电生磁教案
- 格式:docx
- 大小:13.13 KB
- 文档页数:2
初中物理《电生磁》教案教学目标:1. 知识与技能目标:学生能够理解电流的磁效应,知道通电导体周围存在磁场;学生能够理解通电螺线管的磁场与条形磁铁相似,掌握电磁铁的特性和工作原理。
2. 过程与方法目标:学生通过观察和体验通电导体与磁体间的相互作用,初步了解电和磁之间的联系;学生通过探究通电螺线管外部磁场的方向和影响电磁铁磁性强弱的因素,提高实验操作能力和问题解决能力。
3. 情感态度与价值观目标:通过认识电与磁之间的相互联系,培养学生乐于探索自然界的奥秘,培养学生的学习热情和求是态度。
教学重点:通电螺线管的磁场和电磁铁特性。
教学难点:通电螺线管磁场的极性与电流方向间的关系的得出;电磁铁特性的得出。
教学准备:直导线、干电池、螺线管、小磁针、导线、铁芯、电磁铁、图钉、条形磁铁、蹄行磁铁、多媒体课件、实物投影仪、开关等。
教学过程:一、导入新课1. 教师通过展示奥斯特实验的图片,引导学生观察并提问:当直导线通电时,你们看到了什么现象?磁针发生了什么变化?这说明了什么?2. 学生回答后,教师总结:这个实验揭示了电流的磁效应,即通电导体周围存在磁场。
二、新课内容1. 教师通过展示通电螺线管的图片,引导学生观察并提问:你们认为通电螺线管的磁场是怎样的?它与条形磁铁有什么相似之处?2. 学生回答后,教师总结:通电螺线管的磁场与条形磁铁相似,它们的极性都与电流的方向有关。
三、实验探究1. 教师引导学生分组进行实验,观察通电螺线管的磁场方向和电流方向的关系。
2. 学生通过实验发现,当改变电流方向时,通电螺线管的磁场方向也会改变。
3. 教师引导学生分析实验结果,得出通电螺线管磁场的极性与电流方向的关系。
四、电磁铁特性1. 教师展示电磁铁的图片,引导学生观察并提问:你们认为电磁铁是如何工作的?它的磁性强弱与哪些因素有关?2. 学生回答后,教师总结:电磁铁的工作原理是基于通电螺线管的磁场,它的磁性强弱与电流的大小和线圈的匝数有关。
《电生磁》教案5篇第一篇:《电生磁》教案电生磁教学目标1.知识与技能(1)认识电流的磁效应(2)知道通电导体周围存在磁场,通电螺线管的磁场与条形磁体相似.(3)会判断通电螺线管两端的极性或通电螺线管的电流方向.2.过程与方法观察和体验通电通电导体与磁体之间的相互作用,初步了解电与磁之间有某种联系.探究通电螺线管外部磁场的方向.重点难点通电螺线管的磁场。
教学准备直导线、干电池、螺线管、小磁针。
教学过程导入:观察奥斯特做的实验提问:当直导线通电时.你看到了什么现象?磁针发生偏转说明什么问题? 回答:看到小磁针发生偏转(顺时针),发生偏转说明通电直导线周围存在磁场,小磁针受到磁力的作用.(电流的磁效应)看第二个图,我们把电流切断,观察小磁针有什么变化? 发现当电流切断时,小磁针不会发生偏转,说明直导线周围没有磁场.观察实验,当改变通电直导线的电流方向时,发现小磁针有什么变化? 回答:当改变电流方向时,小磁针的偏转方向由原来的顺时针变成逆时针.得出,磁场方向跟电流的方向有关.提问:手电筒在通电时为什么连一个大头针都吸不动? 这是因为它的磁场太弱了.那如果我们把导线绕成一个线圈,然后再给它通电,那么线圈都有电流通过,且产生的磁场叠加在一起,就会强得多.那么螺线管的磁场是什么样的? 它可能与哪种磁体的磁场相似?(条形磁体)通过演示实验得出通电螺线管磁场与条形磁体磁场相似,那么通电螺线管的极性与电流方向有什么关系?(实验得出通电螺线管两端的极性与螺线管中电流方有关,当电流方向改变,其极性也改变.)那么我们怎么判断它的极性呢? 安培定则。
(电流方向,线圈的绕法)安培定则:用右手握螺线管,让四指指向螺线管中电流方向,则大拇指所指方向就是北极.完成课后练习板书设计电生磁一、磁效应:通电导线周围存在磁场;磁场方向与电流方向有关。
二、通电螺线管的磁场与条形磁体相似。
三、通电螺线管的磁场方向与两个因素有关。
①电流方向②线圈绕法四、安培定则。
电生磁教学教案一、教学目标1. 让学生了解电生磁的概念,理解电流产生磁场的原理。
2. 培养学生运用科学知识解决实际问题的能力。
3. 引导学生通过观察、实验、分析等方法,探究电流与磁场之间的关系。
二、教学内容1. 电生磁的概念2. 电流产生磁场的原理3. 电流与磁场之间的关系三、教学重点与难点1. 教学重点:电生磁的概念,电流产生磁场的原理。
2. 教学难点:电流与磁场之间的关系。
四、教学方法1. 采用问题驱动法,引导学生主动探究电流与磁场之间的关系。
2. 利用实验演示,让学生直观地感受电流产生磁场的现象。
3. 运用分析讨论法,培养学生运用科学知识解决实际问题的能力。
五、教学准备1. 实验器材:电流表、电压表、导线、磁铁、开关等。
2. 教学工具:PPT、黑板、粉笔等。
六、教学过程1. 导入:通过一个简单的电流磁效应实验,引导学生关注电流与磁场之间的关系。
2. 新课:介绍电生磁的概念,讲解电流产生磁场的原理。
3. 实验演示:展示多个电流磁效应的实验,让学生直观地感受电流产生磁场的现象。
4. 分析与讨论:引导学生分析实验现象,探讨电流与磁场之间的关系。
5. 知识拓展:介绍电生磁在实际应用中的例子,如电动机、发电机等。
七、课堂练习1. 根据所学内容,完成课后练习题。
2. 设计一个简单的电路,验证电流产生磁场的现象。
八、课后作业1. 复习本节课所学内容,整理笔记。
2. 查阅相关资料,了解电生磁在实际应用中的例子。
九、教学反思1. 总结本节课的教学效果,反思教学方法是否恰当。
2. 分析学生的学习情况,调整教学策略,提高教学效果。
十、教学评价1. 通过课堂表现、课后作业和课堂练习,评价学生对电生磁知识的理解和掌握程度。
2. 结合学生的学习反馈,评估教学方法的适用性,为下一步教学提供参考。
六、教学活动设计1. 导入:通过一个简单的电流磁效应实验,引导学生关注电流与磁场之间的关系。
2. 新课:介绍电生磁的概念,讲解电流产生磁场的原理。
第2节电生磁教学目标一、知识与技能1.通过实验了解电流周围存在磁场。
2.探究通电螺线管外部的磁场方向,了解通电螺线管外部磁场与条形磁体的性质相似。
3.会判断通电螺线管的电流方向和两端的极性。
二、过程与方法1.通过观察直导线电流磁场和通电螺线管的磁场实验,进一步发展学生的空间想象力。
2.通过对实验的分析,提高学生比较、分析、归纳得出结论的能力。
三、情感、态度与价值观通过认识电与磁之间的相互联系,使学生乐于探索自然界的奥妙,培养学生的学习热情,初步领会探索物理规律的方法和技巧。
教学重点1.电流的磁效应。
2.通电螺线管的磁场。
教学难点运用安培定则判断通电螺线管的极性或通电螺线管的电流方向。
教具准备电源、导线、开关、小磁针、铁钉、多媒体课件。
教学过程新课引入老师先给大家表演一个魔术──纸盒吸铁,然后提问学生:此盒中可能是什么?你猜想的依据是什么?教师断开开关,再去接触铁屑,由不能吸引铁屑引起学生思维冲突,此时教师将纸盒打开,让学生明白,刚才产生的磁可能跟电有关。
到底磁是否能生电?这节课我们就来揭开这个谜!合作探究探究点一:电流的磁效应活动1:针对导课的问题,老师让学生交流、讨论如何设计实验来验证你的猜想?需要哪些实验器材?总结:选取电源、导线和开关、小磁针。
将电源、导线、开关连接成一个闭合电路,将小磁针放在周围,观察小磁针是否发生偏转。
活动2:根据学生所设计的实验,让学生动手验证。
根据实验现象,阐明你的猜想。
总结:导线通电后,发现小磁针发生偏转,说明通电导体周围能够产生磁场。
活动3:要想让小磁针偏转的方向相反,然后如何操作?自己动手实验验证,这又说明说明什么问题?总结:通电导体电流的方向改变,周围磁场的方向也随之改变。
归纳总结:电流周围存在磁场,磁场的方向跟电流的方向有关。
这就是电流的磁效应。
拓宽延伸:电流的磁效应是丹麦物理学家奥斯特第一个发现的,所以该实验叫奥斯特实验,它揭示了电和磁不是孤立的,而是有密切的联系。
初中物理电生磁教案【篇一:新人教版物理九年级:20.2《电生磁》教案设计】20.2电生磁3.情感、态度与价值观1.重点:知道磁场的存在,用磁感线描绘磁场的分布。
2.难点:如何通过实验现象认识磁场的存在。
三、学生情况分析电流的磁效应是电磁现象的重要基础,也是学生全新的知识。
奥斯特实验让学生亲自动手做,有利于加深学生对知识的认识和理解。
由于器材的限制,教师可以演示通电螺线管的实验,让学生讨论描绘通电螺线管的磁场形态,也能达到学生探究的目的。
四、实验器材学生实验:导线,一节干电池,一个小磁针演示实验:学生电源,螺线管,小磁针【篇二:【初中物理】20.2电生磁】20.2电生磁●教学目标一、知识与技能1.认识电流的磁效应.2.知道通电导体周围存在着磁场;通电螺线管的磁场与条形磁体相似.二、过程与方法1.通过观察直导线电流磁场和通电螺线管的磁场实验,进一步发展学生的空间想象力.2.通过对实验的分析,提高学生比较、分析、归纳、结论的能力.三、情感态度与价值观通过认识电与磁之间的相互联系,使学生乐于探索自然界的奥妙,培养学生的学习热情和求是态度,初步领会探索物理规律的方法.●教学重点1.奥斯特的实验揭示了电流的磁效应.2.通电螺线管的磁场及其应用.●教学难点通电螺线管的磁场及其应用.●教学方法实验法、讨论法、启发式.●教具准备奥斯特实验器材一套、通电螺线管、小磁针、投影仪、大头针、微机.●课时安排1课时●教学过程一、复习提问,引入新课1.复习提问[师]当把小磁针放在条形磁体的周围时,观察到什么现象?其原因是什么?[生甲]观察到小磁针发生偏转.[生乙]因为磁体周围存在着磁场,小磁针受到磁场的磁力作用而发生偏转.2.引入新课[师]同学们回答得很好,那么还想知道关于磁的一些什么样的知识?[生甲]小磁针只有放在磁体周围才会受到磁力作用发生偏转吗?[生乙]还有什么物质能产生磁场?[生丙]电现象和磁现象有联系吗?[师]同学们提出的问题很好,说明大家都动了脑筋,在以后的学习中仍需要这样.你们提出的问题就是本节课需要探索的内容.二、进行新课第三节电生磁[板书][师]先看课本第一、二自然段,然后再演示,要仔细观察、相互讨论、得出结论.[演示]在小磁针上面有一条直导线,当直导线触接电池通电时,你们能看到什么现象?改变电流的方向,又能看到什么现象?[生甲]当直导线触接电池通电时,小磁针发生偏转.[生乙]断电时,小磁针又回到原来的位置.[生丙]当改变直导线中电流方向时,小磁针偏转方向也发生变化.[生丁](讨论的结果)通电导线和磁体一样,周围存在着磁场.[生戊](讨论的结果)通电导线周围磁场方向跟电流方向有关.当电流方向发生变化时,磁场的方向也发生变化.[师]同学们回答得很好,我们鼓掌给予鼓励.以上实验是丹麦的科学家奥斯特首先发现的,此实验又叫奥斯特实验.这个实验表明,除了磁体周围存在着磁场外,电流的周围也存在着磁场,即电流的磁场,本节课我们就要研究电流的磁场.(一)电流的磁场[板书][师]这个实验看上去非常简单,但在当时这一重大发现轰动了科学界.因为它揭示了电现象和磁现象不是各自孤立的,而是紧密联系的,从而说明表面上互不相关的自然现象之间是相互联系的,这一发现有力地推动了电磁学的研究和发展.奥斯特实验用的是一根直导线,后来科学家们又把导线弯成各种形状,通电后研究电流的磁场.我们也研究研究,说出你们的做法和观察的结果.(学生们把直导线弯成各种形状,通电看小磁针的变化)[生甲]我们组弯成三角形,通电后小磁针偏转,周围存在磁场.[生乙]我们组弯成正方形,通电后小磁针偏转,周围存在磁场.┇[生丙]我们组把直导线缠在铅笔上,然后抽出铅笔,再通电,小磁针偏转,周围存在磁场. [师]这种把导线绕在圆筒上,做成的螺线管也叫线圈,它能使各导线产生的磁场叠加在一起,磁场就会强得多,这样在生产实际中用途就大,那么通电螺线管的磁场是什么样的?(二)通电螺线管的磁场[板书][师]我们下面通过实验来探究通电螺线管的磁场是什么样,我们每组还是先提问题,再设计实验,通过对实验的观察、分析、讨论,最后得出结论.[生甲]我们已了解了条形磁体、蹄形磁体周围的磁场分布,那么通电螺线管的磁场可能与哪种磁体的相似?[生乙]通电螺线管的极性与电流方向之间有什么关系?如何判断?(学生们根据问题设计实验,并动手做实验)[生甲]我们组是把一些小磁针放到螺线管四周不同位置,通电后小磁针偏转.画图并标出小磁针北极的方向,然后用曲线连起来.[生乙]我们组是在玻璃板上均匀地撒些铁屑,细螺线管通电,轻敲玻璃板,观察铁屑的分布情况.[师](每组中请一位学生)现在把你们记录下小磁针指的方向在(微机)图中标出.还有是把你们的玻璃板(观察铁屑的分布情况)放在投影仪上(从屏幕上可直观显示出来),得出什么结论?[生甲]把小磁针放在螺线管周围,通电,小磁针偏转.改变电流方向,小磁针偏转方向发生变化.通电螺线管外部的磁场与条形磁体的磁场相似.1.通电螺线管外部的磁场与条形磁体的磁场相似.[板书][生乙]我们组是把一些小磁针放在通电螺线管周围,记录下小磁针北极指的方向,每个小磁针北极指的方向就是该点的磁场方向,描出磁感线.磁体周围的磁感线都是从磁体的北极出来,回到磁体南极,这样就判断出通电螺线管的两极.[生丙]我们组是把小磁针放在螺线管的两端通电后,观察小磁针的n极指向,从而判别通电螺线管的n、s极.教师引导学生讨论,找出判定的办法.[生甲]通电螺线管两端的极性跟螺线管中电流的方向有关.当电流的方向变化时,通电螺线管的极性也发生改变.(教师根据学生结论板书)2.通电螺线管两端的极性跟螺线管中电流的方向有关.当电流的方向变化时,通电螺线管的极性也发生改变. [板书][师]我们知道通电螺线管两端的极性跟螺线管中的电流方向有关,有什么样的关系?我们能否想出一句话来概括这种普遍规律.看课本图中蚂蚁和猴子是怎么说的,你们又怎么说?[生甲]我用右手把一个通电螺线管夹在腋下,如果电流沿我右臂所指的方向,n极就在我的前方.[生乙]一根直导线电流是从左向右流动,把它从前向后缠成螺线管,n极就在螺线管的左边. [生丙]这个方法不准确,如果缠螺线管是从右向左绕,或从上向下绕,将不是这个结论. [生丁]用右手握住螺线管,让四指弯向螺线管中电流的方向,则大拇指所指的那端就是螺线管的北极.[师]大家回答得都很好,虽有不同的看法,还是说出了自己的观点,我很高兴看到这样的场面.我们知道通电导体周围存在着磁场,通电螺线管外部的磁场和条形磁体的磁场相似.用学生的方法能判断出螺线管的两极,这个方法叫安培定则.那么怎么才能增大通电螺线管的磁性?试试看怎么做?[生甲]我们组是将直导线多绕几圈,通电后能多吸引几个大头针,说明这个方法可以增大通电螺线管的磁性.[生乙]我们组是在通电螺线管中插入一根铁棒,就能吸引更多大头针,这表明插入铁芯能使通电螺线管的磁性增强.[师]插入铁芯的通电螺线管就构成电磁铁,我们来制作一个电磁铁.三、小结和学生们一起小结,电流的磁效应,通电螺线管的磁场.四、布置作业五、板书设计第三节电生磁一、电流的磁效应二、通电螺线管的磁场1.通电螺线管外部的磁场与条形磁体的磁场相似.2.通电螺线管两端的极性跟螺线管中电流的方向有关.当电流的方向变化时,通电螺线管的极性也发生改变.【篇三:九年级物理二十章第2节《电生磁》教案】电生磁教学目标1.知识与技能(1)认识电流的磁效应(2)知道通电导体周围存在磁场,通电螺线管的磁场与条形磁体相似.(3)会判断通电螺线管两端的极性或通电螺线管的电流方向.2.过程与方法观察和体验通电通电导体与磁体之间的相互作用,初步了解电与磁之间有某种联系. 探究通电螺线管外部磁场的方向.重点难点通电螺线管的磁场。
电生磁教案一、教学目标1.了解电生磁的基本概念和原理;2.掌握电生磁的实验方法和步骤;3.能够通过实验观察和分析,探究电生磁现象的规律和特点;4.培养学生的实验操作能力和科学思维能力。
二、教学内容1. 电生磁的基本概念和原理电生磁是指电流通过导体时,会在其周围产生磁场的现象。
这种现象是由于电流中的电子在运动时,会产生磁场,从而形成电磁感应。
电生磁是电磁学的基础,也是电机、发电机等电器设备的基本原理。
2. 电生磁的实验方法和步骤实验材料1.直流电源;2.导线;3.磁铁;4.铁丝。
实验步骤1.将直流电源接通,调整电压为适当值;2.将导线绕在磁铁上,形成一个线圈;3.将铁丝放在线圈中间,使其与导线垂直;4.观察铁丝的运动情况。
3. 探究电生磁现象的规律和特点通过实验观察和分析,可以得出以下结论:1.当电流通过导线时,会在其周围产生磁场;2.磁场的方向与电流的方向垂直;3.当铁丝放在磁场中时,会受到力的作用,产生运动。
4. 培养学生的实验操作能力和科学思维能力在实验过程中,学生需要进行实验操作和数据记录,同时还需要进行数据分析和结论总结。
这样可以培养学生的实验操作能力和科学思维能力,提高其对科学知识的理解和掌握能力。
三、教学方法1.讲授法:通过讲解电生磁的基本概念和原理,让学生了解电生磁的基本知识;2.实验法:通过实验操作,让学生亲身体验电生磁现象,加深对电生磁的理解;3.讨论法:通过讨论实验结果和结论,让学生探究电生磁现象的规律和特点,提高其科学思维能力。
四、教学重点和难点教学重点1.电生磁的基本概念和原理;2.电生磁的实验方法和步骤;3.探究电生磁现象的规律和特点。
教学难点1.学生对电生磁的理解和掌握;2.学生对实验操作和数据分析的能力。
五、教学过程1. 导入环节通过提问和讨论,引导学生了解电生磁的基本概念和原理。
2. 实验操作让学生进行实验操作,观察铁丝的运动情况,并记录实验数据。
3. 数据分析和结论总结通过讨论实验结果和结论,让学生探究电生磁现象的规律和特点。
物理教案-[电生磁]教学设计一、教学目标:1. 让学生理解电生磁的概念,知道电流周围存在磁场。
2. 让学生掌握电流产生磁场的实验方法和观察现象。
3. 培养学生动手实验、观察现象、分析问题的能力。
二、教学重点与难点:1. 教学重点:电生磁的概念、电流产生磁场的实验方法。
2. 教学难点:电流产生磁场的原理、如何观察和分析磁场现象。
三、教学准备:1. 实验器材:电流表、电磁铁、导线、电池、铁钉等。
2. 教学工具:PPT、黑板、粉笔等。
四、教学过程:1. 导入新课:通过复习磁现象,引导学生思考电流与磁场的关系,激发学生学习兴趣。
2. 知识讲解:讲解电生磁的概念,电流产生磁场的原理。
3. 实验演示:进行电流产生磁场的实验,让学生观察并记录实验现象。
4. 学生实验:分组进行实验,学生自己操作,观察电流产生磁场的现象。
5. 分析讨论:引导学生分析实验现象,理解电流产生磁场的原理。
6. 总结提升:总结电生磁的知识点,强调电流与磁场的关系。
五、课后作业:1. 完成PPT上的练习题,巩固电生磁的知识。
教学反思:本节课通过实验演示和学生动手实验,使学生直观地了解了电生磁的现象,掌握了电流产生磁场的原理。
在教学过程中,要注意引导学生观察实验现象,培养学生的观察能力和分析问题的能力。
也要关注学生的动手操作能力,确保实验安全。
在课后作业的布置上,要注重巩固所学知识,提高学生的学习效果。
六、教学评估:1. 课堂问答:通过提问方式检查学生对电生磁概念的理解程度。
2. 实验报告:评估学生在实验中的观察能力、操作能力和分析问题的能力。
3. PPT练习题:检查学生对电流产生磁场原理的掌握情况。
七、拓展活动:1. 让学生探讨电磁铁的原理和应用,如电磁铁在生活中的应用等。
2. 组织学生进行小发明比赛,利用电磁铁制作有趣的小装置。
八、教学策略:1. 采用问题驱动的教学方法,引导学生思考问题,激发学习兴趣。
2. 利用实验现象,让学生直观地了解电生磁的概念。
电生磁教学设计 [物理《电生磁》教学设计] [模版仅供参考,切勿通篇使用]一、教材分析及教学思路本节课的教学将引导学生在已有的电学和磁场知识的基础上自主认识电和磁之间的联系,认识这种联系是提升学生认识“事物是普遍联系的”这一辩证唯物主义基本观点和“不同的物质和不同的运动形式之间又发生着相互作用”的物理观念的绝好实例。
本节课包括电流的磁场、安培定则两个严谨的基础知识,是本章的核心内容之一,是学习后续的电磁铁、电磁继电器、通电导体在磁场中受力作用等知识的基础,也是学生高中阶段学习电磁学知识的基础。
通过本节课的教学,学生还可进一步巩固上节课学习的认识磁场的技能和方法,其教学过程也是实现三维教学目标融合的绝佳教育契机。
本节课所涉及的电流的磁场概念抽象、生疏,笔者在教学过程中,创设了“模拟奥斯特实验学生发现电流的磁效应”和“设计制作螺线管”的学习情境,通过情境激发学生的学习情趣,使其在情境中发现现象,质疑现象,在质疑过程中猜想、探究、交流,最后建构出电流的磁效应和安培定则。
二、教学要求知识技能:学生通过实验,了解电流周围存在磁场,探究并了解通电螺线管外部磁场的方向,会画螺线管外部磁场。
过程和方法:会用磁针和铁屑探究通电螺线管外部的磁场。
情感态度价值观:认识“事物是普遍联系的”这一辩证唯物主义基本观点,了解掌握“不同的物质和不同的运动形式之间又发生着相互作用”的物理观念。
实验器材:小灯泡、干电池、开关、导线、小磁针、玻璃罩。
三、教学过程在模拟奥斯特实验的情境中发现电流的磁效应1.发现通电导线周围存在磁场教师创设情境:你能连接一个让小灯泡发光的电路吗?学生:连接电路,闭合开关,小灯泡发光。
教师:在小灯泡发光时你还有什么发现?学生发现:小磁针偏转。
教师:关于这一现象你可以提出什么问题?学生:小磁针为什么会偏转?教师:谁能回答他的问题?学生:电流周围有磁场,使小磁针发生偏转?教师:你根据什么现象,认为磁场是有由电流产生的?学生:因为开关闭合时,有电流,小磁针偏转;开关断开时,没有了电流,小磁针回到原来的位置。
电生磁教学设计和教学反思电生磁教学设计和教学反思一、教学设计:1. 教学目标:- 了解电流和磁场的概念及基本性质;- 掌握电流和磁场的相互作用及其应用;- 培养学生的观察和实验能力;- 培养学生的逻辑思维和问题解决能力。
2. 教学内容:- 电流和磁场的基本概念;- 安培定律和毕奥-萨法尔定律;- 线圈和电磁铁的原理及应用。
3. 教学方法:- 实验探究法:通过设计简单的实验,让学生观察电流和磁场的相互作用,加深对概念的理解;- 示范法:通过具体的实例,向学生展示电生磁现象的应用,激发学生的学习兴趣;- 讨论法:引导学生从不同的角度思考问题,培养学生的逻辑思维和问题解决能力。
4. 教学步骤:- 导入:通过提问和引入实际问题,激发学生对电生磁现象的兴趣;- 理论讲解:介绍电流和磁场的基本概念和性质,讲解安培定律和毕奥-萨法尔定律的原理;- 实验探究:设计实验,观察电流在磁场中的受力情况,验证安培定律和毕奥-萨法尔定律;- 应用拓展:通过展示电磁铁的原理和使用,引导学生思考电生磁的应用领域,并讨论其中的科学原理;- 总结归纳:总结电生磁的基本概念和应用,梳理课堂重点。
5. 教学评价方式:- 学生实验报告和讨论记录;- 小组讨论中学生的表现;- 学生的课堂参与度和专注度。
二、教学反思:本次课程采用了实验探究法和讨论法,让学生在实际操作中观察电流和磁场的相互作用,培养了他们的观察和实验能力。
在实验过程中,学生积极参与,提出问题并进行探究,提高了他们的逻辑思维和问题解决能力。
同时,通过示范法引入电生磁现象的应用,激发了学生的学习兴趣,增强了他们对课堂内容的理解和记忆。
在教学设计中,需要注意以下几点改进:1. 实验环节设计不够充分:在实验探究中可以增加一些扩展实验,让学生进一步观察和分析电流和磁场的相互作用,培养他们的动手能力和科学精神。
2. 应用拓展不够充实:在应用拓展环节可以引入更多有趣的电生磁应用,如电动机、发电机等,通过展示实际设备的原理和使用方式,激发学生的兴趣,并让他们更好地理解电生磁的实际运用。
电生磁
安全与法制教育:
加强学生日常的安全教育,心理疏导及其食品安全教育,课间操楼道拥挤注意事项,周末及其节假日放学不要乘坐三无车辆。
教学目标:
1、知识和技能
认识电流的磁效应。
知道通电导体的周围存在磁场,通电螺线管的磁场与条形磁铁的磁场相似。
理解电磁铁的特性和工作原理。
2、过程和方法
观察和体验通电导体与磁体之间的相互作用,初步了解电和磁之间有某种联系。
探究通电螺线管外部磁场的方向。
3、情感、态度、价值观
通过认识电与磁之间的相互联系,使学生乐于探索自然界的奥妙。
重、难点:
试验探究电流的磁效应的规律。
探究通电螺线管的磁场规律。
教学器材:
电脑平台、磁体、小磁针、电源、导线
教学课时:2时
教学过程:
一、前提测评:
1、静止后的磁针指南的一端叫极,又叫极,指北的一端叫极,又叫极。
2、同名磁极相互,异名磁极相互;磁极间的相互作用是通过__________发生的。
3、磁场的方向是这样规定的:小磁针静止时极所指的方向就是该点的;可以利用带箭头的曲线来描述磁场,这样的曲线叫做。
4、使原来没有磁性的物体获得磁性的过程叫。
二、导学达标:
引入课题:试验“猜一猜”
利用隐蔽的通电螺线管吸引小铁钉,让学生猜是什么物体?磁体对进入磁场的物体会发生作用,能否利用人工作用产生磁场、控制磁场?
进行新课:
1、电流的磁效应:
试验:53页图8.2-2示,结果
结论:通电导体的周围有磁场,磁场的方向跟电流的方向有关,这现象叫电流的磁效应。
(这试验叫奥斯特试验)
思考:为什么手电筒、普通电线通电时吸引力好像不存在?……如何增强磁场?(做成螺线管,也叫线圈,如……开始的试验)
2、探究:通电螺线管的磁场
猜想:通电螺线管能否产生磁场,磁场可能与哪种磁体的相似?
(1)试验:54页图8.2-4示
(对比条形磁体)
结论:通电螺线管外部的磁场与磁体的磁场相似。
指出N极、S极
猜想:改变电流方向,磁场方向会不会变化?
(2)试验:54页图8.2-4示,但电流方向相反
结果:
结论:
指出图8.2-5中的N极、S极
讨论:能否利用一句话来概括这普遍性的规律?(参考55页提示)
(3)安培定则:右手握螺线管,让四指弯向螺线管中电流的方向,则大拇指所指的那一端就是通电螺线管的N极。
练习:判断一些通电螺线管的N、S极
3、达标练习:课本后50页“动手动脑学物理”
完成物理套餐中的本节内容。
小结:根据板书,总结本节内容,明确重、难点。
课后活动:
完成物理套餐中课堂未完成的内容。
课本后练习。
教学后记:效果较好。