一中2014-2015高二数学上学期期末考试试题 文
- 格式:doc
- 大小:207.00 KB
- 文档页数:11
2014-2015学年河北省石家庄市高二(上)期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知抛物线的准线方程x=,则抛物线的标准方程为()A.x2=2y B.x2=﹣2y C.y2=x D.y2=﹣2x 2.(5分)为了了解某年级500名学生某次测试的体育成绩,从中抽取了30名学生的成绩进行统计分析,在这个问题中“30”是指()A.总体的个数B.个体C.样本容量D.从总体中抽取的一个样本3.(5分)若命题“p或q”和命题“非p”均为真命题,则下列说法正确的是()A.p真q真B.p真q假C.p假q假D.p假q真4.(5分)已知椭圆的方程为=1,则该椭圆的焦点坐标为()A.(0,±1)B.(0,±)C.(±1,0)D.(±,0)5.(5分)已知两个命题p和q,如果p是q的充分不必要条件,那么¬p是¬q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)已知双曲线﹣y2=1的左、右焦点分别为F1、F2,在其右支上有两点A、B,若△ABF2的周长为10,则△ABF1的周长为()A.12B.16C.18D.147.(5分)为了预测某射手的射击水平,设计了如下的模拟实验,通过实验产生了20组随机数:6830 3018 7055 7430 7740 4422 7884 2604 3346 0952 6807 9706 5774 5725 6576 5929 9768 6071 9138 6754如果一组随机数中恰有三个数在1,2,3,4,5,6中,表示四次射击中恰有三次击中目标的概率约为()A.25%B.20%C.30%D.50%8.(5分)已知某物体的运动路程S关于时间t的函数为S=,则该物体在t=3时的速度为()A.B.C.27D.9.(5分)在区间(0,2]里任取两个数x、y,分别作为点P的横、纵坐标,则点P到点A(﹣1,1)的距离小于的概率为()A.B.C.D.10.(5分)如图所示,程序框图(算法流程图)的输出值x为11.(5分)已知定点M(0,4),动点P在圆x2+y2=4上,则的取值范围是()A.[﹣4,12]B.[﹣12,4]C.[﹣2,14]D.[﹣14,2] 12.(5分)已知抛物线y2=8x的焦点为F,准线为l,则抛物线上满足到定点A (0,4)和准线l的距离相等的点的个数是()A.0B.1C.2D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为.14.(5分)命题“∀x≤﹣1,x2>2x”的否定是.15.(5分)已知函数f(x)=kx﹣sinx在R上为增函数,则实数k的取值范围为.16.(5分)已知双曲线=1(a>0,b>0)左、右焦点分别为F1、F2,过其左焦点F1作x轴的垂线交双曲线于P、Q两点,连接PF2交右支于M点,若|PM|=3|MF2|,则双曲线的离心率为.三、解答题(共6小题,满分70分)17.(10分)某班50位学生期中考试数学成绩的频率分布直方图如图所示.(1)求图中x的值;(2)试估计这50名学生的平均成绩(同一组中的数据用该组区间的中点值作代表)18.(12分)某娱乐栏目有两名选手进行最后决赛,在赛前为调查甲、乙两位选手的受欢迎程度,随机地从现场选择了15位观众对两位选手进行评分,根据评分(评分越高表明越受观众欢迎),绘制茎叶图如下:(1)求观众对甲、乙两选手评分的中位数;(2)试根据茎叶图分析甲、乙两选手的受欢迎程度.19.(12分)在平面直角坐标系xOy中,A、B、C构成直角三角形,∠A=90°,斜边端点B,C的坐标分别为(﹣2,0)和(2,0),设斜边BC上高线的中点为M,求动点M的轨迹方程.20.(12分)某地近几年粮食需求量逐年上升,如表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程=x+;(2)利用(1)中所求出的直线方程预测该地2015年的粮食需求量.(参考公式:==,=)21.(12分)已知函数f(x)=x3+ax2+bx图象与直线x﹣y﹣4=0相切于(1,f(1))(1)求实数a,b的值;(2)若方程f(x)=m﹣7x有三个解,求实数m的取值范围.22.(12分)已知椭圆C:+=1(a>b>0)的离心率为,且经过(0,﹣1)(1)求该椭圆的方程;(2)设F1,F2分别为椭圆C的左、右焦点,A,B是椭圆上的点,并在x轴的上方,若=5,求四边形ABF2F1的面积.2014-2015学年河北省石家庄市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知抛物线的准线方程x=,则抛物线的标准方程为()A.x2=2y B.x2=﹣2y C.y2=x D.y2=﹣2x【解答】解:∵抛物线的准线方程x=,可知抛物线为焦点在x轴上,且开口向左的抛物线,且,则p=1.∴抛物线方程为y2=﹣2x.故选:D.2.(5分)为了了解某年级500名学生某次测试的体育成绩,从中抽取了30名学生的成绩进行统计分析,在这个问题中“30”是指()A.总体的个数B.个体C.样本容量D.从总体中抽取的一个样本【解答】解:根据题意可得,在这个问题中,30名学生的成绩是从总体中抽取的一个样本容量.故选:C.3.(5分)若命题“p或q”和命题“非p”均为真命题,则下列说法正确的是()A.p真q真B.p真q假C.p假q假D.p假q真【解答】解:∵命题“p或q”和命题“非p”均为真命题,∴p为假命题,q为真命题,故选:D.4.(5分)已知椭圆的方程为=1,则该椭圆的焦点坐标为()A.(0,±1)B.(0,±)C.(±1,0)D.(±,0)【解答】解:∵椭圆的方程为=1,∴a2=4,b2=3,∴c==1,∴该椭圆的焦点坐标为(0,±1).故选:A.5.(5分)已知两个命题p和q,如果p是q的充分不必要条件,那么¬p是¬q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵p是q的充分不必要条件,∴¬q是¬p的充分不必要条件,即¬p是¬q必要不充分条件,故选:B.6.(5分)已知双曲线﹣y2=1的左、右焦点分别为F1、F2,在其右支上有两点A、B,若△ABF2的周长为10,则△ABF1的周长为()A.12B.16C.18D.14【解答】解:双曲线﹣y2=1的a=2,△ABF2的周长为10,即为|AB|+|AF2|+|BF2|=10,由双曲线的定义可得|AF1|﹣|AF2|=2a,|BF1|﹣|BF2|=2a,即有△ABF1的周长为|AB|+|AF1|+|BF1|=|AB|+|AF2|+|BF2|+4a=10+8=18.故选:C.7.(5分)为了预测某射手的射击水平,设计了如下的模拟实验,通过实验产生了20组随机数:6830 3018 7055 7430 7740 4422 7884 2604 3346 0952 6807 9706 5774 5725 6576 5929 9768 6071 9138 6754如果一组随机数中恰有三个数在1,2,3,4,5,6中,表示四次射击中恰有三次击中目标的概率约为()A.25%B.20%C.30%D.50%【解答】解:四次射击中恰有三次击中目标的随机数有2604,5725,6576,6754,所以四次射击中恰有三次击中目标的概率约为=20%.故选:B.8.(5分)已知某物体的运动路程S关于时间t的函数为S=,则该物体在t=3时的速度为()A.B.C.27D.【解答】解:∵路程S关于时间t的函数为S==,∴S′(t)=+2×+4t,∴当t=3时,S′(3)═=,故选:A.9.(5分)在区间(0,2]里任取两个数x、y,分别作为点P的横、纵坐标,则点P到点A(﹣1,1)的距离小于的概率为()A.B.C.D.【解答】解:设P(x,y),由|PA|得,即(x+1)2+(y﹣1)2<2,对应的区域为以A为圆心半径为的圆及其内部,作出对应的图象如图:则弓形区域的面积S==,则对应的概率P==,故选:D.10.(5分)如图所示,程序框图(算法流程图)的输出值x为12【解答】解:模拟执行程序框图,可得x=1满足条件x是奇数,x=2不满足条件x是奇数,x=4,不满足条件x>8,x=5满足条件x是奇数,x=6,不满足条件x>8,x=7满足条件x是奇数,x=8,不满足条件x>8,x=9满足条件x是奇数,x=10,不满足条件x是奇数,x=12,满足条件x>8,退出循环,输出x的值为12.11.(5分)已知定点M(0,4),动点P在圆x2+y2=4上,则的取值范围是()A.[﹣4,12]B.[﹣12,4]C.[﹣2,14]D.[﹣14,2]【解答】解:设P(2cosα,2sinα)(α∈[0,2π)).∴=(2cosα,2sinα﹣4)•(2cosα,2sinα)=4cos2α+4sin2α﹣8sinα=4﹣8sinα∈[﹣4,12].则的取值范围是[﹣4,12].故选:A.12.(5分)已知抛物线y2=8x的焦点为F,准线为l,则抛物线上满足到定点A (0,4)和准线l的距离相等的点的个数是()A.0B.1C.2D.3【解答】解:如图,由抛物线y2=8x,得F(2,0),又A(0,4),∴AF的垂直平分线方程为,即x=2y﹣3.联立,得y2﹣16y+24=0,△=(﹣16)2﹣4×24=160>0,∴直线y=﹣2x+4与抛物线y2=8x有两个不同的交点,即抛物线上有两点到A与焦点的距离相等,也就是抛物线上满足到定点A(0,4)和准线l的距离相等的点的个数是2.故选:C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为160.【解答】解:∵有男生560人,女生420人,∴年级共有560+420=980∵用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,∴每个个体被抽到的概率是=,∴要从男生中抽取560×=160,故答案为:16014.(5分)命题“∀x≤﹣1,x2>2x”的否定是∃x0≤﹣1,x02≤2x0.【解答】解:因为全称命题的否定是特称命题,所以命题“∀x≤﹣1,x2>2x”的否定是:∃x0≤﹣1,x02≤2x0.故答案为:∃x0≤﹣1,x02≤2x0.15.(5分)已知函数f(x)=kx﹣sinx在R上为增函数,则实数k的取值范围为[1,+∞).【解答】解:∵f(x)在R上为增函数;∴f′(x)=k﹣cosx≥0恒成立;即k≥cosx恒成立,cosx最大为1;∴k≥1;∴k的取值范围为[1,+∞).故答案为:[1,+∞).16.(5分)已知双曲线=1(a>0,b>0)左、右焦点分别为F1、F2,过其左焦点F1作x轴的垂线交双曲线于P、Q两点,连接PF2交右支于M点,若|PM|=3|MF2|,则双曲线的离心率为.【解答】解:设双曲线的左、右焦点分别为F1(﹣c,0),F2(c,0),令x=﹣c,则﹣=1,可得y=±,可设P(﹣c,),M(m,n),由|PM|=3|MF2|,可得=3,即有(m+c,n﹣)=3(c﹣m,﹣n),可得m=c,n=.即有M(c,),代入双曲线方程,可得•﹣=1,由a2+b2=c2,e=,可得e2﹣=1,解得e=.故答案为:.三、解答题(共6小题,满分70分)17.(10分)某班50位学生期中考试数学成绩的频率分布直方图如图所示.(1)求图中x的值;(2)试估计这50名学生的平均成绩(同一组中的数据用该组区间的中点值作代表)【解答】解:(1)由频率分布直方图可定(0.006×3+0.01+0.054+x)×10=1,解得x=0.018.(2)=45×0.06+55×0.06+65×0.1+75×0.54+85×0.18+95×0.06=74,故这50名学生的平均成绩为74.18.(12分)某娱乐栏目有两名选手进行最后决赛,在赛前为调查甲、乙两位选手的受欢迎程度,随机地从现场选择了15位观众对两位选手进行评分,根据评分(评分越高表明越受观众欢迎),绘制茎叶图如下:(1)求观众对甲、乙两选手评分的中位数;(2)试根据茎叶图分析甲、乙两选手的受欢迎程度.【解答】解:(1)由茎叶图知,15位观众对甲选手的评分由小到大排序,排在8位的是88,故样本中位数为88,故观众对甲选手评分的中位数估计值是88.15位观众对乙选手的评分由小到大排列,排在第8位的是84,故样本中位数为84,故观众对甲选手评分的中位数估计值是84.(2)由所给茎叶图知,对甲选手的评分的中位数高于对乙选手的评分的中位数,而且由茎叶图可以可以大致看出对甲选手的评分的标准差要小于对乙选手的评分的标准差,说明甲选手的受欢迎程度较高.19.(12分)在平面直角坐标系xOy中,A、B、C构成直角三角形,∠A=90°,斜边端点B,C的坐标分别为(﹣2,0)和(2,0),设斜边BC上高线的中点为M,求动点M的轨迹方程.【解答】解:设M(x,y),则A点的坐标为(x,2y),根据∠A=90°,可得,又B(﹣2,0),C(2,0),∴=(﹣2﹣x,2y),=(2﹣x,2y),代入,得:(﹣2﹣x,2y)•(2﹣x,2y)=(﹣2﹣x)(2﹣x)+4y2=0,化简可得:x2﹣4+4y2=0,即.又∵A,B,C构成三角形不能共线,∴y≠0,故动点M 的轨迹方程为.20.(12分)某地近几年粮食需求量逐年上升,如表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程=x+;(2)利用(1)中所求出的直线方程预测该地2015年的粮食需求量.(参考公式:==,=)【解答】解:(1)对数据处理如下:这样对应的年份和需求量之间是一个线性关系,=0,=1b==7.2.a=1,∴线性回归方程是y﹣286=7.2(x﹣2010)+1即y=7.2x﹣14185;(2)当x=2015时,y=7.2×2015﹣14185=323,即预测该地2015年的粮食需求量是323(万吨)21.(12分)已知函数f(x)=x3+ax2+bx图象与直线x﹣y﹣4=0相切于(1,f(1))(1)求实数a,b的值;(2)若方程f(x)=m﹣7x有三个解,求实数m的取值范围.【解答】附加题:解:(1)x=1代入直线方程可得f(1)=﹣3,函数f(x)=x3+ax2+bx,求导可得f′(x)=3x2+2ax+b,…(2分)根据题意可得,…(4分)解得;…(6分)(2)由(1)可得f(x)=x3+2x2﹣6x,所以方程等价于x3+2x2﹣6x=m﹣7x,即x3+2x2+x=m,令h(x)=x3+2x2+x,∴h′(x)=3x2+4x+1=(3x+1)(x+1),…(8分)令h′(x)=0,解得x=﹣或x=﹣1.当x变化时,h′(x),h(x)的变化情况如下表:…(10分)要使x3+2x2+x=m有三个解,需要,所以m的取值范围是…(12分)22.(12分)已知椭圆C:+=1(a>b>0)的离心率为,且经过(0,﹣1)(1)求该椭圆的方程;(2)设F1,F2分别为椭圆C的左、右焦点,A,B是椭圆上的点,并在x轴的上方,若=5,求四边形ABF2F1的面积.【解答】解:(I)由题意可得,,解可得,,∴b2=a2﹣c2=1,椭圆方程为:;(II)如图所示,由=5,可得F1A平行于F2B,由椭圆的对称性可知,,(C为直线F1A与椭圆的另一个交点),设直线的方程为x=my,A(x1,y1),C (x2,y2),将x=my﹣入椭圆方程有(my﹣)2+3y2=3,整理可得,,由方程的根与系数关系可得,,(1)又由,,可得y1=﹣5y2,代入(1)可得,m2=2,当m=时,可得或,当m=﹣时,由可得,A(0,﹣1),∵A,B是椭圆上的点,并在x轴的上方,故A(0,﹣1)舍去,由两点间的距离公式可得AF1=,BF2=,直线AF 1和BF 2间的距离为d=,所以四边形ABF 1F 2的面积为S=.赠送—高中数学知识点【1.3.1】单调性与最大(小)值 (1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为yxo减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
福建省八县一中2014-2015学年高二上学期期末考试数学(文)试题一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
) 1.命题:“0>∀x ,02≥-x x ”的否定形式是( ) A .0x ∀≤,20x x -> B .0x ∀>,02≤-x xC .0∃>x ,02<-x xD .0x ∃≤,20x x ->2.抛物线:C 24x y =的焦点坐标为( ) A .)1,0( B .)0,1( C .)161,0( D .)0,161( 3.函数x x x f ln 2)(2-=的单调减区间是( ) A .)1,0(B .),1(+∞C .)1,0()1,( --∞D .)1,0()0,1( -4.“21<<m ”是“方程13122=-+-my m x 表示的曲线是焦点在y 轴上的椭圆”的( )A .充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 5.经过点(2,2)P -,且渐近线方程为02=±y x 的双曲线方程是( )A .12422=-y xB .14222=-x yC .14222=-y xD .12422=-x y6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( ) A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,7. 有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题; ②“全等三角形的面积相等”的否命题;③“若"1"≤q ,则022=++q x x 有实根”的逆否命题; ④“矩形的对角线相等”的逆命题。
其中真命题为( )A 、①②B 、①③C 、②③D 、③④ 8.如果函数y=f (x )的图象如右图,那么导函数)(x f y '=的图象可能是9. 已知抛物线:C )0(22>=p px y ,焦点为F ,准线为l ,P 为抛物线上一点,过点P 作直线l 的垂线PM ,垂足为M ,已知PFM ∆为等边三角形,则PFM ∆的面积为( ) A. 2pB. 23pC. 22p D. 232p10.已知双曲线 (a >0,b >0),若过右焦点F 且倾斜角为30°的直线与双曲线的右支有两个交点,则此双曲线离心率的取值范围是( ) A .(1,2) B .(1,) C .[2,+∞) D .[,+∞)11.对于R 上可导的任意函数()x f ,若满足,0)1(0)()(=->'+f x f x x f 且,则0)(>x f 解集是( ) A. )1,(--∞ B. ),0(+∞ C. ),0()1,(+∞--∞ D. )0,1(-12.在平面直角坐标系中,曲线经过旋转或平移所产生的新双曲线与原双曲线具有相同的离心率和焦距,称它们为一组“任性双曲线”;例如将等轴双曲线222=-y x 绕原点逆时针转动045,就会得到它的一条“任性双曲线”x y 1=;根据以上材料可推理得出双曲线113-+=x x y 的焦距为( ) A.4B. 24C. 8D. 28二、填空题(本大题共4小题,每小题4分,共16分。
2014-2015学年陕西省西安一中高二(上)期末数学试卷(理科)一.选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)命题“若α=,则tan α=1”的逆否命题是()A.若α≠,则tan α≠1B.若α=,则tan α≠1C.若tan α≠1,则α≠D.若tan α≠1,则α=2.(3分)抛物线y=﹣2x2的焦点坐标是()A.B.(﹣1,0)C.D.3.(3分)下列运算正确的是()A.(ax2﹣bx+c)′=a(x2)′+b(﹣x)′B.(cosx•sinx)′=(sinx)′•cosx+(cosx)′•cosxC.(sinx﹣2x2)′=(sinx)′﹣(2)′(x2)′D.[(3+x2)(2﹣x3)]′=2x(2﹣x3)+3x2(3+x2)4.(3分)下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”C.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题D.已知x∈R,则“x>1”是“x>2”的充分不必要条件5.(3分)若△ABC顶点B,C的坐标分别为(﹣4,0),(4,0),AC,AB边上的中线长之和为30,则△ABC的重心G的轨迹方程为()A.=1(y≠0)B.=1(x≠0)C.=1(x≠0)D.=1(y≠0)6.(3分)直线y=kx+b与曲线y=ax2+2+lnx相切于点P(1,4),则b的值为()A.3B.1C.﹣1D.﹣37.(3分)已知命题p:∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≥0,则¬p 是()A.∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≤0B.∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≤0C.∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0D.∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<08.(3分)已知,则双曲线C1:与C2:的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等9.(3分)已知函数f(x)在R上满足f(x)=2f(2﹣x)﹣x2+8x﹣8,则曲线y=f (x)在点(1,f(1))处的切线方程是()A.y=2x﹣1B.y=x C.y=3x﹣2D.y=﹣2x+3 10.(3分)”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件11.(3分)已知点P在曲线y=上,a为曲线在点P处的倾斜角,则a的取值范围是()A.[0,)B.[,)C.(,]D.[,π)12.(3分)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则||+||+||=()A.6B.4C.3D.2二.填空题(本大题共5小题,每小题4分,共20分.将答案填写在题中的横线上)13.(4分)已知命题p:∃x∈R,x2+2ax+a≤0.若命题p是假命题,则实数a 的取值范围是.14.(4分)过点(1,0)作曲线y=e x的切线,则切线方程为.15.(4分)如果双曲线的焦距、虚轴长、实轴长成等比数列,则离心率e为.16.(4分)已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),n∈N*,则f2014(x)=.17.(4分)设F为圆锥曲线的焦点,P是圆锥曲线上任意一点,则定义PF为圆锥曲线的焦半径.下列几个命题①平面内与两个定点F1,F2的距离之和为常数的点的轨迹是椭圆②平面内与两个定点F1,F2的距离之差的绝对值为常数的点的轨迹是双曲线③平面内与一个定点F和一条定直线l的距离相等的点的轨迹是抛物线④以椭圆的焦半径为直径的圆和以长轴为直径的圆相切⑤以抛物线的焦半径为直径的圆和y轴相切⑥以双曲线的焦半径为直径的圆和以实轴为直径的圆相切其中正确命题的序号是.三.解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤)18.(10分)已知c>0,且c≠1,设p:函数y=c x在R上单调递减;q:函数f (x)=x2﹣2cx+1在(,+∞)上为增函数,若“p且q”为假,“p或q”为真,求实数c的取值范围.19.(10分)已知函数f(x)=,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.20.(10分)过抛物线y2=2px(p>0)的焦点的一条直线和此抛物线相交,设两个交点的坐标分别为A(x1,y1)、B(x2,y2)求证:(1)y1y2=﹣p2(2)x1x2=.21.(14分)已知直线y=﹣x+1与椭圆+=1(a>b>0)相交于A、B两点.①若椭圆的离心率为,焦距为2,求线段AB的长;②若向量与向量互相垂直(其中O为坐标原点),当椭圆的离心率e∈[,]时,求椭圆的长轴长的最大值.2014-2015学年陕西省西安一中高二(上)期末数学试卷(理科)参考答案与试题解析一.选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)命题“若α=,则tan α=1”的逆否命题是()A.若α≠,则tan α≠1B.若α=,则tan α≠1C.若tan α≠1,则α≠D.若tan α≠1,则α=【解答】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C.2.(3分)抛物线y=﹣2x2的焦点坐标是()A.B.(﹣1,0)C.D.【解答】解:∵在抛物线y=﹣2x2,即x2=﹣y,∴p=,=,∴焦点坐标是(0,﹣),故选:D.3.(3分)下列运算正确的是()A.(ax2﹣bx+c)′=a(x2)′+b(﹣x)′B.(cosx•sinx)′=(sinx)′•cosx+(cosx)′•cosxC.(sinx﹣2x2)′=(sinx)′﹣(2)′(x2)′D.[(3+x2)(2﹣x3)]′=2x(2﹣x3)+3x2(3+x2)【解答】解:(ax2﹣bx+c)′=a(x2)′+b(﹣x)′,故正确;(cosx•sinx)′=(sinx)′•cosx+(cosx)′•sinx,故错误;(sinx﹣2x2)′=(sinx)′﹣2(x2)′,故错误;[(3+x2)(2﹣x3)]′=2x(2﹣x3)﹣3x2(3+x2),故错误;故选:A.4.(3分)下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”C.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题D.已知x∈R,则“x>1”是“x>2”的充分不必要条件【解答】A“若am2<bm2,则a<b”的逆命题是“若a<b,则am2<bm2”,m=0时不正确;B中“∃x∈R,x2﹣x>0”为特称命题,否定时为全称命题,结论正确;C命题“p∨q”为真命题指命题“p”或命题“q”为真命题,只要有一个为真即可,错误;D应为必要不充分条件.故选:B.5.(3分)若△ABC顶点B,C的坐标分别为(﹣4,0),(4,0),AC,AB边上的中线长之和为30,则△ABC的重心G的轨迹方程为()A.=1(y≠0)B.=1(x≠0)C.=1(x≠0)D.=1(y≠0)【解答】解:设AC、AB边上的中线分别为CD、BE∵BG=BE,CG=CD∴BG+CG=(BE+CD)=20(定值)因此,G的轨迹为以B、C为焦点的椭圆,2a=20,c=4∴a=10,b==,可得椭圆的方程为∵当G点在x轴上时,A、B、C三点共线,不能构成△ABC∴G的纵坐标不能是0,可得△ABC的重心G的轨迹方程为=1(y≠0)故选:D.6.(3分)直线y=kx+b与曲线y=ax2+2+lnx相切于点P(1,4),则b的值为()A.3B.1C.﹣1D.﹣3【解答】解:∵点P(1,4)在曲线y=ax2+2+lnx上,∴a+2=4,解得a=2,由题意得,=,∴在点P(1,4)处的切线斜率k=5,把P(1,4)代入y=kx+b,得b=﹣1,故选:C.7.(3分)已知命题p:∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≥0,则¬p 是()A.∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≤0B.∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≤0C.∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0D.∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0【解答】解:命题p:∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≥0是一个全称命题,其否定是一个特称命题,故¬p:∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0.故选:C.8.(3分)已知,则双曲线C1:与C2:的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等【解答】解:双曲线C1:可知a=sinθ,b=cosθ,2c=2(sin2θ+cos2θ)=2;双曲线C2:可知,a=cosθ,b=sinθ,2c=2(sin2θ+cos2θ)=2;所以两条双曲线的焦距相等.故选:D.9.(3分)已知函数f(x)在R上满足f(x)=2f(2﹣x)﹣x2+8x﹣8,则曲线y=f (x)在点(1,f(1))处的切线方程是()A.y=2x﹣1B.y=x C.y=3x﹣2D.y=﹣2x+3【解答】解:∵f(x)=2f(2﹣x)﹣x2+8x﹣8,∴f(1)=2f(1)﹣1∴f(1)=1∵f′(x)=﹣2f′(2﹣x)﹣2x+8∴f′(1)=﹣2f′(1)+6∴f′(1)=2根据导数的几何意义可得,曲线y=f(x)在点(1,f(1))处的切线斜率k=f′(1)=2∴过(1,1)的切线方程为:y﹣1=2(x﹣1)即y=2x﹣1故选:A.10.(3分)”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:将方程mx2+ny2=1转化为,根据椭圆的定义,要使焦点在y轴上必须满足,且,即m>n>0反之,当m>n>0,可得出>0,此时方程对应的轨迹是椭圆综上证之,”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的充要条件故选:C.11.(3分)已知点P在曲线y=上,a为曲线在点P处的倾斜角,则a的取值范围是()A.[0,)B.[,)C.(,]D.[,π)【解答】解:因为y=上的导数为y′=﹣=﹣,∵e x+e﹣x≥2=2,∴e x+e﹣x+2≥4,∴y′∈[﹣1,0)即tanα∈[﹣1,0),∵0≤α<π∴π≤α<π.即α的取值范围是[π,π).故选:D.12.(3分)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则||+||+||=()A.6B.4C.3D.2【解答】解:设A(x1,y1),B(x2,y2),C(x3,y3)抛物线焦点坐标F(1,0),准线方程:x=﹣1,∵++=,∴点F是△ABC重心,则x1+x2+x3=3y1+y2+y3=0而|FA|=x1﹣(﹣1)=x1+1|FB|=x2﹣(﹣1)=x2+1|FC|=x3﹣(﹣1)=x3+1∴|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6,故选:A.二.填空题(本大题共5小题,每小题4分,共20分.将答案填写在题中的横线上)13.(4分)已知命题p:∃x∈R,x2+2ax+a≤0.若命题p是假命题,则实数a 的取值范围是(0,1).【解答】解:命题p:∃x∈R,x2+2ax+a≤0的否定为命题p:∀x∈R,x2+2ax+a>0∵命题p为假命题∴命题¬p为真命题即x2+2ax+a>0恒成立∴△=4a2﹣4a<0解得0<a<1故答案为:(0,1)14.(4分)过点(1,0)作曲线y=e x的切线,则切线方程为e2x﹣y﹣e2=0.【解答】解:由线y=e x,得y′=e x,设切点为(),则,∴切线方程为,∵切线过点(1,0),∴,解得:x0=2.∴切线方程为y﹣e2=e2(x﹣2),整理得:e2x﹣y﹣e2=0.故答案为:e2x﹣y﹣e2=0.15.(4分)如果双曲线的焦距、虚轴长、实轴长成等比数列,则离心率e为.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距、虚轴长、实轴长成等比数列,∴(2b)2=(2a)•(2c)∴b2=ac,又∵b2=c2﹣a2∴c2﹣a2=ac∴e2﹣e﹣1=0∴e=,又在双曲线中e>1∴e=.故答案为:.16.(4分)已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),n∈N*,则f2014(x)=cosx﹣sinx.【解答】解:∵f1(x)=sin x+cos x,∴f2(x)=(sin x+cos x)′=cosx﹣sinx,∴f3(x)=﹣sin x﹣cos x,∴f4(x)=sin x﹣cos x,∴f5(x)=sin x+cos x;故f2014(x)=f2012(x)+2=f2(x)=cosx﹣sinx,故答案为:cosx﹣sinx.17.(4分)设F为圆锥曲线的焦点,P是圆锥曲线上任意一点,则定义PF为圆锥曲线的焦半径.下列几个命题①平面内与两个定点F1,F2的距离之和为常数的点的轨迹是椭圆②平面内与两个定点F1,F2的距离之差的绝对值为常数的点的轨迹是双曲线③平面内与一个定点F和一条定直线l的距离相等的点的轨迹是抛物线④以椭圆的焦半径为直径的圆和以长轴为直径的圆相切⑤以抛物线的焦半径为直径的圆和y轴相切⑥以双曲线的焦半径为直径的圆和以实轴为直径的圆相切其中正确命题的序号是④⑤⑥.【解答】解:①平面内与两定点距离之和为常数的点的轨迹是椭圆,如果距离之和对于零点的距离,轨迹表示的是线段,不表示椭圆,所以①不正确;②平面内与两定点距离之差绝对值为常数的点的轨迹是双曲线,这个常数必须小于两点的距离,此时是双曲线,否则不正确,所以②不正确;③当定点位于定直线时,此时的点到轨迹为垂直于直线且以定点为垂足的直线,只有当点不在直线时,轨迹才是抛物线,所以③错误;④设椭圆的方程为(a>b>0),F、F'分别是椭圆的左右焦点,作出以线段PF为直径的圆和以长轴为直径的圆x2+y2=a2,如图所示.设PF中点为M,连结PF′,∴OM是△PFF′的中位线,可得|OM|=|PF′|,即两圆的圆心距为|PF′|根据椭圆定义,可得|PF|+|PF′|=2a,∴圆心距|OM|=|PF′|=(2a﹣|PF|)=a﹣|PF|,即两圆的圆心距等于它们半径之差,因此,以PF为直径的圆与以长半轴为直径的圆x2+y2=a2相内切.即④正确;⑤抛物线y2=2px(p>0)的焦点F的坐标为(,0),设点P点坐标为(x1,y1),则以PF为直径的圆的圆心是(,),根据抛物线的定义|PF|与P到直线x=﹣是等距离的,所以PF为直径的圆的半径为,因此以PF为直径的圆与y轴的位置关系相切,即⑤正确;⑥设以实轴|F1F2|为直径的圆的圆心为O1,其半径r1=a,线段PF2为直径的圆的圆心为O2,其半径为r2=,当P在双曲线左支上时,|O1O2|=,∵|O1O2|﹣r2=﹣=a=r1,∴两圆内切.当P在双曲线右支上时,|O1O2|=,∵|O1O2|﹣r2=﹣=a=r1,∴r1+r2=|O1O2|∴两圆外切.故⑥正确故答案为:④⑤⑥.三.解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤)18.(10分)已知c>0,且c≠1,设p:函数y=c x在R上单调递减;q:函数f (x)=x2﹣2cx+1在(,+∞)上为增函数,若“p且q”为假,“p或q”为真,求实数c的取值范围.【解答】解∵函数y=c x在R上单调递减,∴0<c<1.(2分)即p:0<c<1,∵c>0且c≠1,∴¬p:c>1.(3分)又∵f(x)=x2﹣2cx+1在(,+∞)上为增函数,∴c≤.即q:0<c≤,∵c>0且c≠1,∴¬q:c>且c≠1.(5分)又∵“p或q”为真,“p且q”为假,∴p真q假,或p假q真.(6分)①当p真,q假时,{c|0<c<1}∩{c|c>,且c≠1}={c|}.(8分)②当p假,q真时,{c|c>1}∩{c|0<c}=∅.[(10分)]综上所述,实数c的取值范围是{c|}.(12分)19.(10分)已知函数f(x)=,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.【解答】解:∵函数f(x)=,g(x)=alnx,a∈R.∴f′(x)=,g′(x)=(x>0),由已知曲线y=f(x)与曲线y=g(x)在交点处有相同的切线,故有=alnx且=,解得a=,x=e2,∵两条曲线交点的坐标为(e2,e)切线的斜率为k=f′(e2)=,∴切线的方程为y﹣e=(x﹣e2).20.(10分)过抛物线y2=2px(p>0)的焦点的一条直线和此抛物线相交,设两个交点的坐标分别为A(x1,y1)、B(x2,y2)求证:(1)y1y2=﹣p2(2)x1x2=.【解答】证明:(1)设直线方程为x=my+,代入y2=2px,可得y2﹣2mpy﹣p2=0,∴y1y2=﹣p2(2)x1•x2=•=.21.(14分)已知直线y=﹣x+1与椭圆+=1(a>b>0)相交于A、B两点.①若椭圆的离心率为,焦距为2,求线段AB的长;②若向量与向量互相垂直(其中O为坐标原点),当椭圆的离心率e∈[,]时,求椭圆的长轴长的最大值.【解答】解:(1)∵,2c=2,∴a=,b=,∴椭圆的方程为.…(2分)联立,消去y得:5x2﹣6x﹣3=0,设A(x1,y1),B(x2,y2),则,,∴|AB|==•=.…(5分)(2)设A(x1,y1),B(x2,y2),∵,∴,即x1x2+y1y2=0,由,消去y得(a2+b2)x2﹣2a2x+a2(1﹣b2)=0,由△=(﹣2a2)2﹣4a2(a2+b2)(1﹣b2)>0,整理得a2+b2>1…(7分)∵,,∴y1y2=(﹣x1+1)(﹣x2+1)=x1x2﹣(x1+x2)+1,∴x1x2+y1y2=0,得:2x1x2﹣(x1+x2)+1=0,∴,整理得:a2+b2﹣2a2b2=0.…(9分)∴b2=a2﹣c2=a2﹣a2e2,代入上式得2a2=1+,∴,…(10分)∵,∴,∴,∴,∴,∴适合条件a2+b2>1.由此得,∴,故长轴长的最大值为.…(12分)赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x=,令()u g x=,若()y f u=为增,()u g x=为增,则[()]y f g x=为增;若()y f u=为减,()u g x=为减,则[()]y f g x=为增;若()y f u=为增,()u g x=为减,则[()]y f g x=为减;若()y f u=为减,()u g x=为增,则[()]y f g x=为减.(2)打“√”函数()(0)af x x ax=+>的图象与性质()f x分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x=的定义域为I,如果存在实数M满足:(1)对于任意的x I∈,都有()f x M≤;yxo(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
高二上学期期末考试数学卷(文科)一、选择题(包括12个小题,每小题5分,共60分) 1命题“2,21x R x x ∃∈+≤”的否定是( )A .2,21x R x x ∀∈+<B .2,21x R x x ∀∈+>C .2,21x R x x ∃∈+<D .2,21x R x x ∃∈+>2.某学校为调查高三年级的240名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取24名同学进行调查;第二种由教务处对高三年级的学生进行编号,从001到240,抽取学号最后一位为3的同学进行调查,则 这两种抽样方法依次为( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样 3.已知复数21Z i=-+,则( ) A.2Z = B. Z 的实部为1 C.Z 的虚部为1- D. Z 的共轭复数为1i +4.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同,先从中取出2个小球,则取出的小球标注的数字之差的绝对值为2或4的概率是( ) A.110 B. 310C. 25D. 145.函数()(3)xf x x e =-的单调递增区间是( )A .(,2)-∞ B. (0,2) C. (1,4) D. (2,)+∞6. “35m -<<”是“方程22153x y m m +=-+表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7. 如果右边程序执行后输出的结果是132,那么在程序UNTIL后面的“条件”应为( )A .i > 11B .i >=11C .i <=11D .i<118.若抛物线2y x =在点2(,)a a 处的切线与两坐标轴围成的三角形的面积为16,则a =( ) A .4B .4±C .8D .8±9.若直线10x y -+=与圆22:()2C x a y -+=有公共点,则实数a 的取值范围是( )A .[3,1]-- B. [1,3]- C .[3,1]- D .(,3][1,)-∞-+∞10.已知1212⨯=,221334⨯⨯=⨯,32135456⨯⨯⨯=⨯⨯,,以此类推,第5个等式为( )A. 4213575678⨯⨯⨯⨯=⨯⨯⨯ B. 521357956789⨯⨯⨯⨯⨯=⨯⨯⨯⨯ C. 4213579678910⨯⨯⨯⨯⨯=⨯⨯⨯⨯ D. 5213579678910⨯⨯⨯⨯⨯=⨯⨯⨯⨯11.若双曲线22221(0)x y a b a b-=>>的左、右焦点分别为12,F F ,线段12F F 被抛物线22(0)y bx b =>的焦点分成7:5的两段,则此双曲线的离心率为( )A.98B.C.4D.12.已知32()69f x x x x abc =-+-,a b c <<,且()()()0f a f b f c ===.现给出如下 结论:①(0)(1)0f f <;②(0)(1)0f f >;③(0)(3)0f f >;④(0)(3)0f f < ;⑤4abc <;⑥4abc >,其中正确结论的序号是( )A.①③⑤B.①④⑥C.②③⑤D.②④⑥ 二、填空题(包括4个小题,每个小题5分,共20分)13. 统计我校1000名学生的数学学业水平测试成绩,得到样本频率分布直方图如下(左) 图,规定不低于60分为及格,则及格人数是_______.14. 阅读下(右)面的程序框图,运行相应的程序,输出的结果为________.15. 四边形ABCD 是长方形,2AB =,1BC =,O 为AB 的中点,若在长方形ABCD 内随机取一点,则所取的点到O 点的距离大于1的概率为_______.16. 已知=,=,=,…,若=,(,a t 均为正实数),则类比以上等式,可推测,a t 的值,则a t +=__________.三、解答题:17.(本小题满分10分)解关于x 的不等式:2342x x -+-<18. (本小题满分12分) 有两个不透明的箱子,每个箱子里都装有4个完全相同的小球,球上分别标有数字1,2,3,4(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子中摸出一个球,谁摸出的球上标的数字大谁获胜(若数字相同则为平局),求甲获胜的概率;(2)摸球方法与(1)相同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不同则乙获胜,这样规定公平吗?19. (本小题满分12分)如图,在底面是矩形的四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA AB ==,4BC =,E 是PD 的中点, (1)求直线BC 与平面EAC 所成角的正弦值; (2)求B 点到平面EAC 的距离.20.(本小题满分12分)甲乙两个学校高三年级分别有1200人,1000人,为了了解两个学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两个学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算x ,y 的值。
银川一中2014/2015学年度(上)高二期末考试数 学 试 卷(文科)一、选择题:(每题5分)1.若复数z 满足i iz 42+=,则z 等于 A .2+4iB .2-4iC .4-2iD .4+2i2. 用反证法证明:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a 、b 、c 中至少有一个是偶数.用反证法证明时,下列假设正确的是( ) A .假设a 、b 、c 都是偶数 B .假设a 、b 、c 都不是偶数 C .假设a 、b 、c 至多有一个偶数 D .假设a 、b 、c 至多有两个偶数3.直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离 4.曲线的极坐标方程ρ=4sinθ化 成直角坐标方程为( ) A .x 2+(y-2)2=4 B .x 2+(y+2)2=4 C .(x-2)2+y 2=4 D .(x+2)2+y 2=45.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(πD .67,2(π6. 参数方程)(211为参数t ty t x ⎩⎨⎧-=+=表示什么曲线( )A .一个圆B .一个半圆C .一条射线D .一条直线7.将曲线C 按伸缩变换公式⎪⎩⎪⎨⎧==yy x x 32''变换得曲线方程为12'2'=+y x ,则曲线C 的方程为( )A.19422=+y x B 14922=+y x . c.14922=+y x D. 4x 229y +=1 8.已知函数()ln ln a xf x x+=在[)1,+∞上为减函数,则实数a 的取值范围是( )A .10a e<<B .a e ≥C .a e ≤D .0a e <≤9. 如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第100个图形由多少个点组成( )A. 9901B. 9902C. 9903D. 990010. 设a R ∈,若函数xy e ax =+,x R ∈,有大于零的极值点,则( )A .1a e >-B .1a >-C .1a e<- D .1a <-11. 已知32()32f x x x =-+,1,2x x 是区间[]1,1-上任意两个值,12()()M f x f x ≥-恒成立,则M 的最小值是( )A. 0.B. 2C. 4D. -212.已知定义在R 上的奇函数为f (x ),导函数为)('x f ,当]0,(-∞∈x 时,恒有)()('x f x xf -<,令F(x )=x f(x ),则满足F(3)>F(2x -1)的实数x 的取值范围是( )A .(-1,2) B. (-1,21) C. (-2,21) D. (-2,1) 二、填空题:(每题5分)13.函数3()12f x x x =-在区间[33]-,上的最小值是____. 14.设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为_________________.15.直线⎪⎪⎩⎪⎪⎨⎧+-=-=t y tx 221222(t 为参数)被圆x 2+y 2=4所截得的弦长是_____ 16.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为__________. 三、解答题:17.(本小题满分10分)已知直线l 经过点P(1,1),倾斜角6π=a 。
甘肃省高台县第一中学2014-2015学年高二上学期期末考试数学(文)试题1.抛物线x y 102=的焦点到准线的距离是 ( )A .25B .5C .215D .102.在等差数列{}n a 中,已知21=a ,1332=+a a ,则=++654a a a ( )A. 40B. 42C. 43D. 45 3.下列命题为真命题的是 ( )A .若ac bc >,则a b >B .若22a b >,则a b >C .若11a b>,则a b < D <,则a b < 4. 在ABC ∆中,8,105,30==∠=∠b C A ,则=a ( )A. 4B. 2C. 42D. 45 5.若命题“p 或q ”为真,“非p ”为真,则 ( )A.p 真q 真 B .p 假q 真 C .p 真q 假D .p 假q 假6.已知双曲线22221(0,0)x y a b a b-=>>的离心率2=e ,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为 ( )A. 22136108x y -=B. 221927x y -=C. 22110836x y -=D. 221279x y -=7. 设等比数列{}n a 的公比为2=q ,前n 项和为n S ,则=24a S ( ) A . 2 B. 4 C.215 D. 217 8.下图是导函数()x f y '=的图像,则函数()x f y =的极小值点为 ( )A. 63,,x x aB. 2xC. 63,x xD. 4x9. 已知:p 关于x 的不等式022>-+a ax x 的解集是R ,:q 01≤≤-a ,则p 是q 的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件10. 已知点1F 、2F 分别是椭圆22221x y a b+=的左、右焦点,过1F 且垂直于x 轴的直线与椭圆交于A 、B 两点,若2ABF ∆为正三角形,则该椭圆的离心率e 为( )A.121311. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是 ( ) A.(315,315-) B.(315,0) C.(0,315-) D.(1,315--)第Ⅱ卷二、填空题:(本大题共4小题,每小题5分,共20分.)13.双曲线19422-=-y x 的渐近线方程是 .14. 已知实数满足,则的取值范围是___ ___ _.15.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是__________。
2014-2015学年山东省济南一中高二(上)期末数学试卷一、选择题(每小题4分,共80分,每题只有一个正确选项.)1.(4分)下列不等式中成立的是()A.若a>b,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则>2.(4分)已知△ABC中,b=2,c=,三角形面积S=,则A等于()A.30°B.60°C.60°或150°D.60°或120°3.(4分)椭圆的两个焦点坐标分别为F1(﹣8,0),F2(8,0),且椭圆上一点到两焦点的距离之和为20,则此椭圆的方程为()A.+=1B.+=1C.+=1D.+=14.(4分)抛物线y2﹣4x=0上一点P到焦点的距离为3,那么P的横坐标是()A.3B.2C.D.﹣25.(4分)等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=()A.15B.7C.8D.166.(4分)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B“的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)经过点且与双曲线有共同渐近线的双曲线方程为()A.B.C.D.8.(4分)下列有关命题的说法错误的是()A.命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若p∧q为假命题,则p、q均为假命题D.对于命题p:∃x∈R,使得x2+x+1<0.则¬p:∀x∈R,均有x2+x+1≥0 9.(4分)在等差数列{a n}中,若a4+a6+a8+a10+a12=120,则2a10﹣a12的值为()A.20B.22C.24D.2810.(4分)在△ABC中,若sin2A=sinB•sinC且(b+c+a)(b+c﹣a)=3bc,则该三角形的形状是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形11.(4分)设{a n}是等比数列,m,n,s,t∈N*,则“m+n=s+t”是“a m•a n=a s•a t”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.(4分)若变量x,y满足约束条件,则z=2x+y的最大值和最小值分别为()A.4和3B.4和2C.3和2D.2和0 13.(4分)已知方程ax2+by2=1和ax+by+c=0(其中ab≠0,a≠b,c>0),它们所表示的曲线可能是()A.B.C.D.14.(4分)已知点A(﹣2,1),y2=﹣4x的焦点是F,P是y2=﹣4x上的点,为使|PA|+|PF|取得最小值,则P点的坐标是()A.(,1)B.(﹣2,)C.(,﹣1)D.(﹣2,)15.(4分)数列{a n},满足对任意的n∈N+,均有a n+a n+1+a n+2为定值.若a7=2,a9=3,a98=4,则数列{a n}的前100项的和S100=()A.132B.299C.68D.9916.(4分)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是()A.B.C.D.17.(4分)已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为()A.B.8C.9D.1218.(4分)已知双曲线mx2﹣ny2=1(m>0,n>0)的离心率为2,则椭圆mx2+ny2=1的离心率为()A.B.C.D.19.(4分)如图,F1、F2分别是双曲线﹣=1(a>0,b>0)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支交于A、B两点,若△F2AB是等边三角形,则双曲线的离心率为()A.B.2C.﹣1D.1+20.(4分)已知点A(﹣1,0)、B(1,0),P(x0,y0)是直线y=x+2上任意一点,以A、B为焦点的椭圆过点P.记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是()A.e与x0一一对应B.函数e(x0)无最小值,有最大值C.函数e(x0)是增函数D.函数e(x0)有最小值,无最大值二、填空题(本大题共5个题,每题4分,共20分,请将答案写到答题纸上.)21.(4分)抛物线y2=﹣8x的焦点到准线的距离为.22.(4分)已知a1=1,a n﹣a n﹣1=2(n≥2,n∈N*),则{a n}的前n项和为.23.(4分)若命题“存在x∈R,使得2x2﹣3ax+9<0成立”为假命题,则实数a 的取值范围是.24.(4分)已知正数组成的等比数列{a n},若a1•a20=100,那么a7+a14的最小值为.25.(4分)已知双曲线=1(a>b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的离心率为.三.简答题(本大题共4个题,共50分,请在答题纸上写出解答过程.)26.(12分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且cosB=,b=2,(Ⅰ)当A=30°时,求a的值;(Ⅱ)当△ABC的面积为3时,求a+c的值.27.(12分)等差数列{a n}中,a1=3,其前n项和为S n.等比数列{b n}的各项均为正数,b1=1,且b2+S2=12,a3=b3.(Ⅰ)求数列{a n}与{b n}的通项公式;(Ⅱ)求数列{}的前n项和T n.28.(12分)已知抛物线C:y2=4x与直线y=2x﹣4交于A,B两点.(1)求弦AB的长度;(2)若点P在抛物线C上,且△ABP的面积为12,求点P的坐标.29.(14分)已知F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,过F2(2,0)与x轴垂直的直线交椭圆于点M,且|MF2|=3.(1)求椭圆的标准方程;(2)已知点P(0,1),问是否存在直线1与椭圆交于不同的两点A,B,且AB 的垂直平分线恰好过P点?若存在,求出直线l斜率的取值范围;若不存在,请说明理由.2014-2015学年山东省济南一中高二(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共80分,每题只有一个正确选项.)1.(4分)下列不等式中成立的是()A.若a>b,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则>【解答】解:对于A,若a>b,c=0,则ac2=bc2,故A不成立;对于B,若a>b,比如a=2,b=﹣2,则a2=b2,故B不成立;对于C,若a<b<0,比如a=﹣3,b=﹣2,则a2>ab,故C不成立;对于D,若a<b<0,则a﹣b<0,ab>0,即有<0,即<,则>,故D成立.故选:D.2.(4分)已知△ABC中,b=2,c=,三角形面积S=,则A等于()A.30°B.60°C.60°或150°D.60°或120°【解答】解:∵△ABC中,b=2,c=,三角形面积S=,∴S=bcsinA=,即×2×sinA=,∴sinA=,A∈(0°,180°),∴A=60°或120°.故选:D.3.(4分)椭圆的两个焦点坐标分别为F1(﹣8,0),F2(8,0),且椭圆上一点到两焦点的距离之和为20,则此椭圆的方程为()A.+=1B.+=1C.+=1D.+=1【解答】解:∵两个焦点的坐标分别是F1(﹣8,0),F2(8,0),∴椭圆的焦点在横轴上,并且c=8,∴由椭圆的定义可得:2a=20,即a=10,∴由a,b,c的关系解得b=6,∴椭圆方程是+=1.故选:C.4.(4分)抛物线y2﹣4x=0上一点P到焦点的距离为3,那么P的横坐标是()A.3B.2C.D.﹣2【解答】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|PF|=3;x+=3,∴x=2,故选:B.5.(4分)等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=()A.15B.7C.8D.16【解答】解:∵4a1,2a2,a3成等差数列.a1=1,∴4a1+a3=2×2a2,即4+q2﹣4q=0,即q2﹣4q+4=0,(q﹣2)2=0,解得q=2,∴a1=1,a2=2,a3=4,a4=8,∴S4=1+2+4+8=15.故选:A.6.(4分)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B“的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:当a=3时,A={1,3}所以A⊆B,即a=3能推出A⊆B;反之当A⊆B时,所以a=3或a=2,所以A⊆B成立,推不出a=3故“a=3”是“A⊆B”的充分不必要条件故选:A.7.(4分)经过点且与双曲线有共同渐近线的双曲线方程为()A.B.C.D.【解答】解:由题意可得:设所求双曲线为,把点代入,解得λ=2,∴所示的双曲线方程为,即故选:D.8.(4分)下列有关命题的说法错误的是()A.命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若p∧q为假命题,则p、q均为假命题D.对于命题p:∃x∈R,使得x2+x+1<0.则¬p:∀x∈R,均有x2+x+1≥0【解答】解:命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”故A为真命题;“x=1”是“x2﹣3x+2=0”的充分不必要条件.故B为真命题;若p∧q为假命题,则p、q存在至少一个假命题,但p、q不一定均为假命题,故C为假命题;命题p:∃x∈R,使得x2+x+1<0.则非p:∀x∈R,均有x2+x+1≥0,故D为真命题;故选:C.9.(4分)在等差数列{a n}中,若a4+a6+a8+a10+a12=120,则2a10﹣a12的值为()A.20B.22C.24D.28【解答】解:由a4+a6+a8+a10+a12=(a4+a12)+(a6+a10)+a8=5a8=120,解得a8=24,且a8+a12=2a10,则2a10﹣a12=a8=24.故选:C.10.(4分)在△ABC中,若sin2A=sinB•sinC且(b+c+a)(b+c﹣a)=3bc,则该三角形的形状是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【解答】解:若sin2A=sinB•sinC,则a2=bc.又(b+c+a)(b+c﹣a)=3bc,∴b2+c2﹣a2=bc,∴cosA==,∴A=60°.再根据a2=bc以及b2+c2﹣a2=bc,可得(b﹣c)2=0,∴b=c,故该三角形的形状是等边三角形,故选:D.11.(4分)设{a n}是等比数列,m,n,s,t∈N*,则“m+n=s+t”是“a m•a n=a s•a t”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:设等比数列的公比为q,则由通项公式可得a m•a n=,a s•a t=,若m+n=s+t,则a m•a n=a s•a t成立,即充分性成立,当q=1时,若a m•a n=a s•a t,则m+n=s+t不一定成立,即必要性不成立,故“m+n=s+t”是“a m•a n=a s•a t”充分不必要条件,故选:A.12.(4分)若变量x,y满足约束条件,则z=2x+y的最大值和最小值分别为()A.4和3B.4和2C.3和2D.2和0【解答】解:满足约束条件的可行域如下图所示在坐标系中画出可行域平移直线2x+y=0,经过点N(1,0)时,2x+y最小,最小值为:2,则目标函数z=2x+y的最小值为2.经过点M(2,0)时,2x+y最大,最大值为:4,则目标函数z=2x+y的最大值为:4.故选:B.13.(4分)已知方程ax2+by2=1和ax+by+c=0(其中ab≠0,a≠b,c>0),它们所表示的曲线可能是()A.B.C.D.【解答】解:方程ax+by+c=0化成:y=﹣x﹣,ax2+by2=1化成:,对于A:由双曲线图可知:a>0,b<0,∴﹣>0,即直线的斜率大于0,故错;对于B:由双曲线图可知:b>0,a<0,∴﹣>0,即直线的斜率大于0,截距为正数,故B正确;对于C:由椭圆图可知:b>0,a>0,∴﹣<0,即直线的斜率小于0,故错;对于D:由椭圆图可知:b>0,a>0,∴﹣<0,即直线的斜率小于0,故错;故选:B.14.(4分)已知点A(﹣2,1),y2=﹣4x的焦点是F,P是y2=﹣4x上的点,为使|PA|+|PF|取得最小值,则P点的坐标是()A.(,1)B.(﹣2,)C.(,﹣1)D.(﹣2,)【解答】解:过P作PK⊥l(l为抛物线的准线)于K,则|PF|=|PK|,∴|PA|+|PF|=|PA|+|PK|.∴当P点的纵坐标与A点的纵坐标相同时,|PA|+|PK|最小,此时P点的纵坐标为1,把y=1代入y2=﹣4x,得,即当P点的坐标为(,1)时,|PA|+|PF|最小.故选:A.15.(4分)数列{a n},满足对任意的n∈N+,均有a n+a n+1+a n+2为定值.若a7=2,a9=3,a98=4,则数列{a n}的前100项的和S100=()A.132B.299C.68D.99【解答】解:对任意的n∈N+,均有a n+a n+1+a n+2为定值,∴(a n+1+a n+2+a n+3)﹣(a n+a n+1+a n+2)=0,故a n+3=a n,∴{a n}是以3为周期的数列,故a1=a7=2,a2=a98=4,a3=a9=3,∴S100=(a1+a2+a3)+…+(a97+a98+a99)+a100=33(2+4+3)+a1=299.故选:B.16.(4分)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是()A.B.C.D.【解答】解:设长轴为2a,短轴为2b,焦距为2c,则2a+2c=2×2b,即a+c=2b⇒(a+c)2=4b2=4(a2﹣c2),所以3a2﹣5c2=2ac,同除a2,整理得5e2+2e﹣3=0,∴或e=﹣1(舍去),故选:B.17.(4分)已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为()A.B.8C.9D.12【解答】解:不等式⇔(x+2)(x+1)<0,解得﹣2<x<﹣1.∴不等式的解集为{x|﹣2<x<﹣1},∴a=﹣2,b=﹣1.∵点A(﹣2,﹣1)在直线mx+ny+1=0上,∴﹣2m﹣n+1=0,化为2m+n=1.∵mn>0,∴==5+=9,当且仅当m=n=时取等号.∴的最小值为9.故选:C.18.(4分)已知双曲线mx2﹣ny2=1(m>0,n>0)的离心率为2,则椭圆mx2+ny2=1的离心率为()A.B.C.D.【解答】解:双曲线mx2﹣ny2=1化为标准方程为:∵双曲线mx2﹣ny2=1(m>0,n>0)的离心率为2,∴∴m=3n椭圆mx2+ny2=1化为标准方程为:∴椭圆mx2+ny2=1的离心率的平方为=∴椭圆mx2+ny2=1的离心率为故选:C.19.(4分)如图,F1、F2分别是双曲线﹣=1(a>0,b>0)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支交于A、B两点,若△F2AB是等边三角形,则双曲线的离心率为()A.B.2C.﹣1D.1+【解答】解:连结AF1,∵F1F2是圆O的直径,∴∠F1AF2=90°,即F1A⊥AF2,又∵△F2AB是等边三角形,F1F2⊥AB,∴∠AF2F1=∠AF2B=30°,因此,Rt△F1AF2中,|F1F2|=2c,|F1A|=|F1F2|=c,|F2A|=|F1F2|=c.根据双曲线的定义,得2a=|F2A|﹣|F1A|=(﹣1)c,解得c=(+1)a,∴双曲线的离心率为e==+1.故选:D.20.(4分)已知点A(﹣1,0)、B(1,0),P(x0,y0)是直线y=x+2上任意一点,以A、B为焦点的椭圆过点P.记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是()A.e与x0一一对应B.函数e(x0)无最小值,有最大值C.函数e(x0)是增函数D.函数e(x0)有最小值,无最大值【解答】解:由题意可得c=1,椭圆离心率e==.故当a取最大值时e取最小,a取最小值时e取最大.由椭圆的定义可得PA+PB=2a,a=.由于PA+PB 有最小值而没有最大值,即a有最小值而没有最大值,故椭圆离心率e 有最大值而没有最小值,故B正确,且D不正确.当直线y=x+2和椭圆相交时,这两个交点到A、B两点的距离之和相等,都等于2a,故这两个交点对应的离心率e相同,故A不正确.由于当x0的取值趋于负无穷大时,PA+PB=2a趋于正无穷大;而当当x0的取值趋于正无穷大时,PA+PB=2a也趋于正无穷大,故函数e(x0)不是增函数,故C不正确.故选:B.二、填空题(本大题共5个题,每题4分,共20分,请将答案写到答题纸上.)21.(4分)抛物线y2=﹣8x的焦点到准线的距离为4.【解答】解:抛物线y2=﹣8x的焦点F(﹣2,0),准线方程x=2,∴抛物线y2=﹣8x的焦点到准线的距离为4.故答案为:4.22.(4分)已知a1=1,a n﹣a n﹣1=2(n≥2,n∈N*),则{a n}的前n项和为n2.【解答】解:由a1=1,a n﹣a n﹣1=2(n≥2,n∈N*),数列{a n}是等差数列,首项为1,公差为2,∴前n项和S n=n+=n2.故答案为:n2.23.(4分)若命题“存在x∈R,使得2x2﹣3ax+9<0成立”为假命题,则实数a 的取值范围是[﹣2,2] .【解答】解:命题“∃x∈R,使2x2﹣3ax+9<0成立”是假命题,即“2x2﹣3ax+9≥0恒成立”是真命题.△=9a2﹣72≤0,解得﹣2≤a≤2,故答案为:[﹣2,2]24.(4分)已知正数组成的等比数列{a n},若a1•a20=100,那么a7+a14的最小值为20.【解答】解:∵正数组成的等比数列{a n},∵a1•a20=100,∴a1•a20=100=a7a14,那么a 7+a14≥2=20,当且仅当a7=a14时取等号.∴a7+a14的最小值为20.故答案为:20.25.(4分)已知双曲线=1(a>b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的离心率为.【解答】解:∵右顶点为A,∴A(a,0),∵F为抛物线x2=2py(p>0)的焦点,∴F(0,),∵|FA|=c,∴①抛物线的准线方程为y=﹣,代入双曲线的方程得x=±,∴=2c②,由①②,得=2c,即c2=2a2,∵c2=a2+b2,∴a=b,∴双曲线的离心率为.故答案为:.三.简答题(本大题共4个题,共50分,请在答题纸上写出解答过程.)26.(12分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且cosB=,b=2,(Ⅰ)当A=30°时,求a的值;(Ⅱ)当△ABC的面积为3时,求a+c的值.【解答】解:(Ⅰ)因为,所以.…(2分)由正弦定理,可得.…(4分)所以.…(6分)(Ⅱ)因为△ABC的面积=3,且,所以,ac=10.…(8分)由余弦定理b2=a2+c2﹣2accosB,…(9分)得,即a2+c2=20.…(10分)所以(a+c)2 ﹣2ac=(a+c)2 ﹣20=20,故(a+c)2=40,…(12分)所以,.…(13分)27.(12分)等差数列{a n}中,a1=3,其前n项和为S n.等比数列{b n}的各项均为正数,b1=1,且b2+S2=12,a3=b3.(Ⅰ)求数列{a n}与{b n}的通项公式;(Ⅱ)求数列{}的前n项和T n.【解答】解:(Ⅰ)设{a n}公差为d,数列{b n}的公比为q,由已知可得,又q>0,∴,∴a n=3+3(n﹣1)=3n,.(Ⅱ)由(Ⅰ)知数列{a n}中,a1=3,a n=3n,∴,∴,∴T n=(1﹣)==.28.(12分)已知抛物线C:y2=4x与直线y=2x﹣4交于A,B两点.(1)求弦AB的长度;(2)若点P在抛物线C上,且△ABP的面积为12,求点P的坐标.【解答】解:(1)设A(x1,y1)、B(x2,y2),由得x2﹣5x+4=0,△>0.由韦达定理有x1+x2=5,x1x2=4,∴|AB|==,所以弦AB的长度为3.(2)设点,设点P到AB的距离为d,则,=••=12,即.∴S△PAB∴,解得y o=6或y o=﹣4∴P点为(9,6)或(4,﹣4).29.(14分)已知F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,过F2(2,0)与x轴垂直的直线交椭圆于点M,且|MF2|=3.(1)求椭圆的标准方程;(2)已知点P(0,1),问是否存在直线1与椭圆交于不同的两点A,B,且AB 的垂直平分线恰好过P点?若存在,求出直线l斜率的取值范围;若不存在,请说明理由.【解答】解:(1)由题意可得:,解得c=2,a=4,b2=12.∴椭圆的标准方程为.(2)假设存在直线1与椭圆交于不同的两点A,B,且AB的垂直平分线恰好过P点.则直线l的斜率存在,设l方程为:y=kx+t,A(x1,y1),B(x2,y2),线段AB的中点N(x0,y0).联立,化为(3+4k2)x2+8ktx+4t2﹣48=0,△=64k2t2﹣4(3+4k2)(4t2﹣48)>0,化为:12+16k2>t2.∴x1+x2=,x1x2=.∴x0==,y0=kx0+t=.∴k PN==,∵PN⊥l,∴•k=﹣1,化为:t=﹣3﹣4k2.代入△>0,可得12+16k2>(﹣3﹣4k2)2.化为16k4+8k2﹣3<0,解得:,即.因此存在直线1与椭圆交于不同的两点A,B,且AB的垂直平分线恰好过P点.直线l的斜率范围是.。
湖北省部分重点中学2014——2015学年度上学期高二期末考试文科数学参考答案一、选择题11. 1 12.8 14.71 15.6174 16. (,1)-∞- 17.三、解答题:18. 解:(1)若p 为真,则:02124)1(2≥⨯⨯--=∆m 解得:1-≤m 或3≥m若q 为真,则:⎩⎨⎧>++>082822m m m解得:24-<<-m 或4>m ……………………4分“p ∨q ”为真命题,“p∧q ”为假命题,p q ∴一真一假…………………6分 若p 真q 假,则:13244m m m m ≤-≥⎧⎨-≤≤≤-⎩或或解得:341m m ≤≤≤≤-或-2或4m ≤-若p 假q 真,则:13424m m m -<<⎧⎨-<<->⎩或解集为φ ………………………10分 综上,实数m 的取值范围为:341m m ≤≤≤≤-或-2或4m ≤-……………12分 19.解:(1)画出坐标系,把所给的五组点的坐标描到坐标系中,作出散点图如图所示:从散点图中发现宣传费支出与销售额近似成线性相关关系. ………………4分 (2)x = 5525= ,y =5250=50, 51()()130i i i x x y y =--=∑, 521()20i i x x =-=∑51521()()ˆˆˆ6.5,17.5()iii ii x x y y bay bx x x ==--∴===-=-∑∑ …………………………9分 ∴所求回归直线方程ˆ 6.517.5yx =+ ……………………10分 (3)由上面求得的回归直线方程可知,当10x =万元时,ˆ 6.51017.582.5y=⋅+=(万元). 即这种产品的销售额大约为82.5万元。
…………………12分 20.解:(1)∵平面ABCD ⊥平面ABE ,面ABCD面ABE AB =,BC AB ⊥,BC ⊂面ABCD ,∴BC ⊥面ABE . 又∵AE ⊂面ABE ,∴BC AE ⊥. ∵E 在以AB 为直径的半圆上, ∴AE BE ⊥, 又∵BEBC B =,BC BE ⊂、面BCE ,∴AE ⊥面BCE . 又∵CE ⊂面BCE ,∴EA EC ⊥. ……………………… 5分(2)① ∵//AB CD ,AB ⊄面CED ,CD ⊂面CED ,∴//AB 平面CED . 又∵AB ⊂面ABE ,平面ABE平面CED EF =,∴//AB EF . ……………… 8分 ②取AB 中点O ,EF 的中点'O , 在'RT OO F ∆中,1OF =,1'2O F =,∴'OO = 由(1)得:BC ⊥面ABE ,又已知//AD BC ,∴AD ⊥平面ABE .故13E ADF D AEF AEF V V S AD --∆==⋅⋅11'32EF OO AD =⋅⋅⋅⋅=. … 13分 21.解:(1) 若1212,,,,1n n a a a R a a a ∈+++=.求证:222121n a a a n+++≥. 6分(2) 构造函数2222222121212()()()()2()n n n f x x a x a x a nx a a a x a a a =-+-++-=-+++++++∵对一切x R ∈,恒有()0f x ≥, ∴22212124()4()0n n a a a n a a a ∆=+++-+++≤.从而得22212121nn a a a a a a nn++++++≥=. 14分22.解 (1)解:由||||,//2121B F A F B F A F =,得21||||||||1212==A F B F EF EF ,从而2122=+-c ca cc a ,整理得223c a =,故离心率33==a c e …………4分 (2)解:由(1)知,22222c c a b =-=,所以椭圆的方程可以写为222632c y x =+设直线AB 的方程为)(2ca x k y -=即)3(c x k y -= 设),(),(2211y x B y x A ,则它们的坐标满足方程组⎩⎨⎧=+-=222632)3(c y x c x k y 消去y 整理,得062718)32(222222=-+-+c c k cx k x k 依题意,3333,0)31(4822<<->-=∆k k c 而212218,23k c x x k +=+①,22212227623k c c x x k -=+②由题设知,点B 为线段AE 的中点,所以2123x c x =+ ③联立①③式,解得2212229292,2323k c c k c cx x k k -+==++,将结果代入②中解得32±=k …………………………………9分另解:2221122222236(1)236(2)x y c x y c ⎧+=⎪⎨+=⎪⎩,1224(2)(1)y y =∴⨯-又得:1222222211211149,32(3)90,x x c x c x x c x c x y -=+=∴+-=∴==又所以,32±=k (3)由(2)知,23,021c x x ==,当32-=k 时,得A )2,0(c .由已知得)2,0(c C - 线段1AF 的垂直平分线l 的方程为),2(2222cx c y +-=-直线l 与x 轴的交点)0,2(c 是C AF 1∆的外接圆的圆心,因此外接圆的方程为222)2()2(c cy c x +=+- 直线B F 2的方程为)(2c x y -=,于是点),(n m H 满足方程组⎪⎩⎪⎨⎧-==+-)(249)2(222c m n c n c m 由0≠m,解得5,33c m n ==,故522=m n .(另外:由两式消去c 也可得到nm 的值)当32=k 时,同理可得522=m n ……………………………14分。
2014-2015学年高二(上)期末数学试卷(一)一、填空题1.已知条件p:x≤1,条件q:,则¬p是q的条件.2.命题“∃x∈[0,3],使x2﹣2x+m≤0”是假命题,则实数m的取值范围为.3.(2015•张家港市校级模拟)已知函数f(x)=2f′(1)lnx﹣x,则f(x)的极大值为.4.若直线y=﹣x+b为函数的一条切线,则实数b= .5.在平面直角坐标系xoy中,记不等式组表示的平面区域为D.若对数函数y=log a x(a>1)的图象与D有公共点,则a的取值范围是.6.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.7.已知p:﹣2≤x≤11,q:1﹣3m≤x≤3+m(m>0),若¬p是¬q的必要不充分条件,则实数m的取值范围为.8.函数的图象经过四个象限,则a的取值范围是.9.已知函数f(x)=x3﹣x2﹣3x,直线l:9x+2y+c=0.若当x∈[﹣2,2]时,函数y=f(x)的图象恒在直线l的下方,则c的取值范围是.10.若椭圆=1(m>n>0)和双曲线﹣=1(a>0,b>0)有相同的焦点F1,F2,P是两条曲线的一个交点,则PF1•PF2的值是.11.已知椭圆的上焦点为F,直线x+y+1=0和x+y﹣1=0与椭圆相交于点A,B,C,D,则AF+BF+CF+DF= .12.在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.13.长为6的线段AB两端点在抛物线x2=4y上移动,在线段AB中点纵坐标的最小值为.14.定义在R上的函数f(x)满足:f′(x)>1﹣f(x),f(0)=6,f′(x)是f(x)的导函数,则不等式e x f(x)>e x+5(其中e为自然对数的底数)的解集为.二、解答题(共6小题,满分46分)15.已知p:实数x满足x2﹣4ax+3a2<0,其中a>0; q:实数x满足2<x≤3.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.16.在四棱锥S﹣ABCD中,AB∥CD,AB=BC=2,CD=SD=1,BC⊥CD,M为SB的中点,DS⊥面SAB.(1)求证:CM∥面SAD;(2)求证:CD⊥SD;(3)求四棱锥S﹣ABCD的体积.17.(某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交a(3≤a≤5)元的管理费,预计当每件产品的售价为x(9≤x≤11)元时,一年的销售量为(12﹣x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).18.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5.过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标;(3)以M为圆心,MB为半径作圆M,当K(m,0)是x轴上一动点时,讨论直线AK与圆M 的位置关系.19.如图,已知椭圆C:=1(a>b>0)的离心率为,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O 为坐标原点,求证:|OR|•|OS|为定值.20.设函数f(x)=x2,g(x)=alnx+bx(a>0).(1)若f(1)=g(1),f′(1)=g′(1)求F(x)=f(x)﹣g(x)的极小值;(2)在(1)的结论下,是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m同时成立?若存在,求出k和m的值.若不存在,说明理由.(3)设G(x)=f(x)+2﹣g(x)有两个零点x1和x2,若x0=,试探究G′(x0)值的符号.2014-2015学年高二(上)期末数学试卷(一)参考答案与试题解析一、填空题1.已知条件p:x≤1,条件q:,则¬p是q的充分不必要条件.考点:充要条件.专题:阅读型.分析:先求出条件q满足的条件,然后求出¬p,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题¬p的关系.解答:解:条件q:,即x<0或x>1¬p:x>1∴¬p⇒q为真且q⇒¬p为假命题,即¬p是q的充分不必要条件故答案为:充分不必要点评:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.2.命题“∃x∈[0,3],使x2﹣2x+m≤0”是假命题,则实数m的取值范围为(1,+∞)..考点:特称命题.专题:简易逻辑.分析:写出命题的否命题,据已知命题为假命题,得到否命题为真命题;分离出m;通过导函数求出不等式右边对应函数的在范围,求出m的范围.解答:解:∵命题“∃x∈[0,3]时,满足不等式x2﹣2x+m≤0是假命题,∴命题“∀x∈[0,3]时,满足不等式x2﹣2x+m>0”是真命题,∴m>﹣x2+2x在[0,3]上恒成立,令f(x)=﹣x2+2x,x∈[0,3],∴f(x)max=f(1)=1,∴m>1.故答案为:(1,+∞).点评:本题考查了命题的真假判断与应用、二次函数恒成立问题.解答关键是将问题等价转化为否命题为真命题即不等式恒成立,进一步将不等式恒成立转化为函数的最值.3.(2015•张家港市校级模拟)已知函数f(x)=2f′(1)lnx﹣x,则f(x)的极大值为2ln2﹣2 .考点:利用导数研究函数的极值.专题:导数的综合应用.分析:先求导数,当x=1时,即可得到f′(1),再令导数大于0或小于0,解出x的范围,即得到函数的单调区间,进而可得函数的极大值.解答:解:由于函数f(x)=2f′(1)lnx﹣x,则f′(x)=2f′(1)×﹣1(x>0),f′(1)=2f′(1)﹣1,故f′(1)=1,得到f′(x)=2×﹣1=,令f′(x)>0,解得:x<2,令f′(x)<0,解得:x>2,则函数在(0,2)上为增函数,在(2,+∞)上为减函数,故f(x)的极大值为f(2)=2ln2﹣2故答案为:2ln2﹣2点评:本题考查了利用导数研究函数的极值,属于基础题.4.若直线y=﹣x+b为函数的一条切线,则实数b= ±2 .考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用.分析:设切点为P(m,n),求出函数的导数,得切线斜率为﹣1=,再根据切点P既在切线y=﹣x+b上又在函数图象上,列出关于m、n、b的方程组,解之即可得到实数b之值.解答:解:函数的导数为设直线y=﹣x+b与函数相切于点P(m,n),则解之得m=n=1,b=2或m=n=﹣1,b=﹣2综上所述,得b=±2故答案为:±2点评:本题给出已知函数图象的一条切线,求参数b的值,着重考查了导数的运算公式与法则和利用导数研究曲线上某点切线方程等知识,属于基础题.5.在平面直角坐标系xoy中,记不等式组表示的平面区域为D.若对数函数y=log a x(a>1)的图象与D有公共点,则a的取值范围是(1,] .考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,根据对数函数的图象和性质,即可得到结论.解答:解:作出不等式组对应的平面区域如图:若a>1,当对数函数图象经过点A时,满足条件,此时,解得,即A(2,3),此时log a2=3,解得a=,∴当1<a≤时,满足条件.∴实数a的取值范围是1<a≤,故答案为:(1,]点评:本题主要考查线性规划的应用,利用对数函数的图象和性质,通过数形结合是解决本题的关键.6.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可.解答:解:由题意一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以l=2,半圆的弧长为2π,圆锥的底面半径为2πr=2π,r=1,所以圆锥的体积为:=.故答案为:.点评:本题考查旋转体的条件的求法,侧面展开图的应用,考查空间想象能力,计算能力.7.已知p:﹣2≤x≤11,q:1﹣3m≤x≤3+m(m>0),若¬p是¬q的必要不充分条件,则实数m的取值范围为[8,+∞).考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:将条件¬p是¬q的必要不充分条件,转化为q是p的必要不充分条件,进行求解.解答:解:因为¬p是¬q的必要不充分条件,所以q是p的必要不充分条件,即p⇒q,但q推不出p,即,即,所以m≥8.故答案为:[8,+∞)点评:本题主要考查充分条件和必要条件的应用,利用逆否命题的等价性,将条件进行转化是解决本题的关键,主要端点等号的取舍.8.函数的图象经过四个象限,则a的取值范围是(﹣96,﹣15).考点:利用导数研究函数的极值.专题:导数的概念及应用.分析:首先讨论a=0时原函数图象的情况,当a≠0时,求出原函数的导函数,分a>0和a<0两种情况讨论原函数的单调性,求出函数的极值点并求解极值,当a>0时,要使原函数的图象经过四个象限,需要极大值大于0,且极小值小于0,此时a的值不存在;当a<0时,要使原函数的图象经过四个象限,则需要极小值小于0,且极大值大于0,由此解得a 的取值范围.解答:解:由,若a=0时,原函数化为f(x)=80.为常数函数,不合题意;f′(x)=ax2+ax﹣2a=a(x2+x﹣2)=a(x+2)(x﹣1).若a>0时,当x∈(﹣∞,﹣2),x∈(1,+∞)时有f′(x)>0,函数f(x)在(﹣∞,﹣2),(1,+∞)上为增函数.当x∈(﹣2,1)时,f′(x)<0,函数f(x)在(﹣2,1)上为减函数.所以函数f(x)在x=﹣2时取得极大值=.函数f(x)在x=1时取得极小值.因为函数的图象先增后减再增,要使函数的图象经过四个象限,则,解①得:a>﹣15.解②得:a<﹣96.此时a∈∅;若a<0,当x∈(﹣∞,﹣2),x∈(1,+∞)时有f′(x)<0,函数f(x)在(﹣∞,﹣2),(1,+∞)上为减函数.当x∈(﹣2,1)时,f′(x)>0,函数f(x)在(﹣2,1)上为增函数.所以函数f(x)在x=﹣2时取得极小值=.函数f(x)在x=1时取得极大值.为函数的图象先减后增再减,要使函数的图象经过四个象限,则,解得﹣96<a<﹣15.所以使函数的图象经过四个象限的a的取值范围是(﹣96,﹣15).故答案为(﹣96,﹣15).点评:本题考查了利用导数研究函数的极值,考查了函数的极值与函数图象之间的关系,思考该问题时考虑数与形的结合,属中档题.9.已知函数f(x)=x3﹣x2﹣3x,直线l:9x+2y+c=0.若当x∈[﹣2,2]时,函数y=f(x)的图象恒在直线l的下方,则c的取值范围是c<﹣.考点:利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:分离参数,构造函数,求出函数再闭区间上的最值即可.解答:解:∵当x∈[﹣2,2]时,函数y=f(x)的图象恒在直线l的下方,即x3﹣x2﹣3x<﹣x﹣,在x∈[﹣2,2]时恒成立,即c<﹣x3+2x2﹣3x,令g(x)=﹣x3+2x2﹣3x,∴g'(x)=﹣2x2+4x﹣3,∵g'(x)=﹣2x2+4x﹣3=﹣2(x﹣1)2﹣1<0恒成立,∴g(x)在∈[﹣2,2]上单调递减,故当x∈[﹣2,2]时,[g(x)]min=g(2)=﹣∴c<﹣,故答案为:c<﹣,点评:本题主要考查函数的求导运算、闭区间上的恒成立问题.闭区间上的恒成立问题一般都是转化为求最值,即使参数大于最大值或小于最小值的问题.10.若椭圆=1(m>n>0)和双曲线﹣=1(a>0,b>0)有相同的焦点F1,F2,P是两条曲线的一个交点,则PF1•PF2的值是m﹣a2.考点:椭圆的简单性质;双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:运用椭圆和双曲线的定义写出两个定义式,然后平方,观察之后,两式相减,求出整体未知数PF1•PF2的值.解答:解析:PF1+PF2=2,|PF1﹣PF2|=2a,所以PF+PF+2PF1•PF2=4m,PF﹣2PF1•PF2+PF=4a2,两式相减得:4PF1•PF2=4m﹣4a2,∴PF1•PF2=m﹣a2.故答案:m﹣a2.点评:本题主要考查圆锥曲线的综合问题.解决本题的关键在于根据椭圆和双曲线有相同的焦点F1、F2,利用定义化简.11.( 2011•南京校级模拟)已知椭圆的上焦点为F,直线x+y+1=0和x+y﹣1=0与椭圆相交于点A,B,C,D,则AF+BF+CF+DF= 8 .考点:椭圆的应用;直线与圆锥曲线的综合问题.专题:计算题.分析:由题意可知AB=CF+DF=,则AF+BF+AB=4a=8,进而可得AF+BF=8﹣AB=8﹣,由此可知答案.解答:解:直线x+y+1=0代入椭圆,并整理得7x2+6x﹣9=0,设A(x1,y1),B(x2,y2),则,,∴同理,可得CD=CF+DF=.∵AF+BF+AB=4a=8,∴AF+BF=8﹣AB=8﹣,∴AF+BF+CF+DF=(8﹣)+=8.答案:8.点评:本题考查椭圆的性质及其应用,解题时要注意公式的灵活运用.12.在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx ﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.13.长为6的线段AB两端点在抛物线x2=4y上移动,在线段AB中点纵坐标的最小值为 2 .考点:抛物线的简单性质.专题:空间位置关系与距离.分析:如图所示,设线段AB的中点为M,分别过点A,B,C,作AD⊥x轴,BE⊥x轴,MN ⊥x轴,垂足分别为D,E,N.利用梯形的中位线和抛物线的定义可得|MN|=(|AD|+|BE|)=(|AF|﹣1+|BF|﹣1)≥(|AB|﹣2)即可得出.解答:解:如图所示,设线段AB的中点为M,分别过点A,B,C,作AD⊥x轴,BE⊥x轴,MN⊥x轴,垂足分别为D,E,N.则|MN|=(|AD|+|BE|)=(|AF|﹣1+|BF|﹣1)≥(|AB|﹣2)=(6﹣2)=2.当且仅当线段AB过焦点时取等号.故AB的中点到y轴的距离的最小值为2.故答案为:2点评:本题考查了抛物线的定义和梯形的中位线定理,考查了分析问题和解决问题的能力.14.定义在R上的函数f(x)满足:f′(x)>1﹣f(x),f(0)=6,f′(x)是f(x)的导函数,则不等式e x f(x)>e x+5(其中e为自然对数的底数)的解集为(0,+∞).考点:导数的乘法与除法法则.专题:函数的性质及应用.分析:构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解解答:解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f'(x)>1﹣f(x),∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+5,∴g(x)>5,又∵g(0)=e0f(0)﹣e0=6﹣1=5,∴g(x)>g(0),∴x>0,∴不等式的解集为(0,+∞)故答案为:(0,+∞).点评:本题考查函数的导数与单调性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.二、解答题(共6小题,满分46分)15.已知p:实数x满足x2﹣4ax+3a2<0,其中a>0; q:实数x满足2<x≤3.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.考点:复合命题的真假.专题:简易逻辑.分析:(1)先通过解一元二次不等式求出p下的x的取值范围:a<x<3a,a=1时,所以p:1<x<3.根据p∧q为真得p,q都真,所以,所以解该不等式组即得x的取值范围;(2)若p是q的必要不充分条件,则:,所以解该不等式组即得a的取值范围.解答:解:(1)p:由原不等式得,(x﹣3a)(x﹣a)<0,∵a>0为,所以a<x<3a;当a=1时,得到1<x<3;q:实数x满足2<x≤3;若p∧q为真,则p真且q真,∴实数x的取值范围是:(2,3);(2)p是q的必要不充分条件,即由p得不到q,而由q能得到p;∴,解得1<a≤2;∴实数a的取值范围是(1,2].点评:考查解一元二次不等式,p∧q的真假和p,q真假的关系,以及充分条件、必要条件、必要不充分条件的概念.16.在四棱锥S﹣ABCD中,AB∥CD,AB=BC=2,CD=SD=1,BC⊥CD,M为SB的中点,DS⊥面SAB.(1)求证:CM∥面SAD;(2)求证:CD⊥SD;(3)求四棱锥S﹣ABCD的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)利用平行线中的一条直线与令一条直线垂直,推出另一条直线垂直证明CD⊥SD;(2)取SA中点N,连接ND,NM,证明NMCD是平行四边形,通过ND∥MC,证明CM∥面SAD;(3)利用V S﹣ABCD:V S﹣ABD=S ABCD:S△ABD,求出V S﹣ABD,即可求四棱锥S﹣ABCD的体积.解答:(1)证明:取SA的中点,∵M为SB的中点,∴MN∥AB,MN=,∵AB=2,CD=1,∴MN∥CD,MN=DC,∴四边形MNDC为平行四边形,∴CM∥ND,ND⊂面SAD,CM⊄面SAD;∴CM∥面SAD证明:(2)∵DS⊥面SAB,AB⊂面SAB.∴DS⊥AB,∵AB∥DC,∴DS⊥DC,解:(3)V S﹣ABCD:V S﹣ABD=S ABCD:S△ABD=3:2,过D作DH⊥AB,交于H,由题意得,BD=AD==,在Rt△DSA,Rt△DSB中,SA=SB==2.所以,V S﹣ABD=V D﹣SAB=S△ABS×DS==,四棱锥S﹣ABCD的体积为:×=;点评:考查直线与直线垂直,直线与平面平行的证明,几何体的体积的求法,考查空间想象能力,计算能力.17.(某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交a(3≤a≤5)元的管理费,预计当每件产品的售价为x(9≤x≤11)元时,一年的销售量为(12﹣x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).考点:导数在最大值、最小值问题中的应用.专题:应用题.分析:(1)根据题意先求出每件产品的利润,再乘以一年的销量,便可求出分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)根据L与x的函数关系式先求出该函数的导数,令L′(x)=0便可求出极值点,从而求出时最大利润,再根据a的取值范围分类讨论当a取不同的值时,最大利润各为多少.解答:解:(1)分公司一年的利润L(万元)与售价x的函数关系式为:L=(x﹣3﹣a)(12﹣x)2,x∈[9,11].(2)L′(x)=(12﹣x)2+2(x﹣3﹣a)(12﹣x)×(﹣1)=(12﹣x)2﹣2(x﹣3﹣a)(12﹣x)=(12﹣x)(18+2a﹣3x).令L′(x)=0得x=6+a或x=12(不合题意,舍去).∵3≤a≤5,∴8≤6+a≤.在x=6+a两侧L′的值由正值变负值.所以,当8≤6+a≤9,即3≤a≤时,L max=L(9)=(9﹣3﹣a)(12﹣9)2=9(6﹣a);当9<6+a≤,即<a≤5时,L max=L(6+a)=(6+a﹣3﹣a)[12﹣(6+a)]2=4(3﹣a)3,即当3≤a≤时,当每件售价为9元,分公司一年的利润L最大,最大值Q(a)=9(6﹣a)万元;当<a≤5时,当每件售价为(6+a)元,分公司一年的利润L最大,最大值Q(a)=4(3﹣a)3万元.点评:本题主要考查了函数的导数的求法以及利用导数来求得函数的最值问题,是各地高考的热点和难点,解题时注意自变量的取值范围以及分类讨论等数学思想的运用,属于中档题.18.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5.过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标;(3)以M为圆心,MB为半径作圆M,当K(m,0)是x轴上一动点时,讨论直线AK与圆M 的位置关系.考点:抛物线的标准方程;直线与圆的位置关系;抛物线的简单性质.专题:综合题;压轴题.分析:(Ⅰ)抛物线的准线为,于是,p=2,由此可知抛物线方程为y2=4x.(Ⅱ)由题意得B,M的坐标,,,直线FA的方程,直线MN的方程,由此可知点N的坐标即可;(Ⅲ)由题意得,圆M的圆心坐标为(0,2),半径为2.当m=4时,直线AP的方程为x=4,此时,直线AP与圆M相离;当m≠4时,写出直线AP的方程,圆心M(0,2)到直线AP的距离,由此可判断直线AP与圆M的位置关系.解答:解:(1)抛物线,∴p=2.∴抛物线方程为y2=4x.(2)∵点A的坐标是(4,4),由题意得B(0,4),M(0,2),又∵F(1,0),∴,∴,则FA的方程为y=(x﹣1),MN的方程为.*k*s*5*u解方程组,∴.(3)由题意得,圆M的圆心是点(0,2),半径为2.当m=4时,直线AK的方程为x=4,此时,直线AK与圆M相离,当m≠4时,直线AK的方程为,即为4x﹣(4﹣m)y﹣4m=0,圆心M(0,2)到直线AK的距离,令d>2,解得m>1∴当m>1时,直线AK与圆M相离;当m=1时,直线AK与圆M相切;当m<1时,直线AK与圆M相交.点评:本题考查抛物线的标准方程、抛物线的简单性质、直线和圆锥曲线的位置关系,解题时要认真审题,仔细解答.19.如图,已知椭圆C:=1(a>b>0)的离心率为,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O 为坐标原点,求证:|OR|•|OS|为定值.考点:直线与圆锥曲线的关系;圆的标准方程;椭圆的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)依题意,得a=2,,由此能求出椭圆C的方程.(2)法一:点M与点N关于x轴对称,设M(x1,y1),N(x1,﹣y1),设y1>0.由于点M 在椭圆C上,故.由T(﹣2,0),知=,由此能求出圆T的方程.法二:点M与点N关于x轴对称,故设M(2cosθ,sinθ),N(2cosθ,﹣sinθ),设sin θ>0,由T(﹣2,0),得=,由此能求出圆T的方程.(3)法一:设P(x0,y0),则直线MP的方程为:,令y=0,得,同理:,…(10分)故,由此能够证明|OR|•|OS|=|x R|•|x S|=|x R•x S|=4为定值.法二:设M(2cosθ,sinθ),N(2cosθ,﹣sinθ),设sinθ>0,P(2cosα,sinα),其中sinα≠±sinθ.则直线MP的方程为:,由此能够证明|OR|•|OS|=|x R|•|x S|=|x R •x S|=4为定值.解答:解:(1)依题意,得a=2,,∴c=,b==1,故椭圆C的方程为.…(3分)(2)方法一:点M与点N关于x轴对称,设M(x1,y1),N(x1,﹣y1),不妨设y1>0.由于点M在椭圆C上,所以.(*)…(4分)由已知T(﹣2,0),则,,∴=(x1+2)2﹣==.…(6分)由于﹣2<x1<2,故当时,取得最小值为.由(*)式,,故,又点M在圆T上,代入圆的方程得到.故圆T的方程为:.…(8分)方法二:点M与点N关于x轴对称,故设M(2cosθ,sinθ),N(2cosθ,﹣sinθ),不妨设sinθ>0,由已知T(﹣2,0),则=(2cosθ+2)2﹣sin2θ=5cos2θ+8cosθ+3=.…(6分)故当时,取得最小值为,此时,又点M在圆T上,代入圆的方程得到.故圆T的方程为:.…(8分)(3)方法一:设P(x0,y0),则直线MP的方程为:,令y=0,得,同理:,…(10分)故(**)…(11分)又点M与点P在椭圆上,故,,…(12分)代入(**)式,得:.所以|OR|•|OS|=|x R|•|x S|=|x R•x S|=4为定值.…方法二:设M(2cosθ,sinθ),N(2cosθ,﹣sinθ),不妨设sinθ>0,P(2cosα,sinα),其中sinα≠±sinθ.则直线MP的方程为:,令y=0,得,同理:,…(12分)故.所以|OR|•|OS|=|x R|•|x S|=|x R•x S|=4为定值.…点评:本题考查椭圆的方程和几何性质、圆的方程等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想.20.设函数f(x)=x2,g(x)=alnx+bx(a>0).(1)若f(1)=g(1),f′(1)=g′(1)求F(x)=f(x)﹣g(x)的极小值;(2)在(1)的结论下,是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m同时成立?若存在,求出k和m的值.若不存在,说明理由.(3)设G(x)=f(x)+2﹣g(x)有两个零点x1和x2,若x0=,试探究G′(x0)值的符号.考点:利用导数研究函数的极值;利用导数求闭区间上函数的最值.专题:计算题;函数的性质及应用;导数的综合应用.分析:(1)只要利用条件f(1)=g(1),f′(1)=g′(1),即可求出a、b的值,再求F(x)的导数,求单调区间,即可得到极小值;(2)由于f(x)与g(x)有一个公共点(1,1),而函数f(x)=x2在点(1,1)的切线方程为y=2x﹣1,只要验证 f(x)≥2x﹣1,g(x)≤2x﹣1 都成立即可;(3)由G(x)=f(x)+2﹣g(x)有两个零点x1和x2,得到x1,x2满足的关系式,由x0=,再经过讨论换元可证得G′(x0)>0.解答:解:(1)由f(1)=g(1),得 b=1.∵f′(x)=2x,g′(x)=+b,f′(1)=g′(1),∴2=a+b,解得a=b=1,则g(x)=lnx+x.F(x)=x2﹣lnx﹣x(x>0)的导数为F′(x)=2x﹣1﹣=,当x>1时,F′(x)>0,F(x)递增,当0<x<1时,F′(x)<0,F(x)递减,则有x=1时,F(x)取得极小值,且为0;(2)因f(x)与g(x)有一个公共点(1,1),而函数f(x)=x2在点(1,1)的切线方程为y=2x﹣1,下面验证 f(x)≥2x﹣1,g(x)≤2x﹣1,都成立即可.由x2﹣2x+1≥0,得x2≥2x﹣1,知f(x)≥2x﹣1恒成立.设h(x)=lnx+x﹣(2x﹣1),即h(x)=lnx﹣x+1,h′(x)=﹣1=,∴当0<x<1时,h′(x)>0;当x>1时,h′(x)<0.∴h(x)在(0,1)上递增,在(1,+∞)上递减,∴h(x)在x=1时取得最大值,∴h(x)=lnx+x﹣(2x﹣1)的最大值为h(1)=0,则lnx+x≤2x﹣1恒成立.故存在这样的k和m,且k=2,m=﹣1,满足条件.(3)G′(x0)的符号为正,理由为:∵G(x)=x2+2﹣alnx﹣bx有两个不同的零点x1,x2,则有 x12+2﹣alnx1﹣bx1=0,x22+2﹣alnx2﹣bx2=0,两式相减得x22﹣x12﹣a(lnx2﹣lnx1)﹣b(x2﹣x1)=0.即x1+x2﹣b=,又x1+x2=2x0,则G′(x0)=2x0﹣﹣b=(x1+x2﹣b)﹣=﹣=[ln ﹣]=[ln﹣],①当0<x1<x2时,令=t,则t>1,且G′(x0)=[lnt﹣],故μ(t)=lnt﹣(t>1),μ′(t)=﹣=>0,则μ(t)在[1,+∞)上为增函数,而μ(1)=0,∴μ(t)>0,即lnt﹣>0,又a>0,x2﹣x1>0,∴G′(x0)>0,②当0<x2<x1时,同理可得:G′(x0)>0,综上所述:G′(x0)值的符号为正.点评:本题考查了导数的综合应用,熟练利用导数求极值和最值及恰当分类讨论、换元是解决问题的关键.21。
2014-2015学年江苏省常州一中高二(上)期末数学试卷一、填空题:1.(3分)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=.2.(3分)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为.3.(3分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m等于.4.(3分)(1+x)8(1+y)4的展开式中x2y2的系数是.5.(3分)设函数f(x)=,则当x>0时,f[f(x)]表达式的展开式中常数项为.6.(3分)36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得2000的所有正约数之和为.7.(3分)从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为(结果用数值表示).8.(3分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,若日加工零件个数大于样本均值的工人为优秀工人,则从该车间12名工人中,任取2人,恰有1名优秀工人的概率为.9.(3分)某篮运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率.(用数值作答)10.(3分)随机变量ξ的分布列如下:其中a,b,c成等差数列,若期望E(ξ)=,则方差V(ξ)的值是.11.(3分)已知一组抛物线y=ax2+bx+c,其中a为1、3、5、7中任取的一个数,b为2、4、6、8中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线交点处的切线相互平行的概率是.12.(3分)把数列{}的所有项按照从大到小,左大右小的原则写成如图所示的数表,第k行有2k﹣1个数,第k行的第s个数(从左数起)记为(k,s),则可记为.13.(3分)设x,y,z∈R,且满足:,则x+y+z=.14.(3分)已知a,b,c均为正数,则的最小值为.二、解答题:15.设极坐标系的极点和直角坐标系的原点重合,极轴与x轴正半轴重合,两个坐标系的长度单位相同.已知曲线C的极坐标方程为ρ=4sinθ,直线l的参数方程为为参数),P、Q分别是曲线C和直线l上的动点,求P、Q之间距离d的最小值.16.已知二阶矩阵A的属于特征值﹣1的一个特征向量为,属于特征值3的一个特征向量为,求矩阵A.17.在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(Ⅰ)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列和数学期望.18.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.19.设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c.20.某品牌设计了编号依次为1,2,3,…,n(n≥4,且n∈N*)的n种不同款式的时装,由甲、乙两位模特分别独立地从中随机选择i,j(0≤i,j≤n,且i,j∈N)种款式用来拍摄广告.(1)若i=j=2,且甲在1到m(m为给定的正整数,且2≤m≤n﹣2)号中选择,乙在(m+1)到n号中选择.记P st(1≤s≤m,m+1≤t≤n)为款式(编号)s和t同时被选中的概率,求所有的P st的和;(2)求至少有一个款式为甲和乙共同认可的概率.2014-2015学年江苏省常州一中高二(上)期末数学试卷参考答案与试题解析一、填空题:1.(3分)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=﹣1.【分析】根据x2产生的两种可能分别得到其系数的等式解出a.【解答】解:因为(1+ax)(1+x)5的展开式中x2的系数为5,则=5,即10+5a=5,解得a=﹣1;故答案为:﹣1.2.(3分)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为252.【分析】根据题意,用间接法分析:先求出所有三位数的个数,再计算并排除其中没有重复数字的三位数个数,即可得答案.【解答】解:根据题意,用0,1,2,…,9十个数字,百位数从非0的9个数字中选取一位,十位数从0到9的10个数字中选一个,个位数从0到9的10个数字中选一个,则所有三位数个数为:9×10×10=900;其中没有重复数字的三位数百位数从非0的9个数字中选取一位,十位数从余下的9个数字中选一个,个位数再从余下的8个中选一个,所以共有:9×9×8=648,所以可以组成有重复数字的三位数的个数为:900﹣648=252;故答案为:252.3.(3分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m等于6.【分析】根据二项式系数的性质求出a和b,再利用组合数的计算公式,结合方程13a=7b,求出m的值.【解答】解:∵m为正整数,(x+y)2m展开式的二项式系数的最大值为a,∴a=,同理,(x+y)2m+1展开式的二项式系数的最大值为b,∴b=.∵13a=7b,∴13=7,即13×=7×,∴13=7×,∴13(m+1)=7(2m+1);解得m=6.故答案为:6.4.(3分)(1+x)8(1+y)4的展开式中x2y2的系数是168.【分析】根据(1+x)8和(1+y)4的展开式的通项公式可得x2y2的系数.【解答】解:根据(1+x)8和(1+y)4的展开式的通项公式可得,x2y2的系数为C82•C42=168,故答案为:1685.(3分)设函数f(x)=,则当x>0时,f[f(x)]表达式的展开式中常数项为﹣20.【分析】依题意,可求得f[f(x)]=(﹣+)6,利用二项展开式的通项公式,即可求得f[f(x)]表达式的展开式中常数项.【解答】解:当x>0时,f[f(x)]=f(﹣)=(﹣+)6的展开式中,通项为T r=(﹣)n﹣r•()r,+1则常数项为:(﹣)3•()3=﹣20.故答案为:﹣20.6.(3分)36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得2000的所有正约数之和为4836.【分析】这是一个类比推理的问题,在类比推理中,参照上述方法,2000的所有正约数之和可按如下方法得到:因为2000=24×53,所以2000的所有正约数之和为(1+2+22+23+24)(1+5+52+53),即可得出答案.【解答】解:类比36的所有正约数之和的方法,有:2000的所有正约数之和可按如下方法得到:因为2000=24×53,所以2000的所有正约数之和为(1+2+22+23+24)(1+5+52+53)=4836.可求得2000的所有正约数之和为4836.故答案为:4836.7.(3分)从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为(结果用数值表示).【分析】先求对立事件“选出的3人中只有男同学或只有女同学”的概率,然后根据对立事件的概率和为1可得答案.【解答】解:从10人中选出的3人中只有男同学或只有女同学的概率为:=,则选出的3人中男女同学都有的概率为:1﹣=.故答案为:.8.(3分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,若日加工零件个数大于样本均值的工人为优秀工人,则从该车间12名工人中,任取2人,恰有1名优秀工人的概率为.【分析】茎叶图中共同的数字是数字的十位,这是解决本题的突破口,根据所给的茎叶图数据,代入平均数公式求出结果;再利用比例关系即可推断该车间12名工人中有几名优秀工人的人数;设“从该车间12名工人中,任取2人,恰有1名优秀工人”为事件A,结合组合数利用概率的计算公式即可求解事件A的概率【解答】解:样本均值为(17+19+20+21+25+30)=22;故抽取的6名工人中有2名为优秀工人,所以12名工人中有4名优秀工人;设“从该车间12名工人中,任取2人,恰有1名优秀工人”为事件A,所以P(A)==,即恰有1名优秀工人的概率为,故答案为:.9.(3分)某篮运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率.(用数值作答)【分析】判断是否为独立重复试验的关键是每次试验事件A的概率不变,并且每次试验的结果同其他各次试验的结果无关,重复是指试验为一系列的试验,并非一次试验,而是多次,但要注意重复事件发生的概率相互之间没有影响.【解答】解:∵由题意知运动员在三分线投球的命中率是定值,投球10次∴本题是一个独立重复试验∴所求概率故答案为:10.(3分)随机变量ξ的分布列如下:其中a,b,c成等差数列,若期望E(ξ)=,则方差V(ξ)的值是.【分析】根据题意,列出方程组,求出a、b、c的值,再计算E(ξ2)、Dξ的值.【解答】解:根据题意,得;a+b+c=1,①2b=a+c,②﹣1•a+0•b+1•c=;③由①②③联立,解得a=,b=,c=;又E(ξ)=,∴E(ξ2)=1×+0×+1×=,∴方差Dξ=E(ξ2)﹣(Eξ)2=﹣=.故答案为:.11.(3分)已知一组抛物线y=ax2+bx+c,其中a为1、3、5、7中任取的一个数,b为2、4、6、8中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线交点处的切线相互平行的概率是.【分析】这一组抛物线共4×4条,从中任意抽取两条共有C162种不同的方法.它们在与直线x=1交点处的切线的斜率k=y'|x==a+b.讨论a+b=5,a+b=7,a+b=9,a+b=11,a+b=13,由分类计数原理知任取两条切线平行的情形,根据古典概型公式得到结果.【解答】解:由题意知这一组抛物线共4×4=16条,从中任意抽取两条共有C162=120种不同的方法.它们在与直线x=交点处的切线的斜率k=y'|x==a+b.若a+b=5,有两种情形,从中取出两条,有C22种取法;若a+b=7,有三种情形,从中取出两条,有C 32种取法;若a+b=9,有四种情形,从中取出两条,有C42种取法;若a+b=11,有三种情形,从中取出两条,有C32种取法;若a+b=13,有两种情形,从中取出两条,有C22种取法.由分类计数原理知任取两条切线平行的情形共有C22+C32+C42+C32+C22=14种,∴所求概率为.故答案为:.12.(3分)把数列{}的所有项按照从大到小,左大右小的原则写成如图所示的数表,第k行有2k﹣1个数,第k行的第s个数(从左数起)记为(k,s),则可记为(10,495).【分析】由题意可知k=10,由第9行的最后一个数是,由于=495,分析可知答案.【解答】解:∵是数列{}的第1006项,前9行一共排了20+2+…+28==511个数,前10行一共排了20+2+…+29==1023个数,∴在第10行.∵第9行的最后一个数是.∴第10行的第一个数是.∵=495,∴是第10行的第495个数.∴可记为(10,495).故答案为:(10,495)13.(3分)设x,y,z∈R,且满足:,则x+y+z=.【分析】根据柯西不等式,算出(x+2y+3z)2≤14(x2+y2+z2)=14,从而得到x+2y+3z恰好取到最大值,由不等式的等号成立的条件解出x=、y=且z=,由此即可得到x+y+z的值.【解答】解:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)当且仅当时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合,可得x+2y+3z恰好取到最大值∴=,可得x=,y=,z=因此,x+y+z=++=故答案为:14.(3分)已知a,b,c均为正数,则的最小值为6.【分析】两次运用基本不等式即可证明结论.【解答】解:∵a,b,c均为正数,≥3+(3)2≥2=3=6当且仅当a=b=c时取等号,故答案为:6二、解答题:15.设极坐标系的极点和直角坐标系的原点重合,极轴与x轴正半轴重合,两个坐标系的长度单位相同.已知曲线C的极坐标方程为ρ=4sinθ,直线l的参数方程为为参数),P、Q分别是曲线C和直线l上的动点,求P、Q之间距离d的最小值.【分析】求出曲线C的直角坐标方程为x2+(y﹣2)2=4,直线l的普通方程为x ﹣y﹣2=0,由P、Q分别是曲线C和直线l上的动点,能求出P、Q之间距离d的最小值.【解答】解:∵曲线C的极坐标方程为ρ=4sinθ,即ρ2=4ρsinθ,∴曲线C的直角坐标方程为x2+y2=4y,即x2+(y﹣2)2=4,∴曲线C是以(0,2)为圆心,半径为2的圆.∵直线l的参数方程为为参数),∴消去参数t,得直线l的普通方程为x﹣y﹣2=0.∵P、Q分别是曲线C和直线l上的动点,∴P、Q之间距离d的最小值.16.已知二阶矩阵A的属于特征值﹣1的一个特征向量为,属于特征值3的一个特征向量为,求矩阵A.【分析】利用二阶矩阵的特征值与特征向量的意义与性质即可得出.【解答】解:设A=,由题知=,=3,可得,解得:,∴A=.17.在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(Ⅰ)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列和数学期望.【分析】(I)设事件A表示:“观众甲选中3号歌手且观众乙未选中3号歌手”,观众甲选中3号歌手的概率为,观众乙未选中3号歌手的概率为1﹣=,利用互斥事件的概率公式,即可求得结论;(II)由题意,X可取0,1,2,3,求出相应的概率,即可得到X的分布列与数学期望.【解答】解:(Ⅰ)设事件A表示:“观众甲选中3号歌手且观众乙未选中3号歌手”,观众甲选中3号歌手的概率为,观众乙未选中3号歌手的概率为1﹣=,∴P(A)=,∴观众甲选中3号歌手且观众乙未选中3号歌手的概率为;(Ⅱ)X表示3号歌手得到观众甲、乙、丙的票数之和,则X可取0,1,2,3.观众甲选中3号歌手的概率为,观众乙选中3号歌手的概率为,当观众甲、乙、丙均未选中3号歌手时,这时X=0,P(X=0)=(1﹣)(1﹣)2=,当观众甲、乙、丙只有一人选中3号歌手时,这时X=1,P(X=1)=(1﹣)2+(1﹣)(1﹣)+(1﹣)(1﹣)=,当观众甲、乙、丙只有二人选中3号歌手时,这时X=2,P(X=2)=•(1﹣)+(1﹣)•+(1﹣)=,当观众甲、乙、丙都选中3号歌手时,这时X=3,P(X=3)=•()2=,X的分布列如下:∴数学期望EX=0×+1×+2×+3×=.18.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P (X=4)∴只需求出P(X=k)(k=1,2,3,4)即可记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)==∴所求的分布列为数学期望为E(Y)=51×+48×+45×+42×=4619.设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c.【分析】(1)ξ的可能取值有:2,3,4,5,6,求出相应的概率可得所求ξ的分布列;(2)先列出η的分布列,再利用η的数学期望和方差公式,即可得到结论.【解答】解:(1)由题意得ξ=2,3,4,5,6,P(ξ=2)==;P(ξ=3)==;P(ξ=4)==;P(ξ=5)==;P(ξ=6)==.故所求ξ的分布列为(2)由题意知η的分布列为Eη==Dη=(1﹣)2+(2﹣)2+(3﹣)2=.得,解得a=3c,b=2c,故a:b:c=3:2:1.20.某品牌设计了编号依次为1,2,3,…,n(n≥4,且n∈N*)的n种不同款式的时装,由甲、乙两位模特分别独立地从中随机选择i,j(0≤i,j≤n,且i,j∈N)种款式用来拍摄广告.(1)若i=j=2,且甲在1到m(m为给定的正整数,且2≤m≤n﹣2)号中选择,乙在(m+1)到n号中选择.记P st(1≤s≤m,m+1≤t≤n)为款式(编号)s和t同时被选中的概率,求所有的P st的和;(2)求至少有一个款式为甲和乙共同认可的概率.【分析】(1)求出甲从1到m(m为给定的正整数,且2≤m≤n﹣2)号中任选两款,乙从(m+1)到n号中任选两款的所有等可能基本事件的种数,款式s 和t(1≤s≤m,m+1≤t≤n)同时被选中包含的基本事件的种数,利用古典概型概率计算公式可求;(2)求出甲、乙从n种不同款式的服装中选取服装的所有可能种数,确定“没有一个款式为甲和乙共同认可”包含的基本事件种数,利用对立事件的概率公式可求.【解答】解:(1)甲从1到m(m为给定的正整数,且2≤m≤n﹣2)号中任选两款,乙从(m+1)到n号中任选两款的所有等可能基本事件的种数为,记“款式s和t(1≤s≤m,m+1≤t≤n)同时被选中”为事件B,则事件B包含的基本事件的种数为,所以P(B)=,则所有的P st的和为:;(4分)(2)甲从n种不同款式的服装中选取服装的所有可能种数为:=2n,同理得,乙从n种不同款式的服装中选取服装的所有可能种数为2n,据分步乘法计数原理得,所有等可能的基本事件的种数为:2n•2n=4n,记“至少有一个款式为甲和乙共同认可”为事件A,则事件A的对立事件为:“没有一个款式为甲和乙共同认可”,而事件包含的基本事件种数为:++…+==(1+2)n=3n,所以.(10分)。
2014-2015学年高二上学期期末考试数学(文)试题一、选择题( 共 12 题 ,共 48 分)1、如图所示,在河岸ac 一侧测量河的宽度,测量以下四组数据,较适宜的是( ).a.c ,α,γ b.c ,b ,αc.c ,a ,β d.b ,α,γ2、从a 处望b 处的仰角为α,从b 处望a 处的俯角为β,则α,β的关系是( ).a.α>βb.α=βc.α+ β=90°d.α+ β=180°3、如图,已知两座灯塔a 和b 与海洋观测站c 的距离都等于a km,灯塔a 在观测站c 的北偏东20°,灯塔b 在观测站c 的南偏东40°,则灯塔a 与灯塔b 的距离为( ).a.a km b.km c.km d.2 a km4、在高20 m的楼顶测得对面一塔顶的仰角为60°,塔基的俯角为45°,则这座塔的高度为( ).a.m b.mc.m d.m5、在△abc 中,若sin a ∶sin b =2∶5,则边b ∶a 等于( ).a.2∶5或4∶25 b.5∶2 c.25∶4 d.2∶56、在△abc 中,sin 2 a -sin 2 c +sin 2 b =sin a ·sin b ,则∠c 为( ).a.60° b.45° c.120° d.30°7、在△abc 中,已知a =4,b =6,∠c =120°,则sin a 的值为( ).a. b. c. d.8、△abc 的三个内角∠a ,∠b ,∠c 所对的边分别为a ,b ,c ,a sin a sin b+ b cos 2 a =,则=( ).a. b. c. d.9、根据下列条件,确定△abc 有两解的是( ).a.a =18,b =20,∠a =120°b.a =60,c =48,∠b =60°c.a =3,b =6,∠a =30°d.a =14,b =16,∠a =45°10、在△abc 中,∠a ∶∠b ∶∠c =1∶2∶3,那么三边之比a ∶b ∶c 等于( ).a.1∶2∶3 b.3∶2∶1c.1∶∶2 d.2∶∶111、在△abc 中,a =2,∠a =30°,∠c =45°,则s △abc =( ).a. b. c. d.12、在△abc 中,∠a ,∠b ,∠c 的对边分别是a ,b ,c .若a 2 -b 2 =,sin c =sin b ,则∠a =( ).a.30° b.60° c.120° d.150°第II卷(非选择题)试卷第二部分共有 10 道试题。
二、填空题( 共 4 题 ,共 12 分)1、如图为曲柄连杆结构示意图,当曲柄OA 在OB 位置时,连杆端点P 在Q 的位置,当OA 自OB 按顺时针旋转α角时,P 和Q 之间的距离为x ,已知OA =25 cm,AP =125 cm,若OA ⊥AP ,则x 等于__________(精确到0.1 cm).2、一船在海面A 处望见两灯塔P ,Q 在北偏西15°的一条直线上,该船沿东北方向航行4海里到达B 处,望见灯塔P 在正西方向,灯塔Q 在西北方向,则两灯塔的距离为__________.3、在△ABC 中,,,,则b =________.4、在平行四边形ABCD 中,,,∠BAC =45°,则AD =________.三、解答题( 共 6 题 ,共 51 分)1、如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量.已知AB =50 m,BC =120 m,于A 处测得水深AD =80 m,于B 处测得水深BE =200 m,于C 处测得水深CF =110 m,求∠DEF 的余弦值.2、如图,A ,B 两个小岛相距21海里,B 岛在A 岛的正南方,现在甲船从A 岛出发,以9海里/时的速度向B 岛行驶,而乙船同时以6海里/时的速度离开B 岛向南偏东60°方向行驶,行驶多少时间后,两船相距最近?并求出两船的最近距离.3、为了测定不能到达底部的铁塔的高PO ,可以有哪些方法?4、在△ABC 中,a =8,b =7,∠B =60°,求c 及S △ABC .5、在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知a 2 -c 2 =2 b ,且sin B =4cos A sin C ,求B .6、在△ABC 中,已知( a 2 + b 2 )sin(∠A -∠B )=( a 2 -b 2 )sin(∠A +∠B ),试判断△ABC 的形状.参考答案解析部分一、选择题1、D解析:本题中的c ,a ,β不好直接测量.2、B3、B4、B解析:如图所示,则AE =DE =AB =20 m,∴CE =AE tan 60°=m,∴CD =CE + ED =m.5、B6、A7、A解析:由余弦定理可求得,再由正弦定理得.8、D9、D解析:,又b >a ,∴∠B 有两解.故△ABC 有两解.10、C解析:易知∠A =,∠B =,∠C =,∴a ∶b ∶c =sin A ∶sin B ∶sin C =1∶∶2.11、C解析:由得,∠B =105°,S △ABC =ac sin B =.12、A解析:利用正弦定理,sin C =sin B 可化为.又∵,∴,即a 2 =7 b 2 ,.在△ABC 中,,∴∠A =30°.二、填空题1、22.5 cm解析:x =PQ =OA + AP -OP =25+125-≈22.5(cm).2、海里解析:如图,在△ABP 中,AB =4,∠BAP =60°,∠ABP =45°,∴∠APB =75°.由正弦定理得.又在△ABQ 中,∠ABQ =45°+45°=90°,∠PAB =60°,∴AQ =2 AB =8,于是PQ=AQ -AP =,∴两灯塔间距离为海里.3、解析:∵,∴,S △ABC =ab sin C =,即,∴.4、解析:BC 2 =AB 2 + AC 2 -2 AB ·AC ·cos∠BAC =48,∴,∴.三、解答题1、解:如图,作DM ∥AC 交BE 于N ,交CF 于M .(m),(m),(m).在△DEF 中,由余弦定理的变形形式,得cos∠DEF =.2、解:设行驶t h后,甲船行驶了9 t 海里到达C 处,乙船行驶了6 t 海里到达D 处.①当9 t <21,即时,C 在线段AB 上,此时BC =21-9 t .在△BCD 中,BC =21-9 t ,BD =6 t ,∠CBD =180°-60°=120°,由余弦定理知CD 2 =BC 2 + BD 2 -2 BC ·BD ·cos 120°=(21-9 t ) 2 +(6 t ) 2 -2×(21-9 t )·6 t ·=63 t 2 -252 t +441=63( t -2) 2 +189.∴当t =2时,CD 取得最小值.②当时,C 与B 重合,则.③当时,BC =9 t -21,则CD 2 =(9 t -21) 2 +(6 t ) 2 -2·(9 t -21)·6 t ·cos 60°=63 t 2 -252 t +441=63( t -2) 2 +189>189.综上可知,当t =2时,CD 取最小值.答:行驶2 h后,甲、乙两船相距最近为海里.3、解:方法一:在地面上引一条基线AB ,这条基线和塔底在同一水平面上,且延长后不过塔底,测出AB 的长,用经纬仪测出角β,γ和A 对塔顶P 的仰角α的大小,则可求出铁塔PO 的高.计算方法如下:如图所示,在△ABO 中,由正弦定理得,在Rt△PAO 中,PO =AO ·tan α,∴.方法二:在地面上引一条基线AB ,这一基线与塔底在同一水平面上,且AB 延长后不过点O .测出AB 的长、张角∠AOB (设为θ)及A ,B 对塔顶P 的仰角α,β,则可求出铁塔PO 的高,计算方法如下:如图所示,在Rt△POA 中,AO =PO ·cot α,在Rt△POB 中,BO =PO ·cot β,在△AOB 中,由余弦定理得OA 2 + OB 2 -2 OA ·OB ·cos θ=AB 2 ,∴.方法三:在地面上引一条基线AB ,这一基线与塔底在同一水平面上,并使A ,B ,O 三点在一条直线上,测出AB 的长和A ,B 对塔顶P 的仰角α,β,则可求出铁塔PO 的高.计算方法如下:如图所示,在△PAB 中,由正弦定理得,在Rt△PAO 中,PO =PA ·sin α,∴.- 11 -4、 解: 由余弦定理得8 2 + c 2 -2×8× c ×cos 60°=7 2 ,即 c 2-8 c +15=0,∴ c =3或5. 当 c =3时,;当 c =5时,. 5、 解: 由余弦定理得 a 2 - c 2 = b 2 -2 bc cos A ,又 a 2 - c 2 =2 b , b ≠0,∴ b =2 c ·cos A +2.由正弦定理得,又由已知得,∴ b =4 c ·cos A ,由可得 b =4. 6、 解: 由已知有 a 2 sin(∠ A -∠ B )+ b 2 sin(∠ A -∠ B )= a 2 sin(∠ A +∠ B )- b 2 sin(∠ A +∠ B ),即2 a 2 cos A sin B -2 b 2 cos B sin A =0,∴ a 2 cos A sin B - b 2sin A cos B =0.由正弦定理,上式可化为sin 2 A cos A sin B -sin 2 B sin A cos B =0,即sin A sin B (sin A cos A -sin B cos B )=0,∵sin A ≠0,sin B ≠0,∴sin A cos A -sin B cos B =0,即sin 2 A =sin 2 B ,∴2∠ A =2∠ B 或2∠ A +2∠ B =π, ∴∠ A =∠ B 或∠ A +∠ B =.故△ ABC 为等腰三角形或直角三角形.。