近世代数引论-006
- 格式:ppt
- 大小:1.34 MB
- 文档页数:34
近世代数是数学的一个重要分支和学科,是20世纪初期形成的代数学结构体系, 也是当今代数化的最基础的研究对象和研究内容。
它是以基本代数学为工具来进行分析和研究, 以研究代数系统的性质与构造为中心的一门学科, 是现代数学各个分支的基础。
我觉得近世代数的基本思想、基本理论与方法已经渗透到科学领域的各个领域与实际应用的各个方面, 据调查近世代数在编码和信息安全方面的应用更被认为是近几十年来纯粹数学应用的一个成功而光辉的典范。
近世代数是我们大学数学系的重要基础课之一, 它具有严密的逻辑性和特有的抽象性。
从我们师范教育的角度看,中学数学教学内容绝大部分是属于代数的,在一些难题中都必须用到近世代数相关知识。
因此, 近世代数成为数学系数学与应用数学师范与非师范类专业以及信息与计算科学专业的重要的专业必修课程之一。
在大一学习了高等代数后,我觉得近世代数这门课程是继学生学习完了高等代数后一门继续深人的课程。
在这门课程中, 不仅积聚了大量的概念和定理,课后还汇集了大量的证明题。
我觉得学好它有助于完善学生的知识结构体系、培养学生的抽象思维能力和严格的逻辑推理能力、提高学生的综合素质与运用创新能力。
可以让学生展开想象的翅膀, 吸取理论的精华, 培养自己的创造性思维能力。
署名曾凤香 2010-11-24。
近世代数(抽象代数)
“近世代数即抽象代数。
代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。
初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。
法国数学家伽罗瓦〔1811-1832〕在1832年运用「群」的思想彻底解决了用根式求解多项式方程的可能性问题。
他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。
近世代数知识点近世代数,又称抽象代数,是数学的一个重要分支,它为许多其他数学领域提供了基础和工具。
下面让我们一起来了解一些近世代数的关键知识点。
首先是群的概念。
群是近世代数中最基本的结构之一。
简单来说,一个群就是一个集合 G 以及定义在这个集合上的一种运算“”,满足一些特定的条件。
比如,对于集合中的任意两个元素 a 和 b,运算的结果ab 仍然属于这个集合;存在一个单位元 e,使得对于任意元素 a,都有ae = ea = a;对于每个元素 a,都存在一个逆元 a^(-1),使得 aa^(-1) = a^(-1)a = e。
群的例子在生活中也有不少,比如整数集合在加法运算下构成一个群。
环也是近世代数中的重要概念。
一个环 R 是一个集合,上面定义了两种运算:加法“+”和乘法“·”。
加法满足交换律、结合律,有零元,每个元素都有相反数;乘法满足结合律;乘法对加法满足分配律。
常见的环有整数环、多项式环等。
接下来是域。
域是一种特殊的环,它要求非零元素对于乘法运算构成一个群。
比如有理数域、实数域和复数域。
同态和同构是近世代数中用来比较不同代数结构的重要工具。
同态是指两个代数结构之间存在一种保持运算的映射。
如果这个映射还是一一对应的,那就是同构。
同构的两个代数结构在本质上可以看作是相同的。
在近世代数中,子群、子环和理想也具有重要地位。
子群是群的一个子集,在原来的运算下也构成群;子环是环的一个子集,在原来的两种运算下也构成环;理想则是环中的一个特殊子集,对于环中的乘法和加法有特定的性质。
再来说说商群和商环。
以商群为例,给定一个群 G 和它的一个正规子群N,就可以构造出商群G/N。
商群中的元素是由N 的陪集构成的。
近世代数中的重要定理也不少。
比如拉格朗日定理,它对于理解群的结构和性质非常有帮助。
该定理指出,子群的阶整除群的阶。
最后,我们谈谈近世代数的应用。
在密码学中,群和环的理论被广泛用于加密和解密算法的设计。
近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。
近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。
近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。
下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。
3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。
“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。
设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。
若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。
若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。
不含任何元素的集合叫空集,空集是任何一个集合的子集。
集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。
例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。
本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。
一个集合A 的元素个数用A 表示。
当A 中有有限个元素时,称为有限集,否则称为无限集。
用∞=A 表示A 是无限集,∞<A 表示A 是有限集。