入y2=﹣得y=2,∴A点坐标为(﹣2,2),∴当x<﹣2或0<x<2时,kx>;(3)设P点坐标为(0,t),而A(﹣2,2),B(2,﹣2),∴P A2=22+(t﹣2)2,PB2=22+(t+2)2,AB2=42+42=32,当∠APB=90°时,则P A2+PB2=AB2,即22+(t﹣2)2+22+(t+2)2=32,解得t=±2,此时P点坐标为(0,2)或(0,﹣2);当∠P AB=90°时,则P A2+AB2=PB2,即22+(t﹣2)2+32=22+(t+2)2,解得t=4,此时P点坐标为(0,4);当∠PBA=90°时,则PB2+AB2=P A2,即22+(t+2)2+32=22+(t﹣2)2,解得t=﹣4,此时P 点坐标为(0,﹣4);综上所述,P点坐标为(0,4)、(0,﹣4)、(0,2)、(0,﹣2).故答案为x<﹣2或0<x<2;(0,4)、(0,﹣4)、(0,2)、(0,﹣2).25.(6分)如图,在△ABC中,AB=12cm,BC=8cm,BD平分∠ABC交AC于点D,DE∥BC 交AB于点E.(1)求证:BE=ED;(2)求AE的长.【解答】证明:(1)∵BD平分∠ABC交AC于点D,∴∠ABD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴BE=ED;(2)∵DE∥BC,∴△AED∽△ABC,∴,设DE=xcm,则AE=12﹣x(cm),∴解得:x=4.8,∴AE=12﹣x=7.2.故AE的长是7.2cm.26.(7分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=D C.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.27.(8分)如图,在平面直角坐标系中,点A的坐标为(1,1),OA=OC,∠OAC=90°,点D为x轴上一动点,以AD为边在AD的右侧作正方形ADEF.(1)如图(1)当点D在线段OC上时(不与点O、C重合),则线段CF与OD之间的数量关系为相等;位置关系为垂直.(2)如图(2)当点D在线段OC的延长线上时,(1)中的结论是否成立?若成立,请说明理由;若不成立,请举一反例.【解答】解:(1)∵∠OAC=90°,∠DAF=90°∴∠OAC=∠DAF∴∠OAD=∠OAC﹣∠CAD=∠DAF﹣∠CAD=∠CAF在△OAD和△CAF中∴△OAD≌△CAF∴OD=CF,∠AOD=∠ACF∴∠OCF=∠OCA+∠ACF=∠OCA+∠AOC在Rt△OAC中∵∠OCA+∠AOC=90°∴∠OCF=90°∴OD⊥CF故答案:相等;垂直.(2)(1)中结论依然成立,即OD=CF,OD⊥CF∵∠OAC=90°,∠DAF=90°∴∠OAC=∠DAF∴∠OAD=∠OAC+∠CAD=∠DAF+∠CAD=∠CAF在△OAD和△CAF中∴△OAD≌△CAF∴OD=CF,∠AOD=∠ACF∴∠OCF=∠OCA+∠ACF=∠OCA+∠AOC在Rt△OAC中∵∠OCA+∠AOC=90°∴∠OCF=90°∴OD⊥CF28.(8分)如图,在平面直角坐标系中,直线y=﹣4与x轴交于点A,与y轴交于点B,点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从A出发沿AB以每秒1个单位长的速度向点B匀速运动,当点P、Q运动时,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q 同时出发,当点Q到达点B时停止运动,点P也随之停止,设点P、Q运动的时间为t秒(t>0).(1)点Q的坐标是(3﹣t,t)(用含t的代数式表示);(2)当点E在BO上时,四边形QBED能否为直角梯形?若能,求出t的值;若不能,请说明理由;(3)当t为何值时,直线DE经过点O.【解答】解:(1)过点Q作QF⊥OA于点F,∵直线y=﹣4与x轴交于点A,与y轴交于点B,∴点A(3,0),B(0,4),∴在Rt△AOB中,AB==5,∵OA⊥OB,∴QF∥OB,∴△AQF∽△ABO,∴,∵AQ=t,即,∴AF=t,QF=t,∴OF=OA﹣AF=3﹣t,∴点Q的坐标为:(3﹣t,t);故答案为:3﹣t,t;(2)四边形QBED能成为直角梯形.①当0<t<3时,∴AQ=OP=t,∴AP=3﹣t.如图2,当DE∥QB时,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABO,得.∴=.解得t=;如图3,当PQ∥BO时,∴DE⊥BO,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABO,得.即.解得t=;②当3<t<5时,AQ=t,AP=t﹣3,如图2,当DE∥QB时,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABO,得.∴=.解得t=﹣(舍去);如图3,当PQ∥BO时,∵DE⊥PQ,∴DE⊥BO,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABO,得.即.解得t=>5(舍去);综上所述:t=或;(3)当t=或时,DE经过点O.理由:①如图4,当DE经过点O时,∵DE垂直平分PQ,由于P与Q运动的时间和速度相同,∴AQ=EQ=EP=t,∴∠AEQ=∠EAQ,∵∠AEQ+∠BEQ=90°,∠EAQ+∠EBQ=90°,∴∠BEQ=∠EBQ,∴BQ=EQ,∴EQ=AQ=BQ=AB∴t=,②如图5,当P从A向O运动时,过点Q作QF⊥OB于F,∵EP=6﹣t,∴EQ=EP=6﹣t,∵AQ=t,BQ=5﹣t,sin∠ABO==,cos∠ABO==,∴FQ=(5﹣t)=3﹣t,BF=(5﹣t)=4﹣t,∴EF=4﹣BF=t,∵EF2+FQ2=EQ2,即(3﹣t)2+(t)2=(6﹣t)2,解得:t=.∴当DE经过点O时,t=或.第31 页共31 页。
苏教版2018-2019学年八年级(下)期末考试数学试卷一、选择题(每小题3分,共24分)1.若式子在实数范围内有意义,则a的取值范围是()A.a>3 B.a≥3C.a<3 D.a≤32.要反映一个家庭在教育方面支出占总收入的比,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图3.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大4.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,结果书法、绘画、舞蹈及其他的频数分别为8、11、12、9,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.35.反比例函数y=的图象经过点M(﹣1,2),则反比例函数的解析式为()A.y=﹣B.y=C.y=﹣D.y=6.根据分式的基本性质,分式可以变形为()A.B.C.﹣D.﹣7.若关于x的方程+=0有增根,则m的值是()A.﹣2 B.﹣3 C.5 D.38.如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.50°B.55°C.60°D.45°二、填空题(每小题4分,共40分)9.为了解淮安市八年级学生的身高情况,从中任意抽取2000名学生的身高进行统计,在这个问题中,样本容量是.10.小红说:“明天下雨”,你认为这是(填“随机事件”、“不可能事件”或“必然事件”).11.化简的结果为.12.化简+=.13.已知反比例函数y=,当1<x≤3时,则y的取值范围是.14.反比例函数在第一象限内的图象如图所示,点P是图象上的一点PQ⊥x轴,垂足为Q,△OPQ的面积为2,则k=.15.如图,点D、E是AB、AC边的中点,AH是△ABC的高,DE=a,AH=b,△ABC的面积为12,则a与b的函数关系式是:.16.已知四边形ABCD为平行四边形,要使得四边形ABCD为矩形,则可以添加一个条件为.17.如图,▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为.18.如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB 为边在第一象限作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是.三、解答题(共86分)19.计算:(1)+(2)(+)×(﹣)20.化简:(1)÷(2)(﹣)×.21.解方程:(1)+3=(2)﹣=1.22.请在方格内画出△ABC,使它的顶点都在格点上,且三边长1,,,①求△ABC的面积;②求出最长边上的高.23.某校九年级(1)班所有学生参加2019年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是,等级C对应的圆心角的度数为;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有人.24.如图1,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如表x(cm)10 15 20 25 30y(g)30 20 15 12 10(1)把表中(x,y)的各组对应值作为点的坐标,在图2的坐标系中描出相应的点,用平滑曲线连接这些点;(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式;(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少?25.果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?26.如图,在▱ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=C B.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.27.如图1,已知点A(﹣1,0),点B(0,﹣2),AD与y轴交于点E,且E为AD的中点,双曲线y=经过C,D两点且D(a,4)、C(2,b).(1)求a、b、k的值;(2)如图2,线段CD能通过旋转一定角度后点C、D的对应点C′、D′还能落在y=的图象上吗?如果能,写出你是如何旋转的,如果不能,请说明理由;(3)如图3,点P在双曲线y=上,点Q在y轴上,若以A、B、P、Q为顶点的四边形为平行四边形,试求满足要求的所有点P、Q的坐标.参考答案与试题解析一、选择题(每小题3分,共24分)1.若式子在实数范围内有意义,则a的取值范围是()A.a>3 B.a≥3C.a<3 D.a≤3【考点】72:二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,a﹣3≥0,解得a≥3.故选B.2.要反映一个家庭在教育方面支出占总收入的比,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图【考点】VE:统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:由统计图的特点,知要反映一个家庭在教育方面支出占总收入的比,宜采用扇形统计图.故选:B.3.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大【考点】X2:可能性的大小.【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:A、因为袋中扑克牌的花色不同,所以无法确定抽取的扑克牌的花色,故本选项错误;B、因为黑桃的数量最多,所以抽到黑桃的可能性更大,故本选项正确;C、因为黑桃和红桃的数量不同,所以抽到黑桃和抽到红桃的可能性不一样大,故本选项错误;D、因为红桃的数量小于黑桃,所以抽到红桃的可能性小,故本选项错误.故选B.4.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,结果书法、绘画、舞蹈及其他的频数分别为8、11、12、9,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.3【考点】V6:频数与频率.【分析】根据各小组频数之和等于数据总和.频率=,可得答案.【解答】解:∵书法兴趣小组的频数是8,∴频率是8÷40=0.2,故选:C.5.反比例函数y=的图象经过点M(﹣1,2),则反比例函数的解析式为()A.y=﹣B.y=C.y=﹣D.y=【考点】G7:待定系数法求反比例函数解析式;G6:反比例函数图象上点的坐标特征.【分析】首先把M点坐标代入y=,可得k的值,进而可得函数解析式.【解答】解:∵反比例函数y=的图象经过点M(﹣1,2),∴2=,k=﹣2,∴反比例函数的解析式为y=﹣,故选:C.6.根据分式的基本性质,分式可以变形为()A.B. C.﹣D.﹣【考点】65:分式的基本性质.【分析】根据分式的基本性质即可求出答案.【解答】解:原式==故选(A)7.若关于x的方程+=0有增根,则m的值是()A.﹣2 B.﹣3 C.5 D.3【考点】B5:分式方程的增根.【分析】根据分式方程增根的定义进行选择即可.【解答】解:∵关于x的方程+=0有增根,∴x﹣5=0,∴x=5,∴2﹣x+m=0,∴m=3,故选D.8.如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.50°B.55°C.60°D.45°【考点】L8:菱形的性质.【分析】首先延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而不难求得∠FPC的度数.【解答】解:延长PF交AB的延长线于点G.如图所示:在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG,∵PF=PG,∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=80°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE==50°,∴∠FPC=50°;故选:A.二、填空题(每小题4分,共40分)9.为了解淮安市八年级学生的身高情况,从中任意抽取2000名学生的身高进行统计,在这个问题中,样本容量是2000.【考点】V3:总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:从中任意抽取2000名学生的身高进行统计,在这个问题中,样本容量是2000,故答案为:2000.10.小红说:“明天下雨”,你认为这是随机事件(填“随机事件”、“不可能事件”或“必然事件”).【考点】X1:随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:小红说:“明天下雨”,你认为这是随机事件,故答案为:随机事件.11.化简的结果为3.【考点】73:二次根式的性质与化简.【分析】根据二次根式的性质即可求出答案.【解答】解:原式=3故答案为:312.化简+=﹣1.【考点】6B:分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣==﹣1,故答案为:﹣113.已知反比例函数y=,当1<x≤3时,则y的取值范围是≤y<1.【考点】G4:反比例函数的性质.【分析】利用反比例函数的增减性即可求得答案.【解答】解:∵y=,∴当x>0时,y随x的增大而减小,当x=1时,y=2,当x=3时,y=,∴当1<x≤3时,≤y<1,故答案为:≤y<1.14.反比例函数在第一象限内的图象如图所示,点P是图象上的一点PQ⊥x轴,垂足为Q,△OPQ的面积为2,则k=4.【考点】G5:反比例函数系数k的几何意义;G2:反比例函数的图象;G6:反比例函数图象上点的坐标特征.【分析】先设反比例函数的解析式为y=(k≠0),根据△POQ的面积为2,得出|k|=2,k=±4,再根据反比例函数y=在第一象限内,即可求出k.【解答】解:设反比例函数的解析式为y=(k≠0),∵△POQ的面积为2,∴|k|=2,|k|=2,k=±4,∵反比例函数y=在第一象限内,∴k=4;故答案为4.15.如图,点D、E是AB、AC边的中点,AH是△ABC的高,DE=a,AH=b,△ABC的面积为12,则a与b的函数关系式是:ab=12.【考点】KX:三角形中位线定理.【分析】利用三角形的中位线定理求出BC,根据三角形的面积公式列出等式即可解决问题.【解答】解:∵AD=DB,AE=EC,∴BC=2DE=2a,∵S△ABC=12,AH⊥BC,∴•2a•b=12,∴ab=12.故答案为ab=12.16.已知四边形ABCD为平行四边形,要使得四边形ABCD为矩形,则可以添加一个条件为∠BAD=90°.【考点】LC:矩形的判定;L5:平行四边形的性质.【分析】根据矩形的判定方法:已知平行四边形,再加一个角是直角填空即可.【解答】解:∵四边形ABCD是平行四边形,∠BAD=90°,∴四边形ABCD是矩形,故答案为:∠BAD=90°(答案不唯一).17.如图,▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为8.【考点】L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO==4,∴AE=2AO=8.故答案为:8.18.如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB 为边在第一象限作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度后,点C 恰好落在双曲线在第一象限的分支上,则a的值是3.【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征;G4:反比例函数的性质;LE:正方形的性质;Q3:坐标与图形变化﹣平移.【分析】如图作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,CN交反比例函数于H,利用三角形全等,求出点C、点H坐标即可解决问题.【解答】解:如图,作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,CN交反比例函数于H.∵直线y=﹣4x+4与x轴、y轴分别交于A、B两点,∴点B(0,4),点A(1,0),∵四边形ABCD是正方形,∴AB=AD=DC=BC,∠BAD=90°,∵∠BAO+∠ABO=90°,∠BAO+∠DAM=90°,∴∠ABO=∠DAM,在△ABO和△DAM中,,∴△ABO≌△DAM,∴AM=BO=4,DM=AO=1,同理可以得到:CF=BN=AO=1,DF=CN=BO=4,∴点F(5,5),C(4,1),D(5,1),设点D在双曲线y=(k≠0)上,则k=5,∴反比例函数为y=,∴直线CN与反比例函数图象的交点H坐标为(1,5),∴正方形沿x轴负方向平移a个单位长度后,顶点C恰好落在双曲线y=上时,a=4﹣1=3,故答案为3.三、解答题(共86分)19.计算:(1)+(2)(+)×(﹣)【考点】79:二次根式的混合运算.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算.【解答】解:(1)原式=2+=;(2)原式=3﹣2=1.20.化简:(1)÷(2)(﹣)×.【考点】6C:分式的混合运算.【分析】(1)原式利用除法法则变形,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:(1)原式=÷=•=;(2)原式=[﹣]•=﹣•=﹣=.21.解方程:(1)+3=(2)﹣=1.【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)+3=,方程两边同乘以(x﹣2),得:1+3(x﹣2)=x﹣1,去括号得:1+3x﹣6=x﹣1,称项得:3x﹣x=﹣1﹣1+6,合并同类项得:2x=4,系数化为1得:x=2,经检验:x=2不是原方程的解,原方程无解;(2)﹣=1,方程两边同乘以(x﹣1)(x+1),得:(x+1)2﹣2=x2﹣1,去括号得:x2+2x+1﹣2=x2﹣1,称项得:2x=﹣1﹣1+2,合并同类项得:2x=0,系数化为1得:x=0,经检验:x=0是原方程的解,∴原方程的解为:x=0.22.请在方格内画出△ABC,使它的顶点都在格点上,且三边长1,,,①求△ABC的面积;②求出最长边上的高.【考点】N4:作图—应用与设计作图;KQ:勾股定理.【分析】①所作△ABC如图所示,延长BA,过点C作CP⊥AP交BA延长线于点P,根据三角形的面积公式求解可得;②作AH⊥BC,由S△ABC=BC•AH=且BC=可得AH的长.【解答】解:①如图所示,△ABC即为所求,其中AB=1、AC=、BC=,延长BA,过点C作CP⊥AP交BA延长线于点P,S△ABC=×AB×CP=×1×1=;②如图,过点A作AH⊥BC于点H,∵S△ABC=BC•AH=,且BC=,∴AH=,∴最长边上的高为.23.某校九年级(1)班所有学生参加2019年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有50人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是40%,等级C对应的圆心角的度数为72°;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有595人.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由A等的人数和比例,根据总数=某等人数÷所占的比例计算;(2)根据“总数=某等人数÷所占的比例”计算出D等的人数,总数﹣其它等的人数=C等的人数;(3)由总数=某等人数÷所占的比例计算出B等的比例,由总比例为1计算出C等的比例,对应的圆心角=360°×比例;(4)用样本估计总体.【解答】(1)总人数=A等人数÷A等的比例=15÷30%=50人;(2)D等的人数=总人数×D等比例=50×10%=5人,C等人数=50﹣20﹣15﹣5=10人,如图:(3)B等的比例=20÷50=40%,C等的比例=1﹣40%﹣10%﹣30%=20%,C等的圆心角=360°×20%=72°;(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(15+20)÷50×850=595人.24.如图1,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如表x(cm)10 15 20 25 30y(g)30 20 15 12 10(1)把表中(x,y)的各组对应值作为点的坐标,在图2的坐标系中描出相应的点,用平滑曲线连接这些点;(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式;(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少?【考点】GA:反比例函数的应用.【分析】(1)根据各点在坐标系中分别描出即可得出平滑曲线;(2)观察可得:x,y的乘积为定值300,故y与x之间的函数关系为反比例函数,将数据代入用待定系数法可得反比例函数的关系式;(3)把y=24代入解析式求解,可得答案.【解答】解:(1)如图所示:(2)由图象猜测y与x之间的函数关系为反比例函数,∴设y=(k≠0),把x=10,y=30代入得:k=300,∴y=,将其余各点代入验证均适合,∴y与x的函数关系式为:y=;(3)把y=24代入y=得:x=12.5,∴当砝码的质量为24g时,活动托盘B与点O的距离是12.5cm.25.果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?【考点】B7:分式方程的应用.【分析】第一次该种水果的进价是每千克x元,第二次该种水果的进价是每千克1.2x元.根据用660元所购买的数量比第一次多10千克,列出方程即可解决问题.【解答】解:第一次该种水果的进价是每千克x元,第二次该种水果的进价是每千克1.2x 元.由题意:﹣=10,解方程得到:x=5,经检验:x=5是用方程的解,且符合题意.答:第一次该种水果的进价是每千克5元26.如图,在▱ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=C B.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【考点】L7:平行四边形的判定与性质;KD:全等三角形的判定与性质.【分析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=A B.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CF B.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FC B.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.27.如图1,已知点A(﹣1,0),点B(0,﹣2),AD与y轴交于点E,且E为AD的中点,双曲线y=经过C,D两点且D(a,4)、C(2,b).(1)求a、b、k的值;(2)如图2,线段CD能通过旋转一定角度后点C、D的对应点C′、D′还能落在y=的图象上吗?如果能,写出你是如何旋转的,如果不能,请说明理由;(3)如图3,点P在双曲线y=上,点Q在y轴上,若以A、B、P、Q为顶点的四边形为平行四边形,试求满足要求的所有点P、Q的坐标.【考点】GB:反比例函数综合题.【分析】(1)如图1,过点D做DP⊥y轴于点P,由△PDE≌△OAE(ASA),PD=OA,求出点D坐标,即可解决问题;(2)能,点C、D绕点O顺时针旋转180度时,点C′、D′落在y=图象上.或点C、D关于原点中心对称的点在图象上;(3)分两种情形分别求解①当AB为边时,如图1中,若四边形ABPQ为平行四边形,则=0;如图2中,若四边形ABQP是平行四边形时,AP=BQ,且AP∥BQ,求点P坐标,即可解决问题;②如图3中,当AB为对角线时,AP=BQ,AP∥BQ,求出点P坐标,即可解决问题.【解答】解:(1)如图1,过点D做DP⊥y轴于点P,∵点E为AD的中点,∴AE=DE.又∵DP⊥y轴,∠AOE=90°,∴∠DPE=∠AEO.∵在△PDE与△OAE中,,∴△PDE≌△OAE(ASA),∴PD=OA,∵A(﹣1,0),∴PD=1,∴D(1,4).∵点D在反比例函数图象上,∴k=xy=1×4=4.∵点C在反比例函数图象上,C的坐标为(2,b),∴b==2,∴a=1,k=4,b=2;(2)能,点C、D绕点O顺时针旋转180度时,点C′、D′落在y=图象上.或点C、D关于原点中心对称的点在图象上;(3)∵由(1)可知k=4,∴反比例函数的解析式为y=,∵点P在y=上,点Q在y轴上,∴设Q(0,y),P(x,).①当AB为边时,如图1中,若四边形ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6).如图2中,若四边形ABQP是平行四边形时,AP=BQ,且AP∥BQ,此时P2(﹣1,﹣4),Q2(0,﹣6).②如图3中,当AB为对角线时,AP=BQ,AP∥BQ,此时P3(﹣1,﹣4),Q3(0,2),综上所述,满足条件的P、Q坐标分别为P1(1,4),Q1(0,6);P2(﹣1,﹣4),Q2(0,﹣6);P3(﹣1,﹣4),Q3(0,2).。
2018-2019学年第二学期期终教学质量调研测试初二 数学(试卷满分130分,考试时间120分钟)一. 选择题(本大题共10小题,每小题3分,共30分,请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.用放大镜观察一个三角形时,不变的是量是A.各条边的长度B.各个角的度数C.三角形的面积D.三角形的周长2.已知反比例函数ky x=的图像经过点(-1,2),则这个函数的图像一定经过点A.(1,2)B.(2,1)C.(-1,-2)D.(-2,1) 3.下列计算正确的是A.2= B.0= C.4= D. 3=-4.下列各分式不能再化简的是A. 22x - B. 11m m -- C. 2xy y xy - D. 22a b a b -- 5.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是 A .()()()P C P A P B << B .()()()P B P C P A << C .()()()P C P B P A <<D .()()()P B P A P C <<6.如图,点P 在直线外,以点P 为圆心,大于点P 到直线的举例为半径画圆弧,交直线于点A 、B ;保持半径不变,分别以点A 、B 为圆心画弧,两 弧交于点Q ,则PQ ⊥.上述尺规作图的依据是 A .平行四边形的对边互相平行B .垂直平分线上的点到线段两个端点的举例相等C .矩形的领边互相垂直D .菱形的对角线互相垂直7.若1,1()A x y ,2,2()B x y 是函数1y x=-图像上的两个点,且12x x <,则12y y 与的大小关系是A .12y >yB .12y =yC .12y <yD .不能确定8. 如图,点小明在做选择题“如图,四边形ABCD 中, ∠A=45°,∠B=∠D=90°,AD=2,CD=1,则BC 的长为 多少”时遇到了困难.小明通过测量发现,试题给出的 图形中,AD=3cm,BC ≈1.05cm,且各角度符合条件,因 此小明猜想下列选项中最可能正确的是A .2B 1CD 19.如图,已知一次函数的图像与两坐标轴分别交于A 、B ,点C 在x 轴上,AC=4,第一象限内有一个点P ,且PC ⊥x 轴于点C ,若以点P 、A 、C 为顶点的三角形与△OAB 相似,则点P的坐标为 A .(4,8) B .(4,8)或(4,2) C .(6,8) D .(6,8)和(6,-2)10.如图,直线l 为正比例函数y x =的图像,过点A(0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ,过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ……;按此作法继续下去,则点n B 的坐标是A .4,4)n nB .-1-14,4)n nC .-14,4)n nD .14,4)n n -二.填空题(本大题共8小题,每小题3分,共24分)11.函数y =x 的取值范围是____________12. 如图,将一个正方形地面等分成9块,其中标有1、2、3、4四 个小方格是空地,另外五个小方格是草坪。
八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中,属于最简二次根式的是()A. √5B. √12C. √0.2D. √27【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、√12=12√2,不是最简二次根式,故本选项不符合题意;C、√0.2=√14=15√5,不是最简二次根式,故本选项不符合题意;D、√27=3√3,不是最简二次根式,故本选项不符合题意;故选:A.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.2.下列各组线段a、b、c中,能组成直角三角形的是()A. a=4,b=5,c=6B. a=1,b=√3,c=2C. a=1,b=1,c=3D. a=5,b=12,c=12【答案】B【解析】解:A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+√32=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列各式中,y不是x的函数的是()A. y=|x|B. y=xC. y=−x+1D. y=±x【答案】D【解析】解:A、y=|x|对于x的每一个取值,y都有唯一确定的值,故A错误;B、y=x对于x的每一个取值,y都有唯一确定的值,故B错误;C、y=−x+1对于x的每一个取值,y都有唯一确定的值,故C错误;D、y=±x对于x的每一个取值,y都有两个值,故D正确;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.用配方法解方程x2−4x−2=0变形后为()A. (x−2)2=6B. (x−4)2=6C. (x−2)2=2D. (x+2)2=6【答案】A【解析】解:把方程x2−4x−2=0的常数项移到等号的右边,得到x2−4x=2方程两边同时加上一次项系数一半的平方,得到x2−4x+4=2+4配方得(x−2)2=6.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.一次函数y=x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.根据k,b的符号确定一次函数y=x+2的图象经过的象限.本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1.6.一元二次方程x2−8x+20=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 只有一个实数根D. 有两个不相等的实数根【答案】A【解析】解:∵△=(−8)2−4×20×1=−16<0,∴方程没有实数根.故选:A.先计算出△,然后根据判别式的意义求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A. y1>y2B. y1<y2C. y1=y2D. 不能确定【答案】A【解析】解:∵一次函数y=kx中,k<0,∴函数图象经过二、四象限,且y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.先根据题意判断出一次函数的增减性,再根据x1<x2即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 48【答案】C【解析】解:∵菱形的两条对角线的长分别是6和8, ∴这个菱形的面积是:12×6×8=24.故选:C .由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案. 此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.9. 已知一次函数y =kx +b 的图象如图所示,当x <2时,y 的取值范围是( )A. y <−4B. −4<y <0C. y <2D. y <0 【答案】D【解析】解:将(2,0)、(0,−4)代入y =kx +b 中, 得:{−4=b 0=2k+b,解得:{b =−4k=2,∴一次函数解析式为y =2x −4. ∵k =2>0,∴该函数y 值随x 值增加而增加, ∴y <2×2−4=0. 故选:D .由函数图象找出点的坐标,利用待定系数法即可求出函数解析式,再根据函数的性质找出函数的单调性,代入x <2即可得出结论.本题考查了待定系数法求出函数解析式以及一次函数的性质,解题的关键是找出该一次函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.10. 如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点.若AB =8,OM =3,则线段OB 的长为( ) A. 5 B. 6 C. 8 D. 10 【答案】A 【解析】解:∵四边形ABCD 是矩形, ∴∠D =90∘,∵O 是矩形ABCD 的对角线AC 的中点,OM//AB , ∴OM 是△ADC 的中位线, ∵OM =3, ∴AD =6,∵CD =AB =8,∴AC =√AD 2+CD 2=10, ∴BO =12AC =5.故选:A .已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.11. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( ) A. 5元 B. 10元 C. 20元 D. 10元或20元 【答案】C【解析】解:设每件衬衫应降价x 元,则每天可销售(20+2x)件, 根据题意得:(40−x)(20+2x)=1200, 解得:x 1=10,x 2=20. ∵扩大销售,减少库存, ∴x =20. 故选:C .设每件衬衫应降价x 元,则每天可销售(20+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y =x +3与x 轴、y 轴分别交于点E ,F.将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ) A. 3 B. 4 C. 5 D. 6 【答案】C【解析】解:∵菱形ABCD 的顶点A(2,0),点B(1,0), ∴点D 的坐标为(4,1), 当y =1时,x +3=1, 解得x =−2,∴点D 向左移动2+4=6时,点D 在EF 上, ∵点D 落在△EOF 的内部时(不包括三角形的边), ∴4<m <6,∴m 的值可能是5. 故选:C .根据菱形的对角线互相垂直平分表示出点D 的坐标,再根据直线解析式求出点D 移动到MN 上时的x 的值,从而得到m 的取值范围,再根据各选项数据选择即可.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m 的取值范围是解题的关键.二、填空题(本大题共6小题,共18.0分)13. 若√x −2在实数范围内有意义,则x 的取值范围为______. 【答案】x ≥2【解析】解:由题意得:x −2≥0, 解得:x ≥2, 故答案为:x ≥2.根据二次根式有意义的条件可得x−2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.将直线y=−2x+4向下平移5个单位长度,平移后直线的解析式为______.【答案】y=−2x−1【解析】解:直线y=−2x+4向下平移5个单位长度后:y=−2x+4−5,即y=−2x−1.故答案为:y=−2x−1.直接根据“上加下减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.15.已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为______.【答案】1【解析】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32−3k−6=0,解此方程得到k=1.本题根据一元二次方程的根的定义、一元二次方程的定义求解.本题逆用一元二次方程解的定义易得出k的值.16.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是______元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式______.【答案】8;y=2x+2【解析】解:(Ⅰ)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;故答案为:8;(Ⅱ)依题意设y与x的函数关系为y=kx+b,∵x=3时,y=8,x=8时,y=18;∴{8k+b=183k+b=8,解得{b=2k=2;所以所求函数关系式为:y=2x+2(x>3).故答案为:y=2x+2.(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,(Ⅱ)利用待定系数法求出一次函数解析式即可.此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为______.【答案】∠ACB=90∘【解析】解:∠ACB=90∘时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE =12BC ,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D、E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90∘,∴∠AED=90∘,∴矩形ADCF是正方形.故答案为:∠ACB=90∘.先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90∘得出答案即可.本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理、正方形的判定;熟记对角线相等的平行四边形是矩形是解决问题的关键.18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为______(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45∘,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.【答案】90【解析】解:(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90∘故答案为90;(Ⅱ)构造正方形BCDE,∠AEC即为所求;(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可;本题考查作图−应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题,属于中考常考题型.三、计算题(本大题共2小题,共12.0分)19.计算下列各题:(Ⅰ)√12+3√2×√6;(Ⅱ)(√5+√2)(√5−√2)−(√3+√2)2.【答案】解:(Ⅰ)原式=2√3+3√3=5√3;(Ⅱ)原式=(√5)2−(√2)2−(5+2√6)=5−2−5−2√6=−2−2√6.【解析】(Ⅰ)先化简二次根式、计算乘法,再合并同类二次根式即可得;(Ⅱ)先利用平方差公式和完全平方公式计算,再去括号、合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.(Ⅰ)根据题意,填写下表:购买A种奖品的数量/件 3070 x购买A种奖品的费用/元 300______ ______购买B种奖品的费用/元______ 450______(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?【答案】700;10x;1050;1500−15x【解析】解:(Ⅰ)由题意可得,当购买A种奖品30件时,购买A种奖品的费用是30×10=300(元),购买B种奖品的费用是15×(100−30)=1050(元),当购买A种奖品70件时,购买A种奖品的费用是70×10=700(元),购买B种奖品的费用是15×(100−70)=450(元),当购买A种奖品x件时,购买A种奖品的费用是30x(元),购买B种奖品的费用是15×(100−x)=(1500−15x)(元),故答案为:700、10x、1050、1500−15x;(Ⅱ)由题意可得,y=10x+15(100−x)=−5x+1500,即总费用y与购买A种奖品的数量x的函数解析式是y=−5x+1500;(Ⅲ)∵购买的A种奖品的数量不大于B种奖品的3倍,∴x≤3(100−x),解得,x≤75,∵y=−5x+1500,∴当x=75时,y取得最小值,此时y=−5×75+1500=1125,100−x=25,答:购买的A种奖品75件,B种奖品25件时,所需的总费用最少,最少费用是1125元.(Ⅰ)根据题意和表格中的数据可以将表格中缺失的数据补充完整;(Ⅱ)根据题意可以写出y与x的函数关系式;(Ⅲ)根据题意可以列出相应的不等式,求出x的取值范围,再根据一次函数的性质即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.四、解答题(本大题共5小题,共40.0分)21.解下列方程:(Ⅰ)x2+3=2√3x(Ⅱ)x(x−2)+x−2=0.【答案】解:(I)移项得:x2−2√3x+3=0,配方得:(x−√3)2=0,开方得:x−√3=0,即x1=x2=√3;(II)x(x−2)+x−2=0,(x−2)(x+1)=0,x−2=0,x+1=0,x1=2,x2=−1.【解析】(I)移项,配方,开方,即可求出答案;(II)先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元一次方程,能选择适当的方法解一元二次方程是解此题的关键.22.如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=______;(Ⅱ)CD的长=______;(Ⅲ)求CM的长.【答案】5;1【解析】解:(Ⅰ)∵∠ACB=90∘,BC=3,AC=4∴AB=5(Ⅱ)∵折叠∴AB=AD=5且AC=4∴CD=1(Ⅲ)连接DM∵折叠∴BM=DM在Rt△CDM中,DM2=CD2+CM2∴(3−CM)2=1+CM2∴CM =4 3(Ⅰ)由勾股定理可得AB的长.(Ⅱ)由折叠可得AD=AB,即可求CD的长.(Ⅲ)在直角三角形CDM中,根据勾股定理可得方程,可求出CM的长.本题考查了折叠问题,勾股定理的运用,关键是灵活运用折叠的性质解决问题.23.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90∘,且四边形AECF是边长为6的菱形,求BE的长.【答案】解:(I)证明:∵四边形ABCD是平行四边形,∴AD//BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90∘,∴∠2+∠3=90∘∠1+∠B=90∘,∴∠3=∠B,∴AE=BE,∵AE=6,∴BE=6.【解析】(I)根据平行四边形的性质得出AD//BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=6,AE=EC,求出AE=BE即可.本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,在Rt△ABC中,∠ABC=90∘,∠C=30∘,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.【答案】解:(I)由题意得,AE=t,CD=2t,则AD=AC−CD=12−2t,∵DF⊥BC,∠C=30∘,∴DF=12CD=t;(Ⅱ)∵∠ABC=90∘,DF⊥BC,∴AB//DF,∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(Ⅲ)当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90∘,∠C=30∘,∴BC=12AC=6cm,∵BE//DF,∴BE=DF时,四边形EBFD是平行四边形,即6−t=t,解得,t=3,∵∠ABC=90∘,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【解析】(I)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(Ⅱ)根据对边平行且相等的四边形是平行四边形证明;(Ⅲ)根据矩形的定义列出方程,解方程即可.本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.25.在平面直角坐标系中,直线l1:y=−12x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q 为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】解:(Ⅰ)对于直线:y =−12x +4,令x =0,得到y =4, ∴B(0,4),由{y =x y =−12x +4,解得{x =83y =83,∴C(83,83).(Ⅱ)∵点D 在直线y =x 上,设D(m,m), ∵△BOD 的面积为4, ∴12×4×m =4,解得m =2, ∴D(2,2).设直线BD 的解析式为y =kx +b ,则有{2k +b =2b=4, 解得{b =4k=−1,∴直线BD 的解析式为y =−x +4.(Ⅲ)如图②中,①当OB 为菱形的边时,OB =PB =4,可得P(2√2,4−2√2),Q(2√2,−2√2). ②当P′B 为菱形的对角线时,四边形OBQ′P′是正方形,此时Q(4,4).③当OB 为菱形的边时,点P″与D 重合,P 、Q 关于y 轴对称,Q″(−2,2), 综上所述,满足条件的Q 的坐标为(2√2,−2√2)或(−2,2)或(4,4).【解析】(Ⅰ)利用待定系数法求出点B 坐标,利用方程组求出点C 坐标即可;(Ⅱ)设D(m,m),构建方程求出m 即可解决问题,再利用待定系数法求出直线的解析式; (Ⅲ)分三种情形分别求解即可解决问题;本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。
2018-2019学年江苏省苏州市高新区八年级(下)期末数学试卷一、选择题:(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡相应的位置上.)1.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(2分)下列调查方式中适合的是()A.要了解一批节能灯的使用寿命,采用普查方式B.调查你所在班级同学的身高,采用抽样调查方式C.环保部门调查沱江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用普查方式3.(2分)某校艺术节的乒乓球比赛中,小东同学顺利进入决赛.有同学预测“小东夺冠的可能性是80%”,则对该同学的说法理解最合理的是()A.小东夺冠的可能性较大B.如果小东和他的对手比赛10局,他一定会赢8局C.小东夺冠的可能性较小D.小东肯定会赢4.(2分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则两次降价的平均百分率为()A.10%B.15%C.20%D.25%5.(2分)若﹣1是关于x的方程nx2+mx+2=0(n≠0)的一个根,则m﹣n的值为()A.1B.2C.﹣1D.﹣26.(2分)函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A.B.C.D.7.(2分)如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm8.(2分)如图,有一个平行四边形ABCD和一个正方形CEFG,其中点E在边AD上.若∠ECD =40°,∠AEF=25°,则∠B的度数为()A.55°B.60°C.65°D.75°9.(2分)若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数(k为常数)的图象上,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y110.(2分)如图,在平行四边形ABCD中,AB=26,AD=6,将平行四边形ABCD绕点A旋转,当点D的对应点D'落在AB边上时,点C的对应点C',恰好与点B、C在同一直线上,则此时△C'D'B的面积为()A.240B.260C.320D.480二、填空题:(本大题共8小题,每小题2分,共16分,把答案直接填写在答题卡相应位置上.)11.(2分)若二次根式有意义,则x的取值范围为.12.(2分)一次跳远比赛中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有人.13.(2分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是.14.(2分)如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC=.15.(2分)如图,直线y=﹣2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y=在第一象限经过点D.则k=.16.(2分)如图,△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F.AB=24,EF=18,则DF的长是.17.(2分)如图,正方形ABCD的边长为5cm,E是AD边上一点,AE=3cm.动点P由点D向点C运动,速度为2cm/s,EP的垂直平分线交AB于M,交CD于N.设运动时间为t秒,当PM∥BC时,t的值为.18.(2分)如图,在菱形ABCD中,∠ABC=120°,AB=6,点E在AC上,以AD为对角线的所有平行四边形AEDF中,EF最小的值是.三、解答题:(本大题共10小题,共64分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(6分)计算或化简(1)(2)20.(6分)解下列方程:(1)x2﹣6x+8=0(2)21.(4分)化简并求值:,其中a=.22.(6分)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B中心对称的△A1BC1,并直接写出点C1的坐标.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧画出△ABC放大后的△A2B2C2,并直接写出点C2的坐标.23.(6分)昆明市某校学生会干部对校学生会倡导的“牵手滇西”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).已知A、B两组捐款人数的比为1:5.请结合以上信息解答下列问题.(1)a=,本次调查样本的容量是;(2)先求出C组的人数,再补全“捐款人数分组统计图1”;(3)根据统计情况,估计该校参加捐款的4500名学生有多少人捐款在20至40元之间.24.(6分)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)△BEC是否为等腰三角形?为什么?(2)已知AB=1,∠ABE=45°,求BC的长.25.(6分)某旅游纪念品店购进一批旅游纪念品,进价为6元.第一周以每个10元的价格售出200个、第二周决定降价销售,根据市场调研,单价每降低1元,一周可比原来多售出50个,这两周一共获利1400元.(1)设第二周每个纪念品降价x元销售,则第二周售出个纪念品(用含x代数式表示);(2)求第二周每个纪念品的售价是多少元?26.(6分)已知:如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.直线PE从B点出发,以2cm/s的速度向点A方向运动,并始终与BC平行,与线段AC交于点E.同时,点F从C点出发,以1cm/s的速度沿CB向点B运动,设运动时间为t(s)(0<t<5).(1)当t为何值时,四边形PFCE是矩形?(2)当△ABC面积是△PEF的面积的5倍时,求出t的值.27.(8分)如图,点P为x轴负半轴上的一个点,过点P作x轴的垂线,交函数的图象于点A,交函数的图象于点B,过点B作x轴的平行线,交于点C,连接AC.(1)当点P的坐标为(﹣1,0)时,求△ABC的面积;(2)若AB=BC,求点A的坐标;(3)连接OA和OC.当点P的坐标为(t,0)时,△OAC的面积是否随t的值的变化而变化?请说明理由.28.(10分)如图,矩形OABC的两条边OA、OC分别在y轴和x轴上,已知点B坐标为(4,﹣3).把矩形OABC沿直线DE折叠,使点C落在点A处,直线DE与OC、AC、AB的交点分别为D、F、E.(1)线段AC=;(2)求点D坐标及折痕DE的长;(3)若点P在x轴上,在平面内是否存在点Q,使以P、D、E、Q为顶点的四边形是菱形?若存在,则请求出点Q的坐标;若不存在,请说明理由.2018-2019学年江苏省苏州市高新区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡相应的位置上.)1.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.2.【解答】解:A、了解一批节能灯的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批节能灯全部用于实验;B、调查你所在班级同学的身高,要求精确、难度相对不大、实验无破坏性,应选择普查方式;C、了解环保部门调查沱江某段水域的水质情况,会给调查对象带来损伤破坏,应该选取抽样调查的方式才合适;D、调查全市中学生每天的就寝时间,进行一次全面的调查,费大量的人力物力是得不偿失的,采取抽样调查即可;故选:C.3.【解答】解:根据题意,有人预测李东夺冠的可能性是80%,结合概率的意义,A、李东夺冠的可能性较大,故本选项正确;B、李东和他的对手比赛10局时,他可能赢8局,故本选项错误;C、李东夺冠的可能性较大,故本选项错误;D、李东可能会赢,故本选项错误.故选:A.4.【解答】解:设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x)2=80,解得x1=0.2=20%,x2=﹣1.8(不合题意,舍去);答:平均每次降价的百分率是20%.故选:C.5.【解答】解:由题意,得x=﹣1满足方程nx2+mx+2=0(n≠0),所以,n﹣m+2=0,解得,m﹣n=2.故选:B.6.【解答】解:∵当k>0时,y=kx﹣3过一、三、四象限,反比例函数y=过一、三象限,当k<0时,y=kx﹣3过二、三、四象限,反比例函数y=过二、四象限,∴B正确;故选:B.7.【解答】解:根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC﹣EC=8﹣6=2.故选:A.8.【解答】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣25°﹣90°=65°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣65°﹣40°=75°,∵四边形ABCD为平行四边形,∴∠B=∠D=75°(平行四边形对角相等).故选:D.9.【解答】解:∵k2+3>0,∴反比函数在每个象限内,y随x的增大而减小,A(﹣2,y1)、B(﹣1,y2)在第三象限内,∵﹣1>﹣2,∴y1>y2,∴y3>y1>y2,故选:C.10.【解答】解:∵▱ABCD绕点A旋转后得到▱AB′C′D′,∴∠DAB=∠D′AB′,AB=AB′=C′D′=26,∵AB′∥C′D′,∴∠D′AB′=∠BD′C′,∵四边形ABCD为平行四边形,∴∠C=∠DAB,∴∠C=∠BD′C′,∵点C′、B、C在一直线上,而AB∥CD,∴∠C=∠C′BD′,∴∠C′BD′=∠BD′C′,∴△C′BD′为等腰三角形,作C′H⊥D′B,则BH=D′H,∵AB=26,AD=6,∴BD′=20,∴D′H=10,∴C′H=,∴△C′D′B的面积=BD′•C′H=×20×24=240.故选:A.二、填空题:(本大题共8小题,每小题2分,共16分,把答案直接填写在答题卡相应位置上.)11.【解答】解:根据题意得,x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.12.【解答】解:∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故答案为:20.13.【解答】解:∵α,β是一元二次方程x2+x﹣2=0的两个实数根,∴α+β=﹣1、αβ=﹣2,则α+β﹣αβ=﹣1+2=1,故答案为:1.14.【解答】解:∵:l1∥l2∥l3,∴=,∵AB=6,DE=5,EF=7.5,∴BC=9,∴AC=AB+BC=15,故答案为:15.15.【解答】解:作DE⊥x轴,垂足为E,连OD.∵∠DAE+∠BAO=90°,∠OBA+∠BAO=90°,∴∠DAE=∠OBA,又∵∠BOA=∠AED,AB=DA,∴△BOA≌△AED(HL),∴OA=DE.∵y=﹣2x+2,可知B(0,2),A(1,0),∴OA=DE=1,∴OE=OA+AE=1+2=3,=•OE•DE=×3×1=,∴S△DOE∴k=×2=3.故答案为:3.16.【解答】解:作CM ⊥AB 交EF 于N ,垂足为M .∵EF ∥AB ,∴△CEF ∽△CBA ,∴===,设CN =3h ,CM =4h ,则MN =h ,∵S △ABC =S △CED ,∴S 四边形ABEF =S △DFC ,∴(AB +EF )•MN =•DF •CN ,∴(18+24)•h =•DF •3h ,∴DF =14,故答案为:14.17.【解答】解:如图,连接ME ,∵MN 垂直平分PE ,∴MP =ME ,当MP ∥BC 时,四边形BCPM 是矩形,∴BC =MP =5,∴ME =5,又∵AE =3,∴AM =4=DP ,∴t=4÷2=2(s),故答案为:2.18.【解答】解:∵在菱形ABCD中,∠ABC=120°,AB=6,∴AD=6,∠EAD=30°,以AD为对角线的所有▱AEDF中,当EF⊥AC时,EF最小,即△AOE是直角三角形,∵∠AEO=90°,∠EAD=30°,OE=OA=,∴EF=2OE=3,故答案为:3.三、解答题:(本大题共10小题,共64分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.【解答】解:(1)原式=2+3﹣3﹣4=﹣﹣;(2)原式=+1﹣1﹣=﹣.20.【解答】解:(1)(x﹣2)(x﹣4)=0,x﹣2=0或x﹣4=0,所以x1=2,x2=4;(2)去分母得x+3=3x﹣3,解得x=3,检验:当x=3时,x﹣1≠0,则x=3是原方程的解,所以原方程的解为x=3.21.【解答】解:原式===当a=时,∴原式==1﹣.22.【解答】解:(1)△A1BC1如图所示,点C1的坐标(1,6).(2)△A2B2C2如图所示,点C2的坐标(﹣6,4).23.【解答】解:(1)a=100×=20,本次调查样本的容量是:(100+20)÷(1﹣40%﹣28%﹣8%)=500,故答案为:20,500;(2)∵500×40%=200,∴C组的人数为200,补全“捐款人数分组统计图1”如右图所示;(3)4 500×(40%+28%)=3060(人),答:该校4 500名学生中大约有3060人捐款在20至40元之间.24.【解答】解:(1)△BEC是等腰三角形,理由是:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠BCE,∵EC平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,即△BEC是等腰三角形.(2)∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=45°,∴∠ABE=AEB=45°,∴AB=AE=1,由勾股定理得:BE==,即BC=BE=.25.【解答】解:(1)设第二周每个纪念品降价x元销售,则第二周售出(200+50x)个旅游纪念品,故答案是:(200+50x);(2)根据题意得:(10﹣6)×200+(10﹣6﹣x)(200+50x)=1400,整理得:x2﹣4=0,解得:x1=2,x2=﹣2(不符题意,舍去),∴10﹣x=8.答:第二周每个纪念品的销售价格为8元.26.【解答】解:(1)在Rt△ABC中,∵∠C=90°,AC=8,BC=6,∴AB==10,∵PE∥BC,∴=,∴=,∴PE=(10﹣2t),AE=(10﹣2t)当PE=CF时,四边形PECF是矩形,∴t=(10﹣2t),解得t=.(2)∵当△ABC面积是△PEF的面积的5倍时,∴24=5×××[8﹣(10﹣2t)]∴t=27.【解答】解:(1)点P(﹣1,0)则点A(﹣1,1),点B(﹣1,4),点C(﹣,4),S=BC×AB=(﹣+1)(4﹣1)=;△ABC(2)设点P(t,0),则点A、B、C的坐标分别为(t,﹣)、(t,﹣)、(,﹣),AB=BC,即:﹣=,解得:t=±2(舍去2),故点A (﹣2,);(3)过点A 作AM ⊥y 轴于点M ,过点C 作CN ⊥y 轴于点N ,各点坐标同(2),S △OAC =S 梯形AMNC =(﹣﹣t )(﹣)=,故△OAC 的面积是否随t 的值的变化不变化.28.【解答】解:(1)∵四边形OABC 是矩形,点B 坐标为(4,﹣3).∴∠AOC =90°.OA =3,OC =4,∴AC ==5.故答案为:5;(2)由折叠可得:DE ⊥AC ,AF =FC =,∵∠FCD =∠OCA ,∠DFC =∠AOC =90°,∴△DFC ∽△AOC .∴==,∴==,∴DF =,DC =,∴OD =OC ﹣DC =4﹣=.∴D (,0);∵四边形OABC 是矩形,∴AB ∥DC ,∴∠EAF=∠DCF,在△AFE和△CFD中,,∴△AFE≌△CFD(ASA).∴EF=DF.∴DE=2DF=2×=.即折痕DE的长为.(3)如图所示:由(2)可知,AE=CD=∴E(,﹣3),D(,0),①当DE为菱形的边时,DP=DE=,可得Q(,﹣3),Q1(﹣,﹣3).②当DE为菱形的对角线时,P与C重合,Q与A重合,Q2(0,﹣3),③当点Q在第一象限,E与Q关于x轴对称,Q(,3)综上所述,满足条件的点Q坐标为(,﹣3)或(﹣,﹣3)或(0,﹣3)或(,3).。
2018~2019学年第二学期期末调研 初二数学本试卷由选择题、填空题和解答题三大题组成,共29小题,满分100分.考试时间120分钟. 注意事项:1. 答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2. 答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3. 考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1. 下面四个黑体字母中,既是轴对称图形,又是中心对称图形的果A. XB. LC. CD. Z 2. 若分式23x x +-的值为零,则 A.3x = B.3x =- C.2x = D.2x =-3. 一只不透明的袋子中装有一些红球和白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是A.确定事件B.必然事件C.不可能事件D.随机事件 4. 为了解我市老年人的健康状况,下列抽样调查最合理的是 A.在公园调查部分老年人的健康状况 B.在医院调查部分老年人的健康状况 C.利用户籍网调查部分老年人的健康状况 D.在周围邻居中调查部分老年人的健康状况 5. 下列各式成立的是A.2= 3= C.22(3=- 3=6. 若(2)2m =⨯-,则有 A.21m -<<- B.10m -<< C.01m << D.12m <<7. ①平行四边形,②矩形,③菱形,④正方形中,对角线的交点到各边中点的距离都相等的是A. ①②B. ③④C. ②③D.②④8. 在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。
OF E D CB A 八年级下学期期末考试 数学试卷及参考答案一、选择题(每题3分,共30分)1.下列二次根式中,与3是同类二次根式的是( ) A .8 B .12 C 18. D .6 2.下列各数中,无理数是 ( )A .—3.14B .3125C .︳—6︳D .—29 3.已知点P (a,b ),点P 关于x 轴对称的点的坐标为 ( ) A .(a,—b ) B .(—a,b ) C .(—a, —b ) D .(a,b ) 4.一次函数y = —x + 1的图象一定经过 ( )A .一、二、三象限.B 。
一、三、四象限.C .二、三、四象限.D .一、二、四象限. 5.以下图形哪一种图形永远是相似的 ( )A .矩形B .菱形C .等腰三角形D .正方形6.如图,CD 是Rt ⊿ABC 斜边AB 上的高,AD=4cm ,BD=9 cm ,则CD=( ) A .6cm B .36cm C .213cm D .5cm7.小明有四双样式相同、大小相同的袜子,其中两双为蓝色, 问至多取几次就能保证取得同样颜色的一双袜子。
( )A .2次B .3次C .4次D .5次 8.正比例函数y=kx 与反比例函数y=xk在同一坐标系中的大致图象只可能是( )9.已知一直角三角形两条边的长分别为3 cm 和4 cm ,则第三边的长为( )cm A .5 B .5 和7 C .7 D .不能确定10.梯形ABCD 中,对角线AC 、BD 相交与点O ,过O 点的直线分别交上、下底于E 、F ,则在图中与OE :OF 的比值相等的线段比有( )A .4个B .5个C .7个D .8个二、填空题(每题2分,共16分)。
11.251的平方根是 。
X 55100150T S R QP12.直线y= — x + 3向下平移5个单位,得到的直线是 。
13.如图,QS//RT ,则x= 米。
14.已知点A (a+2 , a –3)在y 轴上,则a= 。
2018~2019学年第二学期初二数学期末复习综合试卷(6)命题:汤志良;试卷分值130;知识点涵盖:八下全部、九上第1,3,4单元一、选择题(本题共10小题,每小题3分,共30分) 1.若使分式2xx -有意义,则x 的取值范围是……………………………………………( ) A .2x ≠ ; B .2x =- ; C .2x >-; D .2x <;2.下列根式中不是最简二次根式的是……………………………………………………( ) A .2 B .6 C .8 D .103.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定...正确的是………………………( ) A .甲、乙射中的总环数相同; B .甲的成绩稳定; C .乙的成绩波动较大; D .甲、乙的众数相同;4.某商店6月份的利润是2500元,8月份的利润达到3600元.设平均每月利润增长的百分率是x ,则可以列出方程……………………………………………………………………( ) A .3600)1(2500=+x ; B .3600)1(2500=-x ; C .3600)1(25002=+x ; D .3600])1()1[(25002=+++x x ;5. (2018•乐山)下列调查中,适宜采用普查方式的是……………………………………( ) A .调查全国中学生心理健康现状; B .调查一片试验田里某种大麦的穗长情况; C .调查冷饮市场上冰淇淋的质量情况;D .调查你所在班级的每一个同学所穿鞋子的尺码情况; 6.(2017•聊城)如果解关于x 的分式方程2122m xx x-=--时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-47.(2018•昆明)关于x 的一元二次方程2230x x m -+=有两个不相等的实数根,则实数m 的取值范围是……………………………………………………………………………( ) A .m <3 ; B .m >3; C .m ≤3 ; D .m ≥3;8. 若顺次连接四边形ABCD 四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是…………( )A .矩形;B .菱形;C .对角线相等的四边形;D .对角线互相垂直的四边形;9.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E 处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为…………………………………()A.74; B.95; C.1910; D.736;10.如图,A、B是双曲线()0ky kx=>上的点,A、B两点的横坐标分别是a、2a,线段AB 的延长线交x轴于点C,若△AOC的面积为8,则k的值为………………………………()A.43; B.83; C.163; D.4;二、填空题:(本题共8小题,每小题3分,共24分)11.已知一组数据2,1,-1,0,3,则这组数据的极差是.12.(2018•赤峰)一组数据:-1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是 .13.(2018•烟台)12与最简二次根式51a+是同类二次根式,则a= .14.(2018.连云港)已知A()14,y-,B()21,y-是反比例函数4yx=-图象上的两个点,则1y与2y的大小关系为.15. (2018•成都)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.16.(2018•安丘市)如图,一次函数y=ax+b与反比例函数kyx=在第一象限内交于点C(3,1),则当x>0时,0kax bx+->的解集为.17.如图,在矩形ABCD中,AB=3,BC=5,过对角线交点O作OE⊥AC交AD于E,则AE的长是.18.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 .第16题第17题第18题三、解答题:(本题满分76分) 19. (本题满分8分)(1)计算:(1)()012201818π-+--; (2)243232326-⎪⎪⎭⎫⎝⎛--;20. 解方程:(本题满分8分) (1)31244x x x -+=--; (2)22410x x --=; 21.(本题满分6分)先化简再求值:211x x x--·221x x x -+,其中2x =.22.(本题满分6分)(1)已知:521a b -=-,2ab =,求()()11a b +-的值.(2)已知:32a =+,32b =-,求22a ab b -+的值23.(本题满分7分)如图,平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-3,2), B (0,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的11A B C ;(2)平移△ABC ,若点A 的对应点2A 的坐标为(0,-4),画出平移后对应的222A B C ;(3)若将11A B C 绕某一点旋转可以得到222A B C ;请在坐标系中作出旋转中心S 并写出旋转中心S 的坐标:S .(4)在x 轴上有一点P ,使得PA+PB 的值最小,请作图标出P 点并写出点P 的坐标.P . 24. (本题满分8分)如图,菱形ABCD 的边长为29,对角线AC 、BD 交于O ,且DE ∥AC ,AE ∥BD . (1)判断四边形AODE 的形状并给予证明;(2)若四边形AODE 的周长为14,求四边形AODE 的面积.25.(本题满分8分)已知点P(2,2)在反比例函数()0ky k x=≠(k ≠0)的图象上. (1)当x =-2时,求y 的值;(2)如果自变量x 的取值范围是1≤x ≤3,求y 的取值范围;(3)如果函数值y 的取值范围是y ≥3,则自变量x 的取值范围 .26. (本题满分7分) (2018•本溪)某校在宣传“民族团结”活动中,采用四种宣传形式:A .器乐,B .舞蹈,C .朗诵,D .唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图. 请结合图中所给信息,解答下列问题: (1)本次调查的学生共有 人; (2)补全条形统计图; (3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.27. (本题满分8分)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.28. (本题满分10分)(2018•牡丹江)菱形ABCD 在平面直角坐标系中的位置如图所示,对角线AC 与BD 的交点E 恰好在y 轴上,过点D 和BC 的中点H 的直线交AC 于点F ,线段DE ,CD 的长是方程29180x x -+=的两根,请解答下列问题:(1)求点D 的坐标; (2)若反比例函数()0ky k x=≠的图象经过点H ,则k= ; (3)点Q 在直线BD 上,在直线DH 上是否存在点P ,使以点F ,C ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案一、选择题:1.A ;2.C ;3.D ;4.C ;5.D ;6.D ;7.C ;8.D ;9.A ; 10.C ;二、填空题:11.4;12.3;13.2;14. 12y y <;15.1213;16. 3x >;17.3.4;18. 23;三、解答题:19.(1)22-;(2)6;20.(1)4x =;(2)26x ±= 21.2112x =; 22.(1)42-;(2)9; 23.(1)略;(2)略;(3)3,12S ⎛⎫-⎪⎝⎭;(4)()2,0P -;24.(1)矩形;(2)10;25.(1)-2;(2)443y≤≤;(3)03x<≤;26.(1)100;(2)20;(3)480人;(4)16;27.定价5元;28.(1)x2﹣9x+18=0,(x﹣3)(x﹣6)=0,x=3或6,∵CD>DE,∴CD=6,DE=3,∵四边形ABCD是菱形,∴AC⊥BD,AE=EC==3,∴∠DCA=30°,∠EDC=60°,Rt△DEM中,∠DEM=30°,∴DM=DE=,∵OM⊥AB,∴S菱形ABCD=AC•BD=CD•OM,∴=6OM,OM=3,∴D(﹣,3);(2)∵OB=DM=,CM=6﹣=,∴B(,0),C(,3),∵H是BC的中点,∴H(3,),∴k=3×=;故答案为:;(3)①∵DC=BC,∠DCB=60°,∴△DCB是等边三角形,∵H是BC的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠F AB=30°,AB=6,∴FB=2=CP,∴P(,);②如图2,∵四边形QPFC是平行四边形,∴CQ∥PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q(﹣,6),由①知:F(,2),由F到C的平移规律可得P到Q的平移规律,则P(﹣﹣3,6﹣),即P(﹣,5);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣,6),F(,2),C(,3),∴P(,﹣);综上所述,点P的坐标为:(,)或(﹣,5)或(,﹣).。
苏州市2018~2019学年第二学期初二数学期末复习综合试卷(4)注意事项:1.1班需要全部做完试卷2.2,3班选择题11,12,填空题21,简答题29,30,31适当练习。
一.选择题(共12小题)1.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 2.如果分式的值为零,那么x等于()A.1 B.﹣1 C.0 D.±13.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2 4.下列计算中正确的是()A.B.C.=1 D.5.下列图形中,不是中心对称图形的是()A.B.C.D.6.在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A 点的对应点A′坐标为()A.(﹣2,﹣4)B.(﹣4,﹣2)C.(﹣1,﹣4)D.(1,﹣4)7.一元二次方程(x﹣5)2=x﹣5的解是()A.x=5 B.x=6 C.x=0 D.x1=5,x2=6 8.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根9.如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为()A.1 B.2 C.3 D.410.如图,在正方形ABCD中,点E,F,G分别是AB,BC,CD上的点,EB=3,GC=4,∠FEG=60°,∠EGF=45°,则BC的长为()A.3+B.C.4+D.3+411.如图,将边长为10的等边三角形OAB位于平面直角坐标系第一象限中,OA落在x 轴正半轴上,C是AB边上的动点(不与端点A、B重合),作CD⊥OB于点D,若点C、D都在双曲线y=(k>0,x>0)上,则k的值为()A.9B.18 C.25D.912.如图,反比例函数的图象经过▱OABC的顶点C和对角线的交点E,顶点A在x轴上,若▱OABC的面积为18,则k的值为()A.8 B.6 C.4 D.2二.填空题(共9小题)13.若a,b都是实数,b=+﹣2,则a b的值为.14.小明和小红一起做作业,在解一元二次方程(二次项系数为1)时,小明因看错常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为﹣9和﹣1,那么原来方程的一次项是,常数项是,其正确解是.15.若,则=.16.如果两个相似三角形的周长比为4:9,那么它们的面积比是.17.计算:(+3)2(﹣3)=.18.若(m﹣1)x m(m+2)﹣1+2mx﹣1=0是关于x的一元二次方程,则m的值是.19.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2014﹣a﹣b的值是.20.已知,点P(a,b)为直线y=x﹣3与双曲线y=﹣的交点,则﹣的值等于.21.如图,正方形ABCD的边长为4cm,动点E、F分别从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF的垂线BG,垂足为点G,连接AG,则AG长的最小值为cm.三.解答题(共10小题)22.计算:2+3﹣﹣23.解方程:(1)5x(x+1)=2(x+1);(2)x2﹣3x﹣1=0.24.先化简,再求值:(x﹣2+)÷,其中x=﹣.25.如图,BO是△ABC的角平分线,延长BO至D使得BC=CD.(1)求证:△AOB∽△COD.(2)若AB=2,BC=4,OA=1,求OC长.26.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE的点E到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度(即AB的值).27.某校甲、乙两同学对关于x的方程:﹣3(x﹣1)2+m=0进行探究,其结果:甲同学发现,当m=0时,方程的两根都为1,当m>0时,方程有两个不相等的实数根;乙同学发现,无论m取什么正实数时都不能使方程的两根之和为零.(1)请找一个m的值代入方程使方程的两个根为互不相等的整数,并求这两个根;(2)乙同学发现的结论是否正确?试证明之.28.如图,在平面直角坐标系xOy内,点A在直线y=3x上(点A在第一象限),OA=2.(1)求点A的坐标;(2)过点A作AB⊥x轴,垂足为点B,如果点E和点A都在反比例函数y=(k≠0)图象上(点E在第一象限),过点E作EF⊥y轴,垂足为点F,如果S△AEF=S△AOB,求点E的坐标.29.如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF 的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.30.如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.31.如图①,在矩形ABCD中,动点P从点A出发,以1cm/s的速度沿AD向终点D移动,设移动时间为t(s),连接PC,以PC为一边作正方形PCEF,连接DE、DF,设△PCD的面积为y(cm2),y与t之间的函数关系如图②所示.(1)AB=cm,AD=cm;(2)当t为何值时,△DEF的面积最小?请求出这个最小值;(3)当t为何值时,△DEF为等腰三角形?请简要说明理由.参考答案与试题解析一.选择题(共12小题)1.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.2.如果分式的值为零,那么x等于()A.1 B.﹣1 C.0 D.±1【解答】解:∵分式的值为零,∴,解得x=﹣1.故选:B.3.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【解答】解:∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=的图象上,∴,,,∵﹣2<3<6,∴y3<y2<y1,故选:B.4.下列计算中正确的是()A.B.C.=1D.【解答】解:A、=13,错误;B 、===2,错误;C、2﹣=,错误;D 、=|2﹣|=﹣2,正确;故选:D.5.下列图形中,不是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.6.在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A 点的对应点A′坐标为()A.(﹣2,﹣4)B.(﹣4,﹣2)C.(﹣1,﹣4)D.(1,﹣4)【解答】解:∵△OA′B′与△OAB关于O(0,0)成位似图形,且若B(0,3)的对应点B′的坐标为(0,﹣6),∴OB:OB'=1:2=OA:OA'∵A(1,2),∴A'(﹣2,﹣4)故选:A.7.一元二次方程(x﹣5)2=x﹣5的解是()A.x=5 B.x=6 C.x=0 D.x1=5,x2=6 【解答】解:(x﹣5)2﹣(x﹣5)=0,(x﹣5)(x﹣5﹣1)=0,x﹣5=0或x﹣5﹣1=0,所以x1=5,x2=6.故选:D.8.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根【解答】解:方程整理得2x2﹣3x﹣3=0,∵△=(﹣3)2﹣4×2×(﹣3)=18+24>0,∴方程有两个不相等的实数根.故选:B.9.如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为()A.1 B.2 C.3 D.4【解答】解:∵△ACD∽△ADB,∴AB==1,故选:A.10.如图,在正方形ABCD中,点E,F,G分别是AB,BC,CD上的点,EB=3,GC=4,∠FEG=60°,∠EGF=45°,则BC的长为()A.3+B.C.4+D.3+4【解答】解:过点F作FH⊥EG于O,交AD于点H,∴∠EOH=∠GOF=90°,∵∠OGF=45°,∴∠OFG=∠OGF=45°,∴OG=OF.在正方形ABCD中,EG⊥HF,∴EG=HF∴OE=OH∴EH∥FG∴△EHO~FGO,∴,在Rt△EOF中,∠OEF=60°,设OE=x,∴OF=OE•tan∠OEF=x,在Rt△GOF中,∠OGF=45°∴OG=OF=x,FG==x,在Rt△EOH中,OH=OE=x,∴EH=x,∴△EOH与△GOF的相似比为==,由Rt△AEH~Rt△CFG,GC=4,∴=,∴AE==,又∵EB=3∴AB=AE+EB=3+故选:A.11.如图,将边长为10的等边三角形OAB位于平面直角坐标系第一象限中,OA落在x 轴正半轴上,C是AB边上的动点(不与端点A、B重合),作CD⊥OB于点D,若点C、D都在双曲线y=(k>0,x>0)上,则k的值为()A.9B.18 C.25D.9【解答】解:过点D作DE⊥x轴于点E,过C作CF⊥x轴于点F,如图所示.可得:∠ODE=30∠BCD=30°,设OE=a,则OD=2a,DE=a,∴BD=OB﹣OD=10﹣2a,BC=2BD=20﹣4a,AC=AB﹣BC=4a﹣10,∴AF=AC=2a﹣5,CF=AF=(2a﹣5),OF=OA﹣AF=15﹣2a,∴点D(a,a),点C[15﹣2a,(2a﹣5)].∵点C、D都在双曲线y=(k>0,x>0)上,∴a•a=(15﹣2a)×(2a﹣5),解得:a=3或a=5.当a=5时,DO=OB,AC=AB,点C、D与点B重合,不符合题意,∴a=5舍去.∴点D(3,3),∴k=3×3=9.故选:A.12.如图,反比例函数的图象经过▱OABC的顶点C和对角线的交点E,顶点A在x轴上,若▱OABC的面积为18,则k的值为()A.8 B.6 C.4 D.2【解答】解:如图,分别过C、E两点作x轴的垂线,交x轴于点D、F,∵反比例函数的图象经过▱OABC的顶点C和对角线的交点E,设C(m,),∴OD=m,CD=,∵四边形OABC为平行四边形,∴E为AC中点,且EF∥CD,∴EF=CD=,且DF=AF,∵E点在反比例函数图象上,∴E点横坐标为2m,∴DF=OF﹣OD=m,∴OA=3m,∴S△OAE=OA•EF=×3m×=k,∵四边形OABC为平行四边形,∴S四边形OABC=4S△OAE,∴4×k=18,解得k=6,故选:B.二.填空题(共9小题)13.若a,b都是实数,b=+﹣2,则a b的值为 4 .【解答】解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.14.小明和小红一起做作业,在解一元二次方程(二次项系数为1)时,小明因看错常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为﹣9和﹣1,那么原来方程的一次项是﹣10x,常数项是9 ,其正确解是9和1 .【解答】解:由小明的答案可知:(x﹣8)(x﹣2)=0,∴x2﹣10x+16=0,由小红额答案可知:(x+9)(x+1)=0,x2+10x+9=0,由于小明因看错常数项,小红因看错了一次项系数,∴该方程为:x2﹣10x+9=0,故答案为:﹣10x,9,9和115.若,则=.【解答】解:∵,∴设a=3k,b=4k,∴==.故答案为:.16.如果两个相似三角形的周长比为4:9,那么它们的面积比是16:81 .【解答】解:∵两个相似三角形的周长比为4:9,∴两个相似三角形的相似比为4:9,∴两个相似三角形的面积比为16:81,故答案为:16:81.17.计算:(+3)2(﹣3)=+3 .【解答】解:(+3)2(﹣3)=(+3)(﹣3)(+3)=+3故答案为:+3.18.若(m﹣1)x m(m+2)﹣1+2mx﹣1=0是关于x的一元二次方程,则m的值是﹣3 .【解答】解:由题意,得m(m+2)﹣1=2且m﹣1≠0,解得m=﹣3,故答案为:﹣3.19.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2014﹣a﹣b的值是2019 .【解答】解:把x=1代入ax2+bx+5=0得a+b+5=0,所以a+b=﹣5,所以2014﹣a﹣b=2014﹣(a+b)=2014﹣(﹣5)=2019.故答案为2019.20.已知,点P(a,b)为直线y=x﹣3与双曲线y=﹣的交点,则﹣的值等于﹣.【解答】解:∵点P(a,b)为直线y=x﹣3与双曲线y=﹣的交点,∴b=a﹣3,b=﹣,∴a﹣b=3,ab=﹣2.∴﹣===﹣.故答案是:﹣.21.如图,正方形ABCD的边长为4cm,动点E、F分别从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF 的垂线BG,垂足为点G,连接AG,则AG长的最小值为cm.【解答】解:设正方形的中心为O,可证EF经过O点.连结OB,取OB中点M,连结MA,MG,则MA,MG为定长,可计算得MA=,MG=OB=,AG≥AM﹣MG=,当A,M,G三点共线时,AG最小=cm,故答案为:三.解答题(共10小题)22.计算:2+3﹣﹣【解答】解:原式=2×2+3×﹣﹣×4=4+2﹣﹣=2.23.解方程:(1)5x(x+1)=2(x+1);(2)x2﹣3x﹣1=0.【解答】解:(1)5x(x+1)﹣2(x+1)=0,(x+1)(5x﹣2)=0x+1=0或5x﹣2=0,所以x1=﹣1,x2=;(2)△=(﹣3)2﹣4×(﹣1)=13,x=,所以x1=,x2=.24.先化简,再求值:(x﹣2+)÷,其中x=﹣.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.25.如图,BO是△ABC的角平分线,延长BO至D使得BC=CD.(1)求证:△AOB∽△COD.(2)若AB=2,BC=4,OA=1,求OC长.【解答】解:(1)∵BO是△ABC的角平分线,∴∠ABO=∠CBO,∵BC=CD,∴∠CBO=∠D,∴∠ABO=∠D,又∵∠AOB=∠COD,∴△AOB∽△COD;(2)∵BC=4,∴BC=CD=4,∵△AOB∽△COD,∴=,即=,解得:OC=2.26.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE的点E到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度(即AB的值).【解答】解:连接AB,由于阳光是平行光线,即AE∥BD,所以∠AEC=∠BDC.又因为∠C是公共角,所以△AEC∽△BDC,从而有=.又AC=AB+BC,DC=EC﹣ED,EC=3.9,ED=2.1,BC=1.2,于是有=,解得AB=1.4 m.答:窗口的高度为1.4 m.27.某校甲、乙两同学对关于x的方程:﹣3(x﹣1)2+m=0进行探究,其结果:甲同学发现,当m=0时,方程的两根都为1,当m>0时,方程有两个不相等的实数根;乙同学发现,无论m取什么正实数时都不能使方程的两根之和为零.(1)请找一个m的值代入方程使方程的两个根为互不相等的整数,并求这两个根;(2)乙同学发现的结论是否正确?试证明之.【解答】解:(1)﹣3(x﹣1)2=﹣m,即,如取m=27,=9,代入解得x1=4,x2=﹣2.(答案不唯一,m为任意完全平方数的3倍);(2)乙同学的结论正确.∵当m>0,,∴,∵,(用根与系数的关系做也可)即:当m为任何正数时都两根和为2,∴乙同学结论正确.28.如图,在平面直角坐标系xOy内,点A在直线y=3x上(点A在第一象限),OA=2.(1)求点A的坐标;(2)过点A作AB⊥x轴,垂足为点B,如果点E和点A都在反比例函数y=(k≠0)图象上(点E在第一象限),过点E作EF⊥y轴,垂足为点F,如果S△AEF=S△AOB,求点E的坐标.【解答】解:(1)∵点A在直线y=3x上(点A在第一象限),∴设A(x,3x),其中x>0,∵OA=2,∴x2+9x2=(2)2,解得:x=2,点A的坐标为(2,6);(2)∵点A在反比例函数y=(k≠0)的图象上,∴k=12,可得反比例函数解析式为y=,由题意得点B的坐标为(2,0),∴S△ACB=6,∵S△AEF=S△AOB,设点E(n,),可得F(0,);①点E在点A的上方,由S△AEF=n•(﹣6)=6,得n=0(舍去),∴点E的坐标不存在;②点E在点A的下方,由S△AEF=n•(6﹣)=6,得n=4,∴点E的坐标为(4,3),综上所述:满足条件的点E(4,3).29.如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF 的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC=∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,∴AC==4,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,=,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S△AGH=•AH•AG=AC2=×(4)2=16.∴△AGH的面积为16.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴==,∴AE=AB=.如图2中,当CH=HG时,易证AH=BC=4(可以证明△GAH≌△HDC得到)∵BC∥AH,∴==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5°.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.5°,∴CM=EM,设BM=BE=x,则CM=EM=x,∴x+x=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,综上所述,满足条件的m的值为或2或8﹣4.30.如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).31.如图①,在矩形ABCD中,动点P从点A出发,以1cm/s的速度沿AD向终点D移动,设移动时间为t(s),连接PC,以PC为一边作正方形PCEF,连接DE、DF,设△PCD的面积为y(cm2),y与t之间的函数关系如图②所示.(1)AB= 2 cm,AD= 5 cm;(2)当t为何值时,△DEF的面积最小?请求出这个最小值;(3)当t为何值时,△DEF为等腰三角形?请简要说明理由.【解答】解:(1)由图②知:AD=5,当t=0时,P与A重合,y==5,=5,CD=2cm,∵四边形ABCD是矩形,∴AB=CD=2cm,故答案为:2,5;(2)由题意得:AP=t,PD=5﹣t,∴y=CD•PD==5﹣t,∵四边形EFPC是正方形,∴S△DEF+S△PDC=S正方形EFPC,∵PC2=PD2+CD2,∴PC2=22+(5﹣t)2=t2﹣10t+29,∴S△DEF=(t2﹣10t+29)﹣(5﹣t)=﹣4t+=(t﹣4)2+,当t为4时,△DEF的面积最小,且最小值为;(3)当△DEF为等腰三角形时,分三种情况:①当FD=FE时,如下图所示,过F作FG⊥AD于G,∵四边形EFPC是正方形,∴PF=EF=PC,∠FPC=90°,∴PF=FD,∵FG⊥PD,∴PG=DG=PD,∵∠FPG+∠CPD=∠CPD+∠DCP=90°,∴∠FPG=∠DCP,∵∠FGP=∠PDC=90°,∴△FPG≌△PDC(AAS),∴PG=DC=2,∴PD=4,∴AP=5﹣4=1,即t=1;②当DE=DF时,如下图所示,E在AD的延长线上,此时正方形EFPC是正方形,PD =CD=2∴AP=t=5﹣2=3③当DE=EF时,如下图所示,过E作EG⊥CD于G,∵FE=DE=EC,∴CG=DG=CD=1,同理得:△PDC≌△CGE(AAS),∴PD=CG=1,∴AP=t=5﹣1=4,综上,当t=1s或3s或4s时,△DEF为等腰三角形.。
苏州市高新区2018-2019学年第二学期期末考试
八年级数学试卷 2019.06
注意事项:
1.本试卷共3大题,28小题,满分100分,考试用时100分钟.
2.答题前,考生务必将姓名、考点名称、考场号、座位号、考试号填在答题卷相应的位置上,并用2B 铅笔认真正确填涂考试号下方的数字°
3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.
4.答题必须答在答题卡上,答在试卷和草稿纸上一律无效.
一、选择题(本大题10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)
1.下列二次根式中,最简二次根式是
A B C D 2.下列各点中,在反比例函数y =
8x
图象上的是
A .(-1,8)
B .(-2,4)
C .(1,7)
D .(2,4)
3.如图,CB =CD ,∠ABC =∠ADC =90°,∠BAC =35°,
则∠BCD 的度数为
A .145°
B .130°
C .110°
D .70°
4.某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x 个,可列方程为
A .40050010x x =-
B .40050010x x =+
C .40050010x x =+
D .40050010
x x =- 5.如图,△ABC 中,BC =2,DE 是它的中位线,下面四个结论:(1)DE =1;
(2)△ADE ∽△ABC ; (3)△ADE 的面积与△ABC 的面积之比为1:4;
(4)△ADE 的周长与△ABC 的周长之比为1:4其中正确的有
A .1个
B .2个
C .3个
D .4个
6.下列命题中,正确的命题是
A .一组对边平行另一组对边相等的四边形是平行四边形
B .对角线相等的平行四边形是矩形
C .对角线互相垂直且相等的四边形是菱形
D .相似图形一定是位似图形
7.方程1111
x x x --=+去分母后,可得方程 A .2x 2+x -1=0 B .x 2-2x =0
C .2x 2-x -1=0
D .x 2+2x -2=0
8.等腰梯形的上底是2cm ,腰长是4cm ,一个底角是60°,则等腰梯形的下底是
A .5cm
B .6cm
C .7cm
D . 8cm
9.将
A B C D .10.回文数是指从左到右与从右到左读都一样的正整数,如22, 121,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则4位回文数有( )个
A .90
B .99
C .900
D .990
二、填空题(本大题共8小题,每小题2分,共16分,把答案填在答题卡相应横线上)
11.命题“邻边相等的矩形是正方形”的逆命题是 ▲ 命题(填“真”或“假”).
12 (-l)2= ▲ .
13.一个不透明的袋子中有2个红球、3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是红色球的概率为 ▲ .
14.函数中y ,自变量x 的取值范围是 ▲ . 15.如图所示的正三角形ABC 中,有一个内接正方形DEFG ,已知三角形边长AB =2,则正方形的边长DE = ▲ .
16.在如图所示的4×2的方格中,∠ACB +∠HCB = ▲ .
17.不等式-5个整数解,则实数a 的取值范围是 ▲ .
18.已知△ABC 是等腰直角三角形,∠C =90°,直角边的长为2,把点A 沿MN 折叠,点A 恰好与BC 边的中点D 重合,则重叠部分即△MND 的面积= ▲ .
三、简答题(本大题共10小题,共64分,解答应写出必要的计算过程、推演步骤或文字说明)
19.(本题4分)计算()
()20130132π---
20.(本题8分)解方程(1)x 2-6x -6=0 (2)
263111
x x -=--
21.(本题5分)先化简,再求值:
2
2
2411
1
442
a
a a a
⎛⎫
+
⎛⎫⎛⎫
-÷-
⎪
⎪ ⎪
-
⎝⎭⎝⎭
⎝⎭
,其中a=
1
2
.
22.(本题6分)某市体育中考现场考试内容共有三项:①为必测项目;另在②、③两个项目中(二选一)和④、⑤两个项目中(二选一)选择两项.
(1)每位考生有▲一种选择方案:
(2)若每种选择方案分别用A,B,C,……来表示,用适当方法写出小明和小刚两同学的选择方案的所有可能情况,并求出他们选择同一种方案的概率.
23.(本题6分)已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反
比例函数y=m
x
的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)结合图象直接写出不等式kx+b<m
x
的解集为▲.
24.(本题6分)如图,在△ABC中,D是AB的中点,E是CD的中点,过点C作CF//AB交AE的延长线于点F,连接BF.
(1)求证:DB=CF
(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.
25.(本题7分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场,现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
26.(本题7分)如图,四边形ABCD是矩形,直线l垂直平分线段AC,
垂足为O,直线l分别与线段AD、CB的延长线交于点E、F.
(1)△ABC与△FOA相似吗?为什么?
(2)试判定四边形AFCE的形状,并说明理由.
27.(本题7分)将□OABC放置在平面直角坐标系xOy内,已知AB边所在直线的函数解析式为:y=-x+4.若将FJOABC绕点O逆时针旋转90°得OBDE,BD交OC于点P.
(1)直接写出点C的坐标是▲:
(2)求△OBP的面积;
(3)若再将四边形OBDE沿y轴正方向平移,设平移的
距离为x(0≤x≤8),与□OABC重叠部分周长为L,试
求出L 关于x 的函数关系式.
28.(本题8分)如图,点P 是函数y =2x
上第一象限上一个动点,点A 的坐标为(0,1),点B 的坐标为(1,0).
(1)若△PAB 是直角三角形,请直接写出点P 的坐标 ▲ :
(2)连结PA 、PB 、AB ,设△PAB 的面积为S ,点P 的横坐标为t .请写出S 关于t 的函数关系式,并指出自变量t 的取值范围;
(3)阅读下面的材料回答问题
阅读材料:
当a>0时,22212222a
a
+=-++=+≥,
因为20
≥,当a =1时,20=, 所以a =1时,a +
1a
有最小值为2. 根据上述材料在(2)中研究当t 为何值时△PAB 的面
积S 有最小值,并求出S 的最小值.。