人教版小学六年级下册毕业数学总复习资料全套
- 格式:doc
- 大小:91.00 KB
- 文档页数:20
六年级下册数学复习宝典——人教版第一章:整数的运算- 整数的加减法- 整数的乘法- 整数的除法- 整数的运算性质第二章:分数的运算- 分数的加减法- 分数的乘法- 分数的除法- 分数的约分与化简第三章:小数的运算- 小数的加减法- 小数的乘法- 小数的除法- 小数与分数的相互转化第四章:面积和体积- 长方形的面积计算- 三角形的面积计算- 平行四边形的面积计算- 立方体的体积计算第五章:几何图形的性质- 正方形的性质- 长方形的性质- 三角形的性质- 平行四边形的性质第六章:数据统计- 数据的收集和整理- 数据的图表表示- 数据的分析和解读- 数据的比较和排序第七章:方程与方程式- 方程的基本概念- 一元一次方程的解- 一元一次方程的应用- 二元一次方程的解第八章:图形的坐标- 平面直角坐标系- 点的坐标表示- 图形的平移和旋转- 图形的对称性第九章:时间和时钟- 时间的读写和计算- 时钟的读写和计算- 时间的换算- 时钟的运动和指示第十章:数与代数- 数的分类和性质- 数的大小比较- 数的运算规则- 数的应用问题第十一章:数与图- 数与图的关系- 图的分析和解读- 图的绘制和表示- 图形的拼接和变换第十二章:数与量- 数与量的关系- 量的换算和计算- 量的应用问题- 量的估算和判断以上是六年级下册数学复宝典的大纲,涵盖了各个章节的主要内容。
通过复宝典,可以帮助同学们巩固知识,提高数学水平。
祝同学们取得好成绩!。
人教版六年级下册数学复习资料六年级下册数学复习资料(常用的数量关系式)1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数六年级下册数学复习资料(图形计算公式)1、正方形(C:周长S:面积a:边长)周长=边长×4C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4、长方体(V:体积s:面积a:长b:宽h:高)(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)8、圆形(S:面积C:周长лd=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd)(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 14、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数) 15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)猜你感兴趣:。
小升初数学总复习资料归纳常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高 s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径 C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
(完整版)人教版六年级数学总复习资料
本文档是人教版六年级数学总复资料的完整版,旨在帮助学生全面复数学知识。
目录
1. 数的认识
2. 数的读写与数的大小比较
3. 数的运算
4. 简便计算法
5. 乘法
6. 除法
7. 解方程和表示思想方法
8. 长度单位
9. 面积与体积
10. 角与直线的认识
11. 同、异角的认识
12. 三角形与四边形
13. 分数的认识与运算
14. 概率
15. 数据的整理和分析
内容概述
本文档涵盖六年级数学各个模块的核心知识点。
每个模块都包含了相关概念、方法和例题,以帮助学生加深对数学知识的理解。
本文档的复资料是从人教版六年级数学教材中提炼出来的,结构简明清晰,适合学生进行系统性的复。
使用建议
学生可以按照目录中的顺序逐个模块进行复,先理解每个模块的基本概念和方法,然后通过例题进行练,加深对知识点的掌握。
建议学生在复过程中积极思考,加深对数学思维的培养。
可以利用课余时间进行复,逐步提高对数学知识的掌握和运用能力。
注意事项
本文档中的知识点都是经过精心整理和筛选的,但仍需注意一些重要的细节。
在研究过程中,遇到不理解的地方可以查阅相关教材进行进一步研究和理解。
建议学生在复过程中多做笔记,方便回顾和巩固知识。
结语
本文档是人教版六年级数学总复习资料的完整版,提供了全面的知识点和例题,旨在帮助学生系统复习数学知识,夯实基础,迎接考试。
希望同学们能够认真阅读、理解和运用本文档中的内容,取得优异的成绩!祝大家学习进步!。
新人教版六年级下册数学全册新人教版六年级下册数学全册一、第一单元分数本单元主要介绍了分数的概念、分数的大小比较、分数的加减乘除、分数与整数的换算等内容。
通过本单元的学习,可以让学生深入了解分数,掌握分数的基本运算方法,提高数学能力。
分数是指一个整体分成若干份的其中一份,由分子和分母两部分组成,分子表示这个整体分成的若干份中的几份,分母表示整个分成的份数。
例如,1/2表示一个整体分成两份中的一份。
分数的大小比较需要把分数的分母相同,然后比较分子的大小,分数中分母越小,分数越大。
当分数大小相同时,可以通过将分数化成小数进行比较。
分数的加减乘除需要先将分数的分母相同,然后进行相应的运算。
加减法时,分数的分子相加或相减,分母不变;乘法时,分数的分子和分母分别相乘;除法时,将除数的分数倒数,然后进行乘法运算。
分数与整数的换算需要将整数写成分数的形式,将分数化成整数或带分数的形式,例如将5写成5/1的形式,将3/2化为整数时,可以先将其化为带分数1 1/2的形式,然后再计算出结果。
二、第二单元数量关系本单元主要介绍了数与代数、算式与方程、比例、百分数等知识。
通过本单元的学习,可以帮助学生了解数与代数的关系,能理解和熟练掌握算式和方程的基础知识,提高数学运算能力。
数和代数是密切相关的,代数式中的字母代表一个数,可以把代数式看作是数的运算式;方程是一种带有等号的算式,左右两边的值相等,可以通过解方程求出未知量的值。
比例是指两个量之间的比,常见的比例有等比例和不等比例。
等比例是指两个比例之间相等,不等比例则是不相等的。
百分数是指以100为基数的百分比,常见的百分数有百分之几、百分之多少等。
百分数可以与数、小数等进行换算,例如将80%换成小数,可以将其除以100得到0.8。
三、第三单元几何图形本单元主要介绍了几何图形的基本概念、周长和面积的计算,直线、角度的知识。
通过本单元的学习,可以让学生深入了解几何图形,掌握几何图形的计算方法,提高数学运算能力。
人教版小学六年级下册毕业数学总复习资料全套六年级数学总复习资料一、整数1.自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
最小的自然数是0。
2.整数:包括正整数、负整数和0。
3.计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10,这样的计数法叫做十进制计数法。
4.数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5.数位顺序表:6.整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每级末尾的0都不读,其它数位连续有几个0都只读一个零。
如6050004008读作六十亿五千万四千零八。
7.整数的写法:从高位到低位,一级一级地写,哪个数位上一个单位也没有,就在那个数位上写0。
如三千零九亿零八十万写作300900800000。
8.比较整数的大小:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大的那个数就大;最高位上的数相同,就看下一位,哪一位上的数大的那个数就大。
二、数的整除1.整除:整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除,也可以说b能整除a。
2.因数、倍数:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数。
倍数和因数是相互依存的,不能说a是倍数,b是因数。
3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
4.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:一个数的各个数位上的数的和能被3整除,这个数就能被3整除。
能被2、3、5整除的最小两位数是30、最大两位数是90,最小三位数是120,最大三位数是990。
人教版小学六年级下册数学总复习提纲整数a能被整数b整除,记作b|a,当且仅当存在整数k,使得a=bk。
例如,6能被2整除,记作2|6,因为6=2×3.b)倍数:如果一个整数a除以另一个整数b没有余数,那么a就是b的倍数,b是a的约数。
2)、整除的性质:a)整数a能被1整除,即1|a。
b)如果a能被b整除,且b能被c整除,则a能被c整除。
c)如果a能被b整除,且b不为0,则a和-b也能被b整除。
d)如果a能被b整除,且b能被c整除,则a能被c整除。
e)如果a能被b整除,且b能被a整除,则a和b的绝对值相等。
3)、整除的应用:a)求最大公约数:两个数的公约数是指能同时整除这两个数的整数。
最大公约数是指所有公约数中最大的一个。
求最大公约数的方法有试除法、辗转相除法等。
b)求最小公倍数:两个数的公倍数是指能同时被这两个数整除的整数。
最小公倍数是指所有公倍数中最小的一个。
求最小公倍数的方法有分解质因数法、公式法等。
第二部分:代数一)、代数式的认识:1)、代数式是由数、字母和运算符号组成的式子。
2)、字母表示数或数的某种变化,称为未知数或变量。
字母前面的数叫做系数。
3)、代数式的值随着未知数的取值而改变。
二)、代数式的加减法:1)、同类项的加减法:同类项是指含有相同未知数的项,它们的指数可以不同,但是变量必须相同。
同类项的加减法就是将同类项的系数相加减,变量不变。
2)、异类项的加减法:异类项是指不含有相同未知数的项。
异类项的加减法需要化为同类项,通常是通过分配律或者公因式法来实现。
三)、代数式的乘法:1)、同底数幂的乘法:同底数幂是指底数相同、指数不同的幂。
同底数幂的乘法就是将底数相同的幂的指数相加,底数不变。
2)、一般式的乘法:一般式的乘法需要将每一项相乘,然后将结果相加。
四)、代数式的除法:代数式的除法需要将被除式和除式化为同类项,然后将各项的系数和指数进行相除。
五)、代数式的应用:代数式在数学中有广泛的应用,比如解方程、求函数值、求导数等。
人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。
①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。
①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。
如两个完全相同的三角形、梯形可拼成一个平行四边形。
圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。
①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。
人教版六年级数学下册期末总复习8.立体图形的表面积、体积、容积计算技巧一、仔细审题,填一填。
(每小题4分,共20分)1.一个棱长是4分米的正方体容器装满水后,倒入一个底面积是12平方分米的圆锥形容器里正好装满,这个圆锥形容器的高是( )分米(不计容器的厚度)。
2.一块长方形铁皮,长62.8厘米,宽31.4厘米。
如果用它围成一根圆柱形的管子,这根管子的半径是( )厘米或( )厘米。
3.把一根圆柱形木料截成3段(如图),表面积增加了45.12 cm 2,这根木料的底面积是( )cm 2。
4.一个圆柱的底面直径与圆锥底面直径的12相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是( )立方分米。
5.用3个棱长都是2厘米的正方体拼成一个长方体,拼成的这个长方体的表面积是( )平方厘米,体积是( )立方厘米。
二、火眼金睛,判对错。
(对的在括号里画“√”,错的画“×”)(每小题 3分,共12分)1.长方体的6个面中最多只有4个面的面积相等。
( )2.圆锥的底面积一定,它的高和体积成反比例。
( )3.把一个圆柱切拼成一个长方体,切拼后的体积和表面积都不变。
( )4.右面物体是由棱长为1 cm 的小正方体搭成的,它的表面积是18cm2;至少还需要3个这样的小正方体,才能搭成一个大正方体。
()三、仔细推敲,选一选。
(将正确答案的序号填在括号里)(每小题3分,共9分)1.把一个棱长是2厘米的正方体削成一个最大的圆柱,它的侧面积是()平方厘米。
A.6.28 B.12.56 C.18.84 D.25.12 2.一个长方体的长、宽、高分别扩大到原来的2倍,表面积扩大到原来的()倍。
A.2 B.6 C.8 D.43.以直角三角形一条直角边所在直线为轴,旋转一周,可以得到一个()。
A.长方体B.圆柱C.圆锥D.正方体四、计算下面各图形的表面积。
(单位:cm)(每小题6分,共12分)1. 2.五、聪明的你,答一答。
六年级数学总复习资料一、整数1.自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
最小的自然数是0。
2.整数:包括正整数、负整数和0。
3.计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10,这样的计数法叫做十进制计数法。
4.数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5.数位顺序表:6.整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每级末尾的0都不读,其它数位连续有几个0都只读一个零。
如6050004008读作六十亿五千万四千零八。
7.整数的写法:从高位到低位,一级一级地写,哪个数位上一个单位也没有,就在那个数位上写0。
如三千零九亿零八十万写作300900800000。
8.比较整数的大小:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大的那个数就大;最高位上的数相同,就看下一位,哪一位上的数大的那个数就大。
二、数的整除1.整除:整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除,也可以说b能整除a。
2.因数、倍数:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数。
倍数和因数是相互依存的,不能说a是倍数,b是因数。
3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
4.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:一个数的各个数位上的数的和能被3整除,这个数就能被3整除。
能被2、3、5整除的最小两位数是30、最大两位数是90,最小三位数是120,最大三位数是990。
5.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
所有的自然数,不是奇数就是偶数。
自然数范围内,最小的奇数是1,最小的偶数是0。
偶数±偶数=偶数奇数±奇数=奇数奇数±偶数=奇数偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数6.质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数。
质数都有2个因数。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
合数至少有3个因数。
最小的质数是2,最小的合数是4。
既是偶数又是质数的只有2。
20以内的质数有:2、3、5、7和11,13、19和17;10以内的合数有:4、6、8、9、10。
7.质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
8.公因数:几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
9.互质数:公因数只有1的两个数叫做互质数。
1和任何自然数(0除外)互质;相邻的两个自然数(0除外)互质;两个不同质数互质。
10.如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数,较小数就是这两个数的最大公因数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数,它们的最大公因数是1。
两个数的最小公倍数和最大公因数的积等于这两个数的积。
三、小数1.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
2.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一个数位上的数字。
如10.10读作十点一零。
3.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
4.有限小数:小数部分的位数是有限的小数,叫做有限小数。
如0.23、2.6、1.425。
无限小数:小数部分的位数是无限的小数,叫做无限小数。
如:2.2525…、0.033…、π。
循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。
循环小数是无限小数。
依次不断重复出现的数字叫做这个循环小数的循环节,如3.999……的循环节是“9”,0.54545……的循环节是“54”。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
如:3.111……、0.5656……。
混循环小数:循环节不从小数部分第一位开始的,叫做混循环小数,如3.122……。
写循环小数的时候,为了简便,小数的循环部分只写出第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
如: 7.777……写作7.,0.532532……写作0.3。
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数,如π。
5.小数的基本性质:小数的末尾添上0或去掉0,小数的大小不变。
6.小数点位置移动引起小数大小的变化规律:小数点向右移动一位、二位、三位……得到的数是分别是原来的10倍、100倍、1000倍…… 小数点向左移动一位、二位、三位……得到的数分别是原来的101、1001、10001…… 7.比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……四、分数1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
2.分数单位:把单位“1”平均分成若干份,表示其中一份的数是这个分数的分数单位。
3.分数和除法的联系:分数的分子就是除法中的被除数,分母就是a (b≠0)除法中的除数。
a÷b=b分数和小数的联系:小数实际上就是分母是10、100、1000……的分数。
4.真分数:分子小于分母的分数叫做真分数。
真分数都小于1。
假分数:分子大于或等于分母的分数叫做假分数。
假分数大于或等于1。
5.约分:把一个分数化成同它相等,单分子、分母都比较小的分数,叫做约分。
通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
6.最简分数:分子、分母是互质数的分数,叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
7.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
8.比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。
分数的分母和分子都不相同的,先通分,化成同分母分数,再比较大小。
9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫做百分率或百分比。
百分数通常用“%”来表示。
百分数不能表示具体的数量。
五、分数、小数、百分数的互化1.小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2.分数化成小数:用分子除以分母,能除尽的就化成有限小数,除不尽的,一般保留三位小数。
3.小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
4.百分数化成小数:只要把百分号去掉,同时把小数点向左移动两位。
5.分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
6.百分数化成分数:先把百分数改写成分母是100的分数,能约分的要约成最简分数。
六、数的运算(一)四则运算的意义:(二)四则运算的法则:1.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2.整数减法计算法则:相同数位对齐,从低位减起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3.整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就和哪一位对齐,然后把各次乘得的数加起来。
4.整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。
如果哪一位上不够商1,要补“0”占位。
每次除得的余数要比除数小。
5.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用0补足。
6.小数除法计算法则:(1)除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0,再继续除。
(2)除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,位数不够的补0,然后按照除数是整数的除法法则进行计算。
7.同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变。
8.异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算。
9.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变; 分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
10.分数除法的计算法则:除以一个数(0除外),等于乘这个数的倒数。
11.倒数:乘积是1的两个数互为倒数。
如32和23互为倒数,32的倒数是23,但不能说32是倒数。
1的倒数是1,0没有倒数。
12.求一个分数的倒数,只要把分子分母调换位置就可以了;求带分数的倒数,要先把带分数化成假分数,再把分子分母调换位置;求整数的倒数,先把整数看做分母是1的分数,再把分子分母调换位置;求小数的倒数,先把小数化成分数,再把分子分母调换位置。
(三)加减乘除各部分间的关系:一个加数=和-另一个加数被减数=差+减数减数=被减数-差一个因数=积÷另一个因数被除数=商×除数除数=被除数÷商(四)混合运算的顺序:在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。
同级运算从左往右依次运算;两级运算,先算乘除,后算加减。
有括号的,先算小括号里面的,再算中括号里面的,最后算括号外面的。
小数、分数四则混合运算的顺序和整数四则混合运算的顺序相同。
(五)运算定律:1.加法交换律:两个数相加,交换加数的位置,它们的和不变。
a+b=b+a2.乘法交换律:两个数相乘,交换因数的位置,它们的积不变。