第五章 第二节 等差数列及其前n项和1
- 格式:ppt
- 大小:780.50 KB
- 文档页数:53
第2节 等差数列及其前n 项和[A 级 基础巩固]1.(一题多解)(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:法一 设等差数列{a n }的公差为d ,依题意⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,解得d =4. 法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8, 所以d =4,故选C. 答案:C2.(2020·安阳联考)在等差数列{a n }中,若a 2+a 8=8,则(a 3+a 7)2-a 5=( ) A .60 B .56 C .12D .4解析:因为在等差数列{a n }中,a 2+a 8=8,所以a 2+a 8=2a 5=8,解得a 5=4,(a 3+a 7)2-a 5=(2a 5)2-a 5=64-4=60.答案:A3.已知等差数列{a n }的前n 项和为S n ,S 2=3,S 3=6,则S 2n +1=( ) A .(2n +1)(n +1) B .(2n +1)(n -1) C .(2n -1)(n +1)D .(2n +1)(n +2)解析:设等差数列{a n }的公差为d , 则2a 1+d =3,3a 1+3d =6,所以a 1=d =1,则a n =1+(n -1)×1=n .因此S 2n +1=(2n +1)(1+2n +1)2=(2n +1)(n +1).答案:A4.(2020·宜昌一模)等差数列{a n }的前n 项和为S n ,若公差d >0,(S 8-S 5)(S 9-S 5)<0,则( )A .a 7=0B .|a 7|=|a 8|C .|a 7|>|a 8|D .|a 7|<|a 8|解析:因为公差d >0,(S 8-S 5)(S 9-S 5)<0, 所以S 9>S 8,所以S 8<S 5<S 9,所以a 6+a 7+a 8<0,a 6+a 7+a 8+a 9>0, 所以a 7<0,a 7+a 8>0,|a 7|<|a 8|. 答案:D5.中国古诗词中,有一道“八子分棉”的数学名题:“九百九十六斤棉,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤棉分给8个儿子作盘缠,按照年龄从大到小的顺序依次分棉,年龄小的比年龄大的多17斤棉,那么第8个儿子分到的棉是( )A .174斤B .184斤C .191斤D .201斤解析:用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的棉数, 由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996, 所以8a 1+8×72×17=996,解得a 1=65.所以a 8=65+7×17=184,即第8个儿子分到的棉是184斤. 答案:B6.(2019·江苏卷)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析:设数列{a n }的公差为d , 则⎩⎪⎨⎪⎧(a 1+d )(a 1+4d )+a 1+7d =0,9a 1+9×82d =27, 解得a 1=-5,d =2,所以S 8=8×(-5)+8×72×2=16.答案:167.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:2008.在等差数列{a n }中,若a 7=π2,则sin 2a 1+cos a 1+sin 2a 13+cos a 13=________.解析:根据题意可得a 1+a 13=2a 7=π, 2a 1+2a 13=4a 7=2π,所以有sin 2a 1+cos a 1+sin 2a 13+cos a 13= sin 2a 1+sin(2π-2a 1)+cos a 1+cos(π-a 1)=0. 答案:09.各项均不为0的数列{a n }满足a n +1(a n +a n +2)2=a n +2a n ,且a 3=2a 8=15.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =a n2n +6,求数列{b n }的前n 项和S n .(1)证明:依题意得,a n +1a n +a n +2a n +1=2a n +2a n ,两边同时除以a n a n +1a n +2,可得1a n +2+1a n=2a n +1,故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列.设数列⎩⎨⎧⎭⎬⎫1a n 的公差为d .因为a 3=2a 8=15,所以1a 3=5,1a 8=10,所以1a 8-1a 3=5=5d ,即d =1,故1a n =1a 3+(n -3)d =5+(n -3)×1=n +2,故a n =1n +2. (2)解:由(1)可知b n =a n 2n +6=12·1(n +2)(n +3)=12⎝ ⎛⎭⎪⎫1n +2-1n +3,故S n =12⎝ ⎛⎭⎪⎫13-14+14-15+…+1n +2-1n +3=n 6(n +3). 10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n,证明:数列{b n }是等差数列,并求其前n 项和T n . (1)解:设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1),则b n =S n n=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2.[B 级 能力提升]11.(2020·珠海联考)已知数列{a n }中,a 1=1,S n +1S n =n +1n,则数列{a n }( ) A .既非等差数列,又非等比数列 B .既是等差数列,又是等比数列 C .仅为等差数列 D .仅为等比数列 解析:数列{a n }中,S n +1S n =n +1n ,则S n S n -1=nn -1(n ≥2), 则S n =S n S n -1×S n -1S n -2×…×S 2S 1×S 1=n n -1×n -1n -2×…×21×1=n (n ≥2),当n =1时,S 1=a 1=1符合,则当n ≥2时,a n =S n -S n -1=n -(n -1)=1,当n =1时,a 1=1符合,故a n =1(n ∈N *),则数列{a n }为非零的常数列,它既是等差数列,又是等比数列. 答案:B12.(2019·北京卷)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________.解析:设等差数列{a n }的公差为d ,因为a 2=-3,S 5=-10,所以⎩⎪⎨⎪⎧a 1+d =-3,5a 1+5×42d =-10, 即⎩⎪⎨⎪⎧a 1+d =-3,a 1+2d =-2,得⎩⎪⎨⎪⎧a 1=-4,d =1,所以a 5=a 1+4d =0,S n =na 1+n (n -1)2d =-4n +n 2-n 2=12(n 2-9n )=12⎝ ⎛⎭⎪⎫n -922-818,因为n ∈N *,所以n =4或n =5时,S n 取最小值,最小值为-10. 答案:0 -1013.已知{a n }是各项均为正数的等差数列,公差为d .对任意的n ∈N *,b n 是a n 和a n +1的等比中项.(1)设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列; (2)设a 1=d ,T n =∑k =02n(-1)k b 2k,n ∈N *,求证:∑k =0n1T k <12d 2.证明:(1)由题意得b 2n =a n a n +1,有c n =b 2n +1-b 2n =a n +1·a n +2-a n a n +1=2da n +1,因此c n +1-c n =2d (a n +2-a n +1)=2d 2,所以{c n }是等差数列.(2)T n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n ) =2d (a 2+a 4+…+a 2n ) =2d ·n (a 2+a 2n )2=2d 2n (n +1).所以∑k =0n1T k =12d 2∑k =0n 1k (k +1)=12d 2∑k =0n ⎝ ⎛⎭⎪⎫1k -1k +1=12d 2·⎝ ⎛⎭⎪⎫1-1n +1<12d2. [C 级 素养升华]14.(多选题)已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则( ) A .a 6+a 7=4 B .a 6+a 7=12 C .a 6a 7≥4D .a 6a 7≤4解析:在等差数列{a n }中,因为S 12=6(a 6+a 7)=24, 所以a 6+a 7=4.又a 6>0,a 7>0,所以a 6a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.故选AD. 答案:AD。
第二节 等差数列及其前n 项和[考纲传真] 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.用符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d ,a n =a m +(n -m )d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.()(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) [答案] (1)× (2)√ (3)√ (4)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=0,则公差d 等于( ) A .-1 B.1 C .2D.-2D [依题意得S 3=3a 2=6,即a 2=2,故d =a 3-a 2=-2,故选D.] 3.(2015·全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5 B.7 C .9D.11A [a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5(a 1+a 5)2=5a 3=5.]4.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100 B.99 C .98D.97C [法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 法二:∵{a n }是等差数列, ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5.故a 100=a 5+(20-1)×5=98.故选C.]5.(教材改编)在100以内的正整数中有__________个能被6整除的数. 16 [由题意知,能被6整除的数构成一个等差数列{a n }, 则a 1=6,d =6,得a n =6+(n -1)6=6n . 由a n =6n ≤100,即n ≤1646=1623, 则在100以内有16个能被6整除的数.]n n 为{a n }的前n项和,若S 8=4S 4,则a 10=( )A.172 B.192 C .10D.12(2)(2017·云南省二次统一检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( )A .9 B.10 C .11D.15(1)B (2)B [(1)∵公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12, ∴a 10=a 1+9d =12+9=192.(2)设等差数列{a n }的公差为d ,依题意⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.][规律方法] 1.等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知三求二,体现了方程思想的应用.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法,称为基本量法.[变式训练1] (1)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12B.1 C .2D.3(2)设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=__________.【导学号:01772176】(1)C (2)-72 [(1)∵S n =n (a 1+a n )2,∴S n n =a 1+a n 2,又S 33-S 22=1, 得a 1+a 32-a 1+a 22=1,即a 3-a 2=2, ∴数列{a n }的公差为2.(2)设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎨⎧a 12=a 1+11d =-8,S 9=9a 1+9d ×82=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.∴S 16=16×3+16×152×(-1)=-72.]已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列. (2)求数列{a n }中的通项公式a n . [解] (1)证明:因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1.所以n ≥2时,b n -b n -1=1a n -1-1a n -1-1 =1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.5分又b 1=1a 1-1=-52,所以数列{b n }是以-52为首项,1为公差的等差数列.7分 (2)由(1)知,b n =n -72,9分 则a n =1+1b n=1+22n -7.12分[规律方法] 1.判断等差数列的解答题,常用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断.2.用定义证明等差数列时,常采用两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.[变式训练2] (1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )【导学号:01772177】A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列(2)已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n 满足S n S n -1-S n -1S n =2S n S n -1(n ∈N *且n ≥2),则a 61=__________.(1)C (2)480 [(1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2) =(a 2n -1-a 2n -3)+2(a 2n -a 2n -2) =2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列. (2)由已知S nS n -1-S n -1S n =2S n S n -1可得,S n -S n -1=2,所以{S n }是以1为首项,2为公差的等差数列,故S n =2n -1,S n =(2n -1)2,所以a 61=S 61-S 60=1212-1192=480.]每列的三个数均成等差数列,如果数阵中所有数之和等于63,那么a 52=( )⎝ ⎛⎭⎪⎫a 41a 42 a 43a 51 a 52 a 53a 61a 62a 63 图5-2-1 A .2 B.8 C .7D.4(2)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 取得最大值.(1)C [法一:第一行三数成等差数列,由等差中项的性质有a 41+a 42+a 43=3a 42,同理第二行也有a 51+a 52+a 53=3a 52,第三行也有a 61+a 62+a 63=3a 62,又每列也成等差数列,所以对于第二列,有a 42+a 52+a 62=3a 52,所以a 41+a 42+a 43+a 51+a 52+a 53+a 61+a 62+a 63=3a 42+3a 52+3a 62=3×3a 52=63,所以a 52=7,故选C.法二:由于每行每列都成等差数列,不妨取特殊情况,即这9个数均相同,显然满足题意,所以有63÷9=7,即a 52=7,故选C.](2)法一:由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,4分 即d =-213a 1.7分从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0.9分 故当n =7时,S n 最大.12分 法二:由法一可知,d =-213a 1. 要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,5分即⎩⎪⎨⎪⎧a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,9分解得6.5≤n ≤7.5,故当n =7时,S n 最大.12分 法三:由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,5分故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,9分 所以a 7>0,a 8<0,所以当n =7时,S n 最大.12分 [规律方法] 1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的两种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[变式训练3] (1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( )A .18 B.99 C .198D.297(2)已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=__________.(1)B (2)20 [(1)因为a 3+a 9=27-a 6,2a 6=a 3+a 9,所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99.(2)法一:设数列{a n }的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D .所以5+2D =10, 所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20.][思想与方法]1.等差数列的通项公式,前n 项和公式涉及“五个量”,“知三求二”,需运用方程思想求解,特别是求a 1和d .(1)若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,….(2)若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,….2.等差数列{a n }中,a n =an +b (a ,b 为常数),S n =An 2+Bn (A ,B 为常数),均是关于“n ”的函数,充分运用函数思想,借助函数的图象、性质简化解题过程.3.等差数列的四种判断方法:(1)定义法:a n+1-a n=d(d是常数)⇔{a n}是等差数列.(2)等差中项法:2a n+1=a n+a n+2(n∈N*)⇔{a n}是等差数列.(3)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(4)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.[易错与防范]1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.注意区分等差数列定义中同一个常数与常数的区别.3.求等差数列的前n项和S n的最值时,需要注意“自变量n为正整数”这一隐含条件.。
第2讲等差数列及其前n项和[考纲解读]1。
理解等差数列的概念及等差数列与一次函数的关系.(重点)2.掌握等差数列的通项公式与前n项和公式,并熟练掌握其推导方法,能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.(重点、难点)[考向预测]从近三年高考情况来看,本讲一直是高考的热点.预测2021年高考将会以等差数列的通项公式及其性质、等差数列的前n项和为考查重点,也可能将等差数列的通项、前n项和及性质综合考查,题型以客观题或解答题的形式呈现,试题难度一般不大,属中档题型.1.等差数列的有关概念(1)定义:一般地,如果一个数列从错误!第2项起,每一项与它前一项的错误!差都等于错误!同一个常数,那么这个数列就叫做等错误!公差,通常用字母d表示.数学语言表示为错误!a n+1-a n=d(n∈N*),d为常数.(2)等差中项:若a,A,b成等差数列,则A叫做a和b的等差中项,且A=错误!错误!.2.等差数列的通项公式与前n项和公式(1)若等差数列{a n}的首项是a1,公差是d,则其通项公式为a n=错误!a1+(n-1)d,可推广为a n=a m+错误!(n-m)d(n,m∈N*).(2)等差数列的前n项和公式S n=n a1+a n2=错误!na1+错误!d(其中n∈N*).3.等差数列的相关性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)等差数列{a n}中,当m+n=p+q时,错误!a m+a n=a p+a q (m,n,p,q∈N*).特别地,若m+n=2p,则错误!2a p=a m+a n(m,n,p∈N*).(2)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为错误!md(k,m∈N*).(3)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为错误!n2d。
(4)错误!也成等差数列,其首项与{a n}首项相同,公差为错误!错误! d。
第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.体会等差数列与一次函数的关系.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.[微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数. (4)若公差d =0,则前n 项和不是二次函数. 答案 (1)√ (2)√ (3)× (4)×2.(必修5P46A2改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A.31B.32C.33D.34解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32.答案 B3.(必修5P68A8改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180. 答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( ) A.-3B.-52C.-2D.-4解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎪⎨⎪⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4. 答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中, ∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0,∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5. 答案 S 5考点一 等差数列基本量的运算【例1】 (1)(一题多解)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8(2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( ) A.9B.10C.11D.15解析 (1)法一 设等差数列{a n }的公差为d , 依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4. 法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7, ∴a m =a 1+(m -1)d =7m -40=30,∴m =10. 答案 (1)C (2)B规律方法 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于( ) A.3 B.4 C.log 318 D.log 324(2)(一题多解)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2, 解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318, ∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d , 由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎪⎨⎪⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎪⎨⎪⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎪⎨⎪⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30.答案 (1)A (2)30考点二 等差数列的判定与证明 典例迁移【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列. 【迁移探究2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n . 规律方法 1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. 2.判定一个数列是等差数列还常用到结论:(1)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(2)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎪⎨⎪⎧q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23.=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列. 考点三 等差数列的性质及应用 多维探究角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A.6B.12C.24D.48解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120, 由等差数列的性质,a 1+3a 8+a 15=5a 8=120, ∴a 8=24,∴a 2+a 14=2a 8=48. 答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A.63B.45C.36D.27解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45, 所以a 7+a 8+a 9=45. 答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则 (1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1); (2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( ) A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3, ∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质, ∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8. ∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A 考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立. (1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0, 因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2). 所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2nλ. (2)当a 1>0,λ=100时,由(1)知,a n =2n100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n=2-n lg 2,所以数列{b n }是单调递减的等差数列,公差为-lg 2, 所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大.规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值. ①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( )A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎪⎨⎪⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S nn=na 1+n (n -1)2dn=-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4.(2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110[思维升华]1.证明等差数列可利用定义或等差中项的性质,另外还常用前n 项和S n =An 2+Bn 及通项a n =pn +q 来判断一个数列是否为等差数列. 2.等差数列基本量思想(1)在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解. (2)若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d .若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.(3)灵活使用等差数列的性质,可以大大减少运算量. [易错防范]1.用定义法证明等差数列应注意“从第2项起”,如证明了a n +1-a n =d (n ≥2)时,应注意验证a 2-a 1是否等于d ,若a 2-a 1≠d ,则数列{a n }不为等差数列.2.利用二次函数性质求等差数列前n 项和最值时,一定要注意自变量n 是正整数.基础巩固题组 (建议用时:40分钟)一、选择题1.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100B.99C.98D.97解析 设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧9a 1+36d =27,a 1+9d =8,所以⎩⎪⎨⎪⎧a 1=-1,d =1, 所以a 100=a 1+99d =-1+99=98. 答案 C2.(2019·淄博调研)设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( )A.1B.-1C.2D.12 解析 由于S 11S 9=11a 69a 5=119×911=1. 答案 A 3.(2019·中原名校联考)若数列{a n }满足1a n +1-1a n =d (n ∈N *,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( )A.10B.20C.30D.40解析 依题意,11x n +1-11x n=x n +1-x n =d , ∴{x n }是等差数列.又x 1+x 2+…+x 20=20(x 1+x 20)2=200. ∴x 1+x 20=20,从而x 5+x 16=x 1+x 20=20.答案 B4.(2019·北京海淀区质检)中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( )A.174斤B.184斤C.191斤D.201斤解析 用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数,由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996,∴8a 1+8×72×17=996,解之得a 1=65. ∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤.答案 B5.已知等差数列{a n }的前n 项和为S n ,a 1=9,S 99-S 55=-4,则S n 取最大值时的n 为( ) A.4 B.5 C.6 D.4或5 解析 由{a n }为等差数列,得S 99-S 55=a 5-a 3=2d =-4, 即d =-2,由于a 1=9,所以a n =-2n +11,令a n =-2n +11<0,得n >112, 所以S n 取最大值时的n 为5.答案 B二、填空题6.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为________.解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n 解得n =5,故这个数列的项数为10.答案 107.已知数列{a n }满足a 1=1,a n -a n +1=2a n a n +1,则a 6=________. 解析 将a n -a n +1=2a n a n +1两边同时除以a n a n +1,1a n +1-1a n =2. 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,2为公差的等差数列, 所以1a 6=1+5×2=11,即a 6=111. 答案 1118.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析 依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200. 答案 200三、解答题9.等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2≤2n +35<3,b n =2; 当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4≤2n +35<5,b n =4. 所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n ,证明:数列{b n }是等差数列,并求其前n 项和T n .(1)解 设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k , 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)证明 由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2.能力提升题组(建议用时:20分钟)11.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269. 答案 B12.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( ) A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1),所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A13.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 13014.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81,∴⎩⎪⎨⎪⎧2a 7=26,9a 5=81,解得⎩⎪⎨⎪⎧a 7=13,a 5=9, ∴d =a 7-a 57-5=13-92=2,∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.新高考创新预测15.(多填题)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=________,公差d =________.解析 由{a n }为等差数列,得数列⎩⎨⎧⎭⎬⎫S n n 是首项为a 1,公差为d 2的等差数列,∵S 55-S 44=2,∴d 2=2⇒d =4,又S 2=S 6⇒2a 1+4=6a 1+6×52×4⇒a 1=-14. 答案 -14 4。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(三十一)一、选择题1.(2012·辽宁高考)在等差数列{a n}中,已知a4+a8=16,则a2+a10=( )(A)12 (B)16 (C)20 (D)242.等差数列{a n}满足a2+a9=a6,则前9项和S9=( )(A)-2 (B)0 (C)1 (D)23.(2013·哈尔滨模拟)已知数列{a n}为等差数列,S n为其前n项和,且a2=3a4-6,则S9等于( )(A)25 (B)27 (C)50 (D)544.如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=( )(A)14 (B)21 (C)28 (D)355.设等差数列{a n}的前n项和为S n,若S3=12,S6=42,则a10+a11+a12=( )(A)156 (B)102 (C)66 (D)486.已知等差数列{a n}中,|a3|=|a9|,公差d<0,S n是数列{a n}的前n项和,则( )(A)S5>S6(B)S5<S6(C)S6=0 (D)S5=S67.(2013·滨州模拟)等差数列{a n}的前n项和记为S n,若a2+a4+a15的值是一个确定的常数,则数列{a n}的前n项和中也为常数的是( )(A)S 7(B)S 8(C)S 13(D)S 15二、填空题8.若S n 是等差数列{a n }的前n 项和,且S 8-S 3=10,则S 11的值为________. 9.若{a n }为等差数列,a 15=8,a 60=20,则a 75=_________.10.(2013·济南模拟)设关于x 的不等式x 2-x <2nx(n ∈N *)的解集中整数的个数为a n ,则数列{a n }的前n 项和S n =________.11.(能力挑战题)设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有n n S 2n 3T 4n 3--=,则935784a ab b b b +++的值为___________. 三、解答题12.(2013·太原模拟)已知数列{a n }是等差数列,且a 2=-1,a 5=5. (1)求{a n }的通项a n .(2)求{a n }前n 项和S n 的最小值.13.(2013·温州模拟)等差数列{a n }的首项为a 1,公差d=-1,前n 项和为S n . (1)若S 5=-5,求a 1的值.(2)若S n ≤a n 对任意正整数n 均成立,求a 1的取值范围.14.(能力挑战题)数列{a n }满足a 1=1,a n +1=(n 2+n -λ)·a n (n =1,2,…),λ是常数.(1)当a 2=-1时,求λ及a 3的值.(2)数列{a n }是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.答案解析1.【思路点拨】利用首项a1与公差d的关系整体代入求解,也可直接利用等差数列的性质求解.【解析】选B.方法一:≧a4+a8=(a1+3d)+(a1+7d)=2a1+10d,a2+a10=(a1+d)+(a1+9d)=2a1+10d,≨a2+a10=a4+a8=16.方法二:由等差数列的性质a2+a10=a4+a8=16.2.【解析】选B.由a2+a9=a6得a5+a6=a6,由此得a5=0,故S9=9a5=0.3.【解析】选B.由a2=3a4-6,得a1+d=3(a1+3d)-6,即a1=-4d+3,S9=9a1+36d=9(-4d+3)+36d=27.4.【解析】选C.在等差数列{a n}中,a3+a4+a5=12,由等差数列的性质可知a3+a5=a4+a4,所以a4=4.根据等差数列的性质可知a1+a2+…+a7=7a4=28,故选C.5.【思路点拨】根据已知的特点,考虑使用等差数列的整体性质求解.【解析】选C.根据等差数列的特点,等差数列中a1+a2+a3,a4+a5+a6,a7+a8+a9,a10+a11+a12也成等差数列,记这个数列为{b n},根据已知b1=12,b2=42-12=30,故这个数列的首项是12,公差是18,所以b4=12+3×18=66.6.【思路点拨】根据已知得到a3+a9=0,从而确定出a6=0,然后根据选项即可判断.【解析】选D.≧d<0,|a3|=|a9|,≨a3>0,a9<0,且a3+a9=0,≨a6=0,a5>0,a7<0,≨S5=S6.【变式备选】(2013·聊城模拟)等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19=( )(A)55 (B)95 (C)100 (D)不能确定【解析】选B.≧a 3+a 17=10,≨a 10=5,那么S 19=19a 10=95. 7.【解析】选C.设a 2+a 4+a 15=p(常数), ≨3a 1+18d=p,解得a 7=13p ,≨S 13()113713a a 1313a p.23⨯+=== 8.【解析】()()1813838a a 3a a S S 101022++-=⇒-= ⇒5a 1+8a 8-3a 3=20⇒10a 1+50d=20⇒a 1+5d=2⇒a 6=2 ⇒()11111611a a S 11a 222+===. 答案:229.【思路点拨】直接解出首项和公差,从而求得a 75,或利用a 15,a 30,a 45,a 60,a 75成等差数列直接求得.【解析】方法一:{a n }为等差数列,设公差为d ,首项为a 1,那么1560a 8,a 20=⎧⎨=⎩,即11a 14d 8a 59d 20.+=⎧⎨+=⎩,解得:1644a d 1515==,. 所以751644a a 74d 74241515=+=+⨯=.方法二:因为{a n }为等差数列,所以a 15,a 30,a 45,a 60,a 75也成等差数列,设公差为d ,则a 60-a 15=3d ,所以d=4,a 75=a 60+d=20+4=24.答案:2410.【解析】由x 2-x <2nx(n ∈N *)得0<x <2n+1, 则a n =2n,所以S n =n 2+n. 答案:n 2+n(n ∈N *)11.【解析】≧{a n },{b n }为等差数列, ≨93939366578466666a a a a a a 2a a.b b b b 2b 2b 2b 2b b +=+===+++ ≧661111111111662a a S a a 21131919,T b b 2b 411341b 41+⨯-====∴=+⨯-. 答案:1941【方法技巧】巧解等差数列前n 项和的比值问题关于等差数列前n 项和的比值问题,一般可采用前n 项和与中间项的关系,尤其是项数为奇数时S n =na 中,也可利用首项与公差的关系求解.另外,熟记以下结论对解题会有很大帮助:若数列{a n }与{b n }都是等差数列,且前n 项和分别是S n 与T n ,则m 2m 1m 2m 1a Sb T --=. 【变式备选】已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且n n A 7n 45B n 3+=+,则使得n nab 为整数的正整数n 的个数是( ) (A)2 (B)3 (C)4 (D)5 【解析】选D.由等差数列的前n 项和及等差中项,可得12n 112n 1n n 12n 112n 111(a a )(2n 1)(a a )a 2211b (b b )(2n 1)(b b )22----+-+==+-+()()2n 12n 172n 145A14n 387n 19B 2n 132n 2n 1---+++====-+++ 127n 1=++ (n ∈N *),故n=1,2,3,5,11时,nna b 为整数.故选D. 12.【解析】(1)设{a n }的公差为d ,由已知条件,11a d 1,a 4d 5+=-⎧⎨+=⎩,解得a 1=-3,d=2.所以a n =a 1+(n-1)d=2n-5. (2)S n =()()221n n 1na d n 4n n 242-+=-=--. 所以n=2时,S n 取到最小值-4.【变式备选】设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围.(2)求{a n }前n 项和S n 最大时n 的值.【解析】(1)≧S 12>0,S 13<0,≨11112a 66d 0,13a 78d 0,a 2d 12.+>⎧⎪+<⎨⎪+=⎩≨-247<d<-3. (2)由()11313713a a S 13a 0,2+==<知a 7<0, S 12=6(a 1+a 12)=6(a 6+a 7)>0,知a 6>0,又≧d <0,≨n ≤6时,a n >0,n ≥7时,a n <0, ≨S 6最大,即n=6.13.【解析】(1)由条件得,S 5=5a 1+542⨯d=-5, 解得a 1=1.(2)由S n ≤a n ,代入得()11n n 1na a 1n 2--≤+-, 整理,变量分离得:()2113n 1a n n 122-≤-+=12(n-1)(n-2), 当n=1时,上式成立.当n>1,n ∈N *时,a 1≤12(n-2), n=2时,12(n-2)取到最小值0, ≨a 1≤0.【变式备选】等差数列{a n }的各项均为正数,其前n 项和为S n ,满足2S 2=a 2(a 2+1),且a 1=1.(1)求数列{a n }的通项公式. (2)设n n 2S 13b n +=,求数列{b n }的最小值项. 【解析】(1)设数列{a n }的公差为d. 由22222S a a =+,可得2(a 1+a 1+d)=(a 1+d)2+(a 1+d). 又a 1=1,可得d=1(d=-2舍去), ≨a n =n. (2)根据(1)得()n n n 1S 2+=, ()n n n n 1132S 1313b n 1n n n+++===++.由于函数f(x)=x+13x(x>0)在上单调递减,在≦)上单调递增, 而,且f(3)=13228833312+==,f(4)=13298744412+==,所以当n=4时,b n 取得最小值, 且最小值为2933144+=, 即数列{b n }的最小值项是b 4=334. 14.【解析】(1)由于a n +1=(n 2+n -λ)a n (n =1,2,…),且a1=1,所以当a2=-1时,得-1=2-λ,故λ=3.从而a3=(22+2-3)×(-1)=-3.(2)数列{a n}不可能为等差数列,理由如下:由a1=1,a n+1=(n2+n-λ)a n,得a2=2-λ,a3=(6-λ)(2-λ),a4=(12-λ)(6-λ)(2-λ).若存在λ,使{a n}为等差数列,则a3-a2=a2-a1,即(5-λ)(2-λ)=1-λ,解得λ=3.于是a2-a1=1-λ=-2,a4-a3=(11-λ)(6-λ)(2-λ)=-24.这与{a n}为等差数列矛盾.所以,对任意λ,{a n}都不可能是等差数列.关闭Word文档返回原板块。