基础分子生物学12噬菌体策略
- 格式:ppt
- 大小:554.50 KB
- 文档页数:15
分子生物学实验基础知识分子生物学是在生物化学基础上进展起来的,以研究核酸和蛋白质结构、功能等生命本质的学科,在核酸、蛋白质分子水平研究发病、诊断、医治和预后的机制。
其中基因工程(基因技术,基因重组)是目前分子生物学研究热点,这些技术能够改造或扩增基因和基因产物,使微量的研究对象达到分析水平,是研究基因调控和表达的方式,也是分子水平研究疾病发生机制、基因诊断和基因医治的方式。
转化(tran sformation)、转染、转导、转位等是自然界基因重组存在的方式,也是人工基因重组常采纳的手腕。
基因重组的目的之一是基因克隆(gene clone),基因克隆可明白得为以一分子基因为模板扩增取得的与模板分子结构完全相同的基因。
使需要分析研究的微量、混杂的目的基因易于纯化,得以增量,便于分析。
外来基因引发细胞生物性状改变的进程叫转化(transformation),以噬菌体把外源基因导入细菌的进程叫转染(transfection)。
利用载体(噬菌体或病毒)把遗传物质从一种宿主传给另一种宿主的进程叫转导(transduction)。
一个或一组基因从一处转移到基因组另一处的进程叫转位(transposition),这些游动的基因叫转位子。
一、基因工程的经常使用工具(一)载体载体(Vector)是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增、表达的工具。
载体有质粒(plasmid)、噬菌体、单链丝状噬菌体和粘性结尾质粒(粘粒)、病毒等。
载体具有能自我复制;有可选择的,便于挑选、鉴定的遗传标记;有供外源DNA插入的位点;本躯体积小等特点。
质粒存在于多种细菌,是染色体(核)之外的独立遗传因子,由双链环状DNA组成,几乎完全袒露,很少有蛋白质结合。
质粒有严紧型和松弛型之分。
严紧型由DNA多聚酶Ⅲ复制,一个细胞可复制1-5个质粒。
而松弛型由DNA多聚酶Ⅰ复制,一个细胞可复制30-50个质粒,若是用氯霉素可阻止蛋白质合成,使质粒有效利用原料,复制更多的质粒。
材料科学基础噬菌体
噬菌体(phage),也称为噬菌体病毒,是一类只感染细菌的病毒。
它是由蛋白质外
壳和核酸组成的纳米尺寸颗粒,其大小为20至200纳米。
噬菌体的核酸可以是DNA或RNA,但这两种核酸不同时存在于同一种噬菌体中。
噬菌体感染细菌的过程叫做噬菌作用。
在噬菌作用中,噬菌体使用其结构中的特定蛋白质结合到细菌表面,然后注入其核酸到细菌细胞内。
噬菌体的核酸会接管细菌的代谢机制,并且将细菌的遗传物质重编程以产生更多的噬菌体。
当噬菌体繁殖到足够数量时,它们会破坏细菌细胞并释放出来,可以感染更多的细菌。
噬菌体是一种重要的生物学研究工具,在分子生物学和生物工程领域有着广泛的应用。
例如,噬菌体可以用来研究细胞周期、DNA重组和基因转移等生命科学问题;在生物工程方面,噬菌体可以被用来制造基于细菌的蛋白质表达系统,并且可以用于创建基于细菌的生物传感器等。
总之,噬菌体在微生物学、分子生物学和生物工程等领域中均具有重要的应用价值,是一种有着广泛应用前景的研究对象。
现代分子生物学1-1修正后的中心法则:1-2肺炎链球菌感染小鼠,证明DNA是遗传物质:1-3噬菌体浸染细菌,证明DNA是遗传物质,而不是蛋白:(1)噬菌体侵染细菌的主要过程如下:①噬菌体尾部的末端(基片、尾丝)吸附在细菌表面;②噬菌体通过尾轴把DNA全部注入细菌细胞内,噬菌体的蛋白②噬菌体通过尾轴把DNA全部注入细菌细胞内,噬菌体的蛋白质外壳则留在细胞外面;③利用细菌的生命过程合成噬菌体自身的DNA和蛋白质;④新合成的DNA和蛋白质组装成与亲代完全相同的子噬菌体;④新合成的和蛋白质组装成与亲代完全相同的子噬菌体;⑤细菌解体,释放子代噬菌体,侵染其他细菌。
(2)2-1核苷酸的组成:核苷酸包括磷酸、核糖、碱基3部分。
2-2真核生物基因组的特点:2-3 C值、C值谬误:(1)C值通常是指一种生物单倍体基因组DNA的总量。
在真核生物中,C值一般是随着生物进化而增加的,高等生物的C值一般大于低等生物;(2)C值往往与种系进化的复杂程度不一致,某些低等生物却具有较大的C值,这就是C值谬误。
2-4核小体的组成、组蛋白的组成(1)核小体是染色质的基本结构单位,由~200bpDNA和组蛋白八聚体组成;(2)组蛋白是染色体的结构蛋白,有H1、H2A、H2B、H3 及H4 五种,与DNA共同组成核小体。
2-5 DNA的B型二级结构:B型是反向平行右手螺旋结构,有很宽较深的大沟和又窄又深的小沟,外型适中。
2-6 DNA的变性、复性:(1) 缓慢加热,使氢键断裂、双链解开,产生单链的DNA分子,这个过程叫变性;(2) 变性后分开的DNA分子的两条链,在适当条件下重新缔合形成双螺旋结构这个过程被称为复性重新缔合形成双螺旋结构,这个过程被称为复性或退火。
2-7基因组、基因型、表型、染色体、染色质的英文和概念:(1)基因组genome 基因型genotype 表型phenotype 染色体chromosome 染色质chromatin;(2)①基因组:生物有机体的单倍体细胞中的所有DNA,包括核中的染色体DNA和线粒体、叶绿体等亚细胞器中的DNA;②基因型:同一基因座位上多个等位位点的类型;③表现型:某个特定生物体中可观察到的物理或生理现象;④染色体:染色体是细胞内具有遗传性质的物体,易被碱性染料染成深色;⑤染色质:染色质是细胞间期细胞核内能被碱性染料染色的物质,主要由DNA和蛋白质组成2-8细菌、水稻、玉米、紫花苜蓿、小麦、人、果蝇的染色体数目:细菌1 水稻12 玉米10 紫花苜蓿32 小麦42 人23 果蝇42-9DNA和RNA的英文全称:Deoxyribonucleic acid(DNA) Ribonucleic acid(RNA)3-1复制叉、复制子、多复制子:(1)复制时,双链DNA要解开成两股链分别进行,所以,复制起点呈叉子形式,被称为复制叉;(2)DNA的复制是由固定的起始点开始的,一般把生物体的复制单位称为复制子。
噬菌体展示技术筛选脑靶向功能肽及其修饰纳米粒的脑内递药研究一、概述在生物医学领域中,脑靶向递药系统一直是研究的热点和难点。
由于血脑屏障的存在,许多药物难以有效进入大脑,从而限制了其在中枢神经系统疾病治疗中的应用。
开发新型的脑靶向递药技术,对于提高药物在脑部的浓度和疗效,降低副作用具有重要意义。
噬菌体展示技术以其独特的优势在药物研发和生物医学领域得到广泛应用。
该技术通过将外源蛋白或多肽的DNA序列插入到噬菌体外壳蛋白结构基因的适当位置,使外源基因随外壳蛋白的表达而表达,同时外源蛋白随噬菌体的重新组装而展示到噬菌体表面。
利用噬菌体展示技术,我们可以筛选到与特定靶标具有高亲和力的多肽或蛋白,为药物研发和疾病治疗提供新的候选分子。
本研究旨在利用噬菌体展示技术筛选具有脑靶向功能的多肽,并将其修饰到纳米粒表面,构建新型的脑靶向递药系统。
通过优化筛选条件和方式,我们成功获得了多个具有脑靶向功能的多肽序列,并通过实验验证了其脑靶向性。
我们还将这些多肽以共价连接的方式修饰到聚乙二醇聚乳酸羟基乙酸共聚物(PEGPLGA)纳米粒表面,以提高药物的稳定性和脑部递送效率。
本研究不仅为脑靶向递药系统的开发提供了新的思路和方法,还为中枢神经系统疾病的治疗提供了新的候选药物和递送策略。
通过进一步的研究和优化,我们相信这种新型的脑靶向递药系统将在未来为更多的患者带来福音。
1. 介绍脑靶向药物递送的重要性与挑战脑靶向药物递送是神经科学领域的一个关键研究方向,对于治疗脑部疾病具有重要意义。
由于血脑屏障的存在,许多药物难以有效穿透并进入脑组织,这使得脑内疾病的治疗面临着巨大的挑战。
开发高效的脑靶向药物递送系统成为当前研究的热点和难点。
脑靶向药物递送的重要性主要体现在以下几个方面:对于脑部疾病如阿尔茨海默病、帕金森病、脑肿瘤等,有效的药物递送能够显著提高治疗效果,改善患者的生存质量。
脑靶向递送系统能够实现药物的精准定位,减少对其他组织器官的副作用。
第一章1、现代生物技术:也称生物工程。
在分子生物学基础上建立的创建新的生物类型或新生物机能的实用技术,是现代生物科学和工程技术相结合的产物。
2、基因重组:gene recombination 造成基因型变化的核酸的交换过程。
3、酶工程:enzyme engineering 酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。
4、蛋白质工程:protein engineering 按人们意志改变蛋白质的结构和功能或创造新的蛋白质的过程。
5、快速无性繁殖:7、生物工程:bioengineering应用生命科学及工程学的原理,借助生物体作为反应器或用生物的成分作工具以提供产品来为社会服务的生物技术。
包括基因工程、细胞工程、发酵工程、酶工程等。
8、细胞工程:cell engineering应用细胞生物学和分子生物学的方法,通过类似于工程学的步骤在细胞整体水平或细胞器水平上,遵循细胞的遗传和生理活动规律,有目的地制造细胞产品的一门生物技术。
9、发酵工程:是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。
10、转基因工程:转基因工程又叫重组DNA技术,重组是指在体外将分离到的或合成的目的基因(object gene),通过与质粒、病毒等载体(vector)重组连接,然后将其导入不含该基因的受体细胞(host cell),使受体细胞产生新的基因产物或获得新的遗传特性。
11、生物固氮:是指固氮微生物将大气中的氮气还原成氨的过程。
12、人类基因组计划:human genome project于20世纪80年代提出,由美、英、日、中、德、法等国参加并于2001年完成的针对人体23对染色体全部DNA的碱基对(3×109)序列进行排序,对大约25 000基因进行染色体定位,构建人类基因组遗传图谱和物理图谱的国际合作研究计划。
λ噬菌体的基因调控姓名学号:班级:目录λ噬菌体的发现λ噬菌体的结构组成1.基本结构2.λ噬菌体的核心λ噬菌体的生活周期I.两种发育途径简介II.调控发育途径的分子基础1.两种途径共同的早期基因表达途径2.溶源发育中基因的相互作用3.裂解途径的建立4.溶源和裂解的平衡5.溶源发育向裂解发育的转变λ噬菌体的侵染过程1.吸附2.穿入3.生物合成4.成熟与释放λ噬菌体的应用1.细菌的鉴定与分型2.耐药细菌感染的治疗3.分子生物学研究的重要工具4.遗传工程5.其他参考文献λ噬菌体的发现:1951年J. Lederberg的妻子Esther Lederberg证明了J. Lederberg和Tatum用来杂交的K12中有原噬菌体,并命名为λ,经10年的研究搞清了溶原化的实质。
在E.coli K12中是有原噬菌体的存在。
Jacob和Wollman(1956年)发现了合子诱导(zygotic induction)现象,并利用合子诱导确定了几个E.coli染色体上原噬菌体的整合位点。
他们发现Hfr(λ)×F-所得到的重组子频率要比Hfr×F-(λ)或Hfr(λ)×F-(λ)要低得多。
这是由于在Hfr(λ)×F-的杂交中,原噬菌体进入无阻遏物的受体细胞质中,进行大量复制使受体细胞裂解(图8-20b),因此不易得到重组子,此现象就称为合子诱导。
现在我们再回过头来查阅一下传递等级作图,中断杂交实验以及重组作图都是采用Hfr×F-(λ)就是不致产生合子诱导的缘故。
λ噬菌体的结构组成:1.基本结构λ噬菌体是一种温和的诱导性噬菌体,其基因组除在5'端有12个可互补的碱基外均为线性双链DNA,感染时DNA形成环状。
λ噬菌体的基因组长达50 Kb,共61个基因,其中38个较为重要。
λ-DNA的基因顺序组织如图所示,按基因组功能共分六大区域:头部编码区、尾部编码区、重组区、控制区、复制区和裂解区.它们分属四个操纵子结构:阻遏蛋白操纵子、早期左向操纵子、早期右向操纵子以及晚期右向操纵子。
《基础分子生物学》复习题及参考答案要点《基础分子生物学》复习题及参考答案一、填空题1.核酸分子中糖环与碱基之间为β型的糖苷键,核苷与核苷之间通过磷酸二酯键连接成多聚体。
2.DNA变性后,紫外吸收增加,粘度下降,浮力密度升高,生物活性丧失。
3.DNA双螺旋直径为 2 nm,每隔 3.4nm上升一圈,相当于10个碱基对。
4.Z-DNA为左手螺旋。
5.hn-RNA是真核生物mRNA的前体。
6.用Sanger的链末端终止法测定DNA一级结构时,链终止剂是双脱氧核苷三磷酸。
7.维系DNA双螺旋结构稳定的力主要有氢键和碱基堆积力。
8.在碱性条件下,核糖核酸比脱氧核糖核酸更容易降解,其原因是因为核糖核酸的每个核苷酸上-OH 的缘故。
9.DNA复制时,连续合成的链称为前导链;不连续合成的链称为随从链。
10.DNA合成的原料是四种脱氧核糖核苷三磷酸;复制中所需要的引物是RNA 。
11.DNA合成时,先由引物酶合成RNA引物,再由DNA聚合酶Ⅲ在其3′端合成DNA链,然后由 DNA聚合酶Ⅰ切除引物并填补空隙,最后由 DNA连接酶连接成完整的链。
12.细菌的DNA连接酶以NAD为能量来源,动物细胞和T4噬菌体的DNA连接酶以A TP为能源。
13.大肠杆菌RNA聚合酶的全酶由α2ββ′σ组成,其核心酶的组成为α2ββ′。
14.RNA转录过程中识别转录启动子的是σ因子,协助识别转录终止部位的是ρ因子。
15.真核细胞mRNA合成后的成熟过程包括戴帽、加尾、剪接、甲基化修饰。
16.遗传信息由RNA传递到 DNA 的过程称为逆转录,由逆转录酶催化。
17.反密码子第 1 位碱基和密码子第 3 碱基的配对允许有一定的摆动,称为变偶性。
18.在原核细胞翻译起始时,小亚基16SrRNA的3′端与mRNA5′端的 SD序列之间互补配对,确定读码框架,fMet-tRNA f占据核糖体的 P 位点位置。
19.细胞内多肽链合成的方向是从 N 端到 C 端,而阅读mRNA的方向是从5′端到3′端。
分子生物学(molecHarbiology)从分子水平研究作为生命活动主要物质基础的生物大分子结构与功能,从而阐明生命现象本质的科学。
重点研究下述领域:(1)蛋白质(包括酶)的结构和功能。
(2)核酸的结构和功能,包括遗传信息的传递。
(3)生物膜的结构和功能。
(4)生物调控的分子基础。
(5)生物进化。
分子生物学是第二次世界大战后,由生物化学,、遗传学,微生物学,病毒学,结构分析及高分子化学等不同研究领域结合而形成的一门交叉科学。
目前分子生物学已发展成生命科学中的带头学科。
随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。
如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA 重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。
这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个基因与那种生物的那个基因重新施工,组装成新的基因组合,创造出新的生物。
这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为基因工程,或者说是遗传工程”生物学的研究可以说长期以来都是科研的重点,惟其所涉及的方方面面与人类生活紧密相连。
本世纪50年代以前的生物学研究,虽然有些已进入了微观领域,但总的来说,主要是研究生物个体组织、器官、细胞或是亚细胞这些东西之间的相互关系。
50年代中期,随着沃森和克里克揭示出DNA分子的空间结构,生物学才真正开始了其揭开分子水平生命秘密的研究历程。
到70年代,重组DNA技术的发展又给人们提供了研究DNA的强有力的手段,于是分子生物学就逐渐形成了。
顾名思义,分子生物学就是研究生物大分子之间相互关系和作用的一门学科,而生物大分子主要是指基因和蛋白质两大类;分子生物学以遗传学、生物化学、细胞生物学等学科为基础,从分子水平上对生物体的多种生命现象进行研究;分子生物学在理论和实践中的发展也为基因工程的出现和发展打下了良好的基础,因此可以说基因工程就是分子生物学的工程应用。