福建省惠安东周中学八年级数学上册 11.1.2 立方根教案 (新版)华东师大版
- 格式:doc
- 大小:133.00 KB
- 文档页数:3
八年级数学上册《11.1.2 立方根》学案(新版)华东师大版1、知道一个数的立方根的意义、2、会用根号表示一个数的立方根、学习过程一、复习与回顾1、正数a的平方根是____;正数a的算术平方根是____。
2、0的平方根是:____;0的算术平方根是____。
3、的平方根是:____;算术平方根是:____二、探求新知1、33=___;(-3)3=____;=___;=___2、(__)3=27;(__)3=-27;(__)3=;(__)3=-总结:我们把括号里3,-3,,-分别叫27,-27,,-的立方根。
定义:如果一个数的立方等于a,那么这个数叫做a的___即x3=a,那么__叫___的立方根,___叫___的立方数。
三、试一试1、27的立方根是___;2、-27的立方根是___;3、0的立方根是___,概括:任何数的立方根如果存在的话,必定只有__个,正数的立方根是___;负数的立方根是___;0的立方根是____。
四、数a的立方根的表示方法:数a的立方根,记作:___;读作:______;a称为______;3称为______。
求一个数的立方根的运算,叫做_______五、例题:例1,求下列各数的立方根(1)、(2)、-125; (3)、-0、008 (4)、3(1)、解:∵= ∴=___(2)、(3)、(4)、例2、若5x3=135,则x= 六、课堂练习1、-125的立方根用符号表示为_____,结果为____2、表示-49n的立方根,则的值为_____3、立方根等于它本身的数是_____4、求下列各数的立方根(1)216 (2)-0、027 (3)-(4)1-5、计算(1)(2)-。
11.1.2立方根一、教学目标1、知识与技能目标(1)使学生理解立方根的概念,能运用根号正确表示一个数的立方根;(2)掌握用开立方运算求某些数的立方根的方法.2、过程与方法目标(1)通过对比体会平方根、立方根的联系和区别;(2)在学习开立方运算求一个数立方根的过程中,体会开立方运算与立方运算之间的互逆关系.3、情感与态度目标(1)发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确地处理.(2)通过探究活动,锻炼学生克服困难的意志,建立自信心,提高学习热情.二、教学重点和难点1.重点:立方根的概念;求某数的立方根的方法.2. 难点:平方根、立方根的概念及区别;求一个数的立方根.三、学法设计在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式.在学习的过程中让学生仔细观察、大胆猜测、交流讨论、分析推理,最后归纳总结.让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体.四、教法设计针对八年级学生的知识结构和心理特征,本节课可选择用类比及引导探索法,由浅入深,由特殊到一般地提出问题,注重启发、疏导学生自主探索,合作交流.在探究活动中,引导学生利用概念思考问题,对于学生的回答给予点拨,及时评价.这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性.五、教学过程设计(一)创设情境、复旧导新12、思考:若一个正方体的体积是,那么这个正方体的棱长为多少呢?为使学生能更轻松地发现、掌握立方根,先激活学生记忆中有关平方根的知识,在这里设计了让学生回顾平方根的知识,以填空的形式简要归纳,为立方根的引入奠定基础.3、做一做(多媒体展示图片及问题):要制作一种容积为27m3的正方体形状包装箱,这种包装箱的棱长应该是多少?用多媒体展示图片和课件让学生动手做一做.在做的过程中引导学生思考,利用体积等于棱长的立方,将此题转化为求一个数使它的立方等于27,得出边长为3m.这样从现实生活中提出数学问题,把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,使学生积极主动地投入到数学活动中去,同时为学习立方根提供背景和生活素材.4、试一试:你能试着给数的立方根下个定义吗?(学生分组讨论,相互交流,再总结定义,最后由教师补充)一般地,如果一个数a的立方等于a,那么这个数叫做a的立方根或三次方根.即:如果x3=a,那么x 叫做a的立方根.求一个数的立方根的运算,叫做开立方.(强调开立方与立方是逆运算)让学生试着给出立方根和开立方的定义.在这里让学生以原有的知识和经验出发,引导学生通过类比、思考、探索、交流来获取知识和学会学习,同时让学生经历数学知识的形成与应用过程,使他们更好地理解数学概念的形成,发展他们的数学能力.在本次活动中,教师要关注:学生对平方根的了解程度;学生能否正确地利用类比的方法说出立方根和开立方的概念;通过对概念的探究,能否理解立方与开立方是一种互逆的运算;学生在活动中的参与意识及发表个人见解的勇气.(二)启发诱导,探索新知1、探究:根据立方根的意义填空(多媒体展示,学生口答)(1)因为23=8,所以8的立方根是();(2)因为()3=0.125,所以0.125的立方根是();(3)因为()3=0,所以0的立方根是();(4)因为()3=-8,所以-8的立方根是().学生在了解立方根的有关概念的基础上通过对问题的研究,进一步巩固立方根的概念,并能熟练地利用开立方与立方的互逆性,求一个数的立方根.2、说一说(学生分组讨论):以填空的方式让学生计算具体的正数、0和负数的立方根,寻找它们各自的特点,通过小组讨论合作交流,归纳得出立方根的性质.这样让学生通过探究活动经历了一个由特殊到一般的认识过程,在探究的过程中发展思维能力,有效地改变学生原有的学习方式.3、自主探究:如何表示一个数的立方根?一个数a的立方根可表示为3a,读作:三次根号a,其中a是被开方数,3是根指数.通过让学生自主探究立方根的表示方法和读法,进一步训练学生利用类比的方法学习立方根,这样将新旧知识联系起来既有利于复习巩固平方根,又有利于理解和掌握立方根.4、 议一议:你能说说数的平方根与数的立方根有什么不同吗?设计这个问题,可以了解学生对立方根及平方根知识的掌握程度,可以在教的过程中,对于学生不理解的,没掌握的知识点再加以强调.学生在归纳的过程中可能结果不是很完善,教师可以引导学生从各自的定义、性质、表示方法上加以区别.在本次活动中,教师要关注:学生能否根据立方根的概念填空;学生能否准确地归纳出立方根的性质;学生能否正确地用符号表示一个数的立方根;学生能否全面地说出平方根与立方根的区别. (三) 引导探究,延伸知识 1、探究:因为38-= ,-38= ;所以 . (-2,-2 ,=)因为327-= ,-327= ;所以327-. (-3,-3 ,=) 2、猜一猜:你能从上述问题中总结出互为相反数的两个数a 与-a 的立方根的关系吗?教师引导学生先分析每个式子所表示的意义再填空.通过这个活动,让学生大胆猜想,训练学生由浅入深,从特殊情形总结一般规律的能力,进一步熟悉立方根的求法,总结出负数的立方根的一个重要性质:3a -=-3a .3、做一做:例:求下列各式的值:(1)364(2)3125-.设计说明:例题采取学生自己先动手做,再由教师点评,最后师生共同总结的方式完成.这种师生互动的形式激发了学生学习的热情,使学生主动地获取了知识和技能.在(2)、(3)两题中,鼓励学生采用多种方法来做,培养他们的发散思维.解:(1)364表示64的立方根,而43=64,所以364=4.(2)3125-表示-125的立方根,而(-5)3=-125,所以3125-=-5.4、练一练:求下列各式的值:(1)31000 (2)3001.0- (3)31-.答案:(1)10;(2)-0.1;(3)-1.设计说明:考虑到学习知识的过程就是一个由浅入深的过程,这又是学生第一次独立解题,故而练习的题目应以简单为宜.练习题中的被开方数由整数到小数再到分数,由正数到负数设计的比较全面,从学生的解题过程中也能较全面地看出学生对知识的掌握程度.在本次活动中,教师应关注:学生能否真正理解每个根式所表达的意义;学生对立方根的了解程度;学生能否正确的说出一个负数的立方根的求法. (四)归纳小结,深化新知学生总结,教师补充,重点总结平方根和立方根的异同点:让学生在总结过程中自己把本节课的内容进行梳理,小组交流,为学生创造交流的空间,调动学生的积极性,回顾所学知识,发展学生的求同存异思维,使它们能在复杂的环境中明辨是非,并做出正确的处理,通过小结培养学生的概括能力和自主学习的意识.在本次活动中,教师应重点关注不同层次的学生对本节知识的认识程度.(五)作业布置:1、自学用计算器求一个数的立方根;2、教材的练习题和习题.。
华师大版数学八年级上册11.1《平方根和立方根》(第3课时)教学设计一. 教材分析《平方根和立方根》是华师大版数学八年级上册第11.1节的内容,本节内容是在学生已经掌握了有理数、实数等知识的基础上,进一步引导学生学习平方根和立方根的概念,理解平方根和立方根的性质,以及掌握求平方根和立方根的方法。
教材通过例题和练习,使学生能够熟练运用平方根和立方根解决实际问题。
二. 学情分析八年级的学生已经具备了一定的实数知识,对于新知识的学习有一定的接受能力。
但学生在学习过程中,可能对平方根和立方根的概念和性质理解不够深入,需要在教学中加以引导和巩固。
此外,学生对于实际问题的解决能力有待提高,需要通过实例讲解和练习,使学生能够将理论知识运用到实际问题中。
三. 教学目标1.知识与技能:使学生掌握平方根和立方根的概念,理解平方根和立方根的性质,能够熟练运用平方根和立方根解决实际问题。
2.过程与方法:通过实例讲解和练习,培养学生运用平方根和立方根解决实际问题的能力。
3.情感态度与价值观:激发学生学习平方根和立方根的兴趣,培养学生的耐心和毅力,提高学生解决问题的自信心。
四. 教学重难点1.重点:平方根和立方根的概念,平方根和立方根的性质。
2.难点:平方根和立方根在实际问题中的应用。
五. 教学方法1.情境教学法:通过实例导入,激发学生的学习兴趣,使学生能够直观地理解平方根和立方根的概念。
2.启发式教学法:在讲解过程中,引导学生思考,激发学生的思维能力,帮助学生理解平方根和立方根的性质。
3.练习法:通过布置课堂练习和课后作业,使学生巩固所学知识,提高实际问题解决能力。
六. 教学准备1.教学PPT:制作教学PPT,包括平方根和立方根的概念、性质、实例讲解和练习题。
2.教学素材:准备一些实际问题,用于巩固和拓展学生的知识。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实际问题,如计算墙壁的高度、计算物体的体积等,引导学生思考如何利用平方根和立方根解决这些问题。
11.1.2 立方根教学目标1.了解立方根的概念,会用根号表示一个数的立方根.2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.教学重点立方根的概念及计算.教学难点立方根的求法,立方根与平方根的联系及区别.教法学法教学方法:类比法.教学过程一、创设问题情境:一个正方体的体积为216,那么它的棱长是多少啊?如果是64呢?是x 呢?(通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,有很快将问题归结为如何确定一个数,从而顺利引入新课.)二、类比学习新知一般地,如果一个数的立方等于a ,那么这个数就叫做a 的立方根( 也叫做三次方根).如:2是8的立方根,的立是--273,0是0的立方根.(学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时 突出平方根与立方根的对比,以利于学生类比学习法学习立方根知识.)三、应用新知:1.做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?(1)27=) (3 ; (2)27=-) (3 ; (3)0 3=)(.【答案】(1)3; (2)-3; (3)0.2议一议:(1)正数有几个立方根?(2)0有几个立方根(3)负数呢?3.概括:(1)正数的立方根是正数;0的立方根是0;负数的立方根是负数.(2)数a 的立方根,记为“3a ”,读作“三次根号a”.a 是被开方数,3是根指数. (3)求一个数的立方根的运算叫做开立方(extrction of cubic root) , 开立方与立方互为逆运算.四、应用举例:例1:求下列各数的立方根:(1)27; (2)125-; (3)278; (4)008.0-;解:(1)因为2733=,所以27的立方根是3,即3273=.(2)因为()12553-=-,所以125-的立方根是5-,即51253-=-. (3)因为278323=⎪⎪⎭⎫ ⎝⎛,所以278的立方根是32,即322783=. (4)因为()008.02.03-=-,所以008.0-的立方根是2.0-,即2.0008.03-=-.五、巩固练习:求下列各数的立方根:(1)27-; (2)1258 ; (3)833 ; (4)216.0 ; (5)5-.解:(1)因为2733=-)(-,所以27-的立方根是3-,即3273=--;(2)因为1258523=⎪⎭⎫ ⎝⎛,所以1258的立方根是52,即5212583=; (3)因为833827233==)(,所以833的立方根是23,即238333=; (4)因为216.06.03=)(,所以216.0的立方根是6.0,即6.0216.03=;(5)5-的立方根是35-.六、巩固提高:用计算器求下列各数的立方根:(1)1331; (2)9.263(精确到0.01)解:(1)在计算器上依次键入SHIFT1331=显示结果为1111=(2)在计算器上依次键入SHIFT9.263=显示结果为2.10 2.10≈七、课堂小结:1.了解立方根的概念,会用三次根号表示一个数的立方根,能用立方运算求一个数的立方根.2.在学习中应注意以下5点:(1)符号3a中根指数“3”不能省略;(2)对于立方根,被开方数没有限制,正数、零、负数都有一个立方根;(3)平方根和立方根的区别:正数有两个平方根,但只有一个立方根;负数没有平方根,但却有一个立方根;(4)灵活运用公式:(3a)3=a,aa=33,3a-=3a-;(5)立方与开立方也互为逆运算.我们也可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根.八、课堂作业习题。
§11.1.2立方根【学习目标】1.了解立方根和开立方的概念。
2.会用根号表示一个数的立方根,掌握开立方运算。
3. 会用计算器求一个数的立方根。
4. 培养用类比思想求立方根的运算能力。
【学习重点】立方根的概念和性质【学习难点】会求一个数的立方根【学习过程】一、新课探究:1.自学指导:认真阅读教材第5-6页的内容,思考:(1)什么叫做立方根?(2)正数有几个立方根?0的立方根是什么?负数有没有立方根?(3)怎样用数学语言表述立方根?数a 的立方根记作什么?(4)开立方与什么运算互为逆运算?(5)一个数的立方根扩大10倍,则被开方数2.露一手:(1)因为( )3=8,所以8的立方根是 。
(2)因为( )3=-8,所以-8的立方根是 。
(3) 因为( )3=27,所以27的立方根是 。
(4) 因为( )3=-27,所以-27的立方根是 。
(5) 因为( )3=0,所以0的立方根是 。
(6) 数a 的立方根,记作 ,读作 .a 称为 数,3称为 数. 叫做开立方。
3.概括:一个正数有 个 的立方根,一个负数有 个 的立方根,0的立方根是 。
在3a 中,被开方数a 的取值范围是 。
二、新知应用:1.求下列各数的立方根:(1)278-; (2)125; (3) -0.008.(4)1 (5)-12.将下列各数开立方: ⑴833-, ⑵126.0, ⑶0, ⑷3)3(- (5)m 3三、巩固提高1.立方等于本身的数是 ,平方等于本身的数是 ,平方根等于本身的数是 ,立方根等于本身的数是 。
2.若一个数的算术平方根等于这个数的立方根,则这个数是( )。
A.±1B.±1,0C.0D.0,1 3. 64 的立方根是 。
4.下列说法中,错误的是( )A.64的立方根是4B.的是27131立方根 C.64的立方根是2 D.125的立方根是±55.下列说法正确的是( )A.1的立方根与平方根都是1B.233a a =C.38的平方根是2±D.252128183=+=+ 6.下列计算中,正确的是( )0.5=34=34= D.25=- 7.解下列方程: (1)8333=x (2)64)1(3=-x , (3) 64)1(2=-x 8. 求下列各式的值: ⑴33)8(-, ⑵32)8(-, ⑶(37.0)3, ⑷—316437- 9. 用计算器求下列各数的立方根。
11.1.2立方根【基本目标】1.了解立方根的概念,初步学会用根号表示一个数的立方根.2.了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3.让学生体会一个数的立方根的惟一性 .4.分清一个数的立方根与平方根的区别,并会用计算器求一个数的立方根.【教学重点】立方根的概念,并会求一个数的立方根.【教学难点】立方根与平方根的区别.一、创设情景,导入新课(出示电热水器图片)问题(1):同学们在家里或者商场里都见过电热水器,像一般家庭常用的是容积50L 的.如果要生产这种容积为50L 的圆柱形热水器,使它的高等于底面直径的2倍,这种容器的底面直径应取多少?(学生小组讨论,并推选代表发言,教师板演.)解:设容积的底面直径为xdm ,则2·()?22=50x x π可得,x 3=100π ≈31.84问题是什么数的立方会等于31.84呢?学生百思不得其解,教师可在此处设置一个台阶.再设问:要制作一种容积为27m 3的正方体形状的包装箱,这种包装箱的边长应该是多少?二、师生互动,探究新知1.立方根的概念在学生充分讨论的基础上教师给出解决问题的过程:设这种包装箱的边长为xm ,则x 3=27.这就是求一个数,使它的立方等于27.因为33=27,所以x=3.即这种包装箱的边长应为3m.归纳:如果一个数的立方等于a,那么这个数是a的立方根.例1根据立方根的意义,求下列各数的立方根:125/8,-64,-1/27,1,-1.(1)对于23=8,可以进一步追问学生,除了2以外是否有其他的数,它的立方也等于8呢?对于下面几个问题可以类似设问.(2)思考正数、0、负数的立方根各有什么特点?并追问一个正数有几个立方根?一个负数有几个立方根?零的立方根是什么?(学生独立探究,再小组合作交流,给出立方根的性质.)即:正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.用数学符号表示立方根例2见教材P6解略.【教学说明】注意立方根定义及用3表示一个数的立方根,教师可设问3a中a取什么数?a中a取什么数以引起学生对平方根、立方根区别的认识.3.用计算器求一个数的立方根.【教学说明】教师提醒学生注意操作的程序与精确度的要求.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分,教师及时点评.四、典例精析,拓展新知例3求下列各式的值:【教学说明】通过以上求值让学生能熟练运用与3求平方根与立方根,进一步区分平方根与立方根.五、运用新知,深化理解1.-64的立方根是 .=-成立吗? .53.(x+1)3=-64的解是 .4.立方根是本身的数有 .的立方根是 .6.一个正方体的体积是0.512m3,则它的边长是 m.【答案】1.-4; 2.成立; 3.x=-5; 4.0、±1;;6.0.8六、师生互动,课堂小结这节课你学到了什么?有什么收获?有何疑问,与同伴交流,在学生交流发言的基础上教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课的教学设计是以课程标准为依据,在教学上体现了创设情景——提出问题——建立模型——解决问题思路,在教学中体现了自主学习思路.在导入新课时,创设了一个学生生活实际中常常见到的热水器制造问题,让学生从实际问题情境中感受立方根的计算在生活中有着广泛的应用,体会学习立方根的必要性,激发学生的学习兴趣.“平方根”“立方根”在内容安排上也有很多类似的地方,因此在教学中利用类比方法,让学生通过类比旧知识学习新知识.教学中突出立方根与平方根的对比,分析它们之间的联系与区别,这样新旧知识联系起来,既有利于复习巩固平方根,又有利于立方根的理解和掌握.通过独立思考,小组讨论,合作交流,学生在“自主探索,合作交流”中充分发挥了他们的主观能动性,感受了立方运算与开立方运算之间的互逆关系,并学会了从立方根与立方的互逆运算中寻找解题途径.。
八年级数学上册第11章数的开方11.1 平方根与立方根2 立方根学案(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册第11章数的开方11.1 平方根与立方根2 立方根学案(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册第11章数的开方11.1 平方根与立方根2 立方根学案(新版)华东师大版的全部内容。
2 立方根学习目标1、了解一个数的立方根概念,并会用根号表示一个数的立方根。
2、能用类比平方根的方法学习立方根,及开立方运算,并能区分立方根与平方根的异同.3、能用有理数估计一个开方开不尽数的大致范围,使学生形成估算的意识,培养学生的估算能力。
4、经历运用计算器探究数学规律的过程,发展合情推理能力.课前预习1。
类似平方根定义可知,若3x a,则为的立方根,记为,读作.其中,a是,3是 ,根指数3不能省略.例如:2的立方等于8,-2的立方等于-8,所以8的立方根为,-8的立方根为 ,记为 .2。
求一个数的立方根的运算,叫做,与加、减、乘、除、乘方一样,都是一种运算。
立方根是开立方运算的结果,与运算互为逆运算.3。
用科学计算器求一个的立方根的按键顺序为: .合作探究(学透教材)探究问题:1.求下列各数的立方根.(1)827;(2)-125;(3)-0。
008.2. 试用科学计算器求-3.375的立方根。
讨论交流:1。
在学习平方根运算时,首先是找一些数的平方值,然后再根据其逆运算过程确定某数的平方根。
同样,我们来先算一算一些数的立方:32= ;()32-= ;313⎛⎫ ⎪⎝⎭= ;313⎛⎫- ⎪⎝⎭= ;30.5= ;()30.5-= ;30= 。
年 级:八年级 科 目:数学 章节 §11.1.2 课时主 备:学科组 主 讲:课题:立方根 教研组长签字: 教学副校长签字:学习目标:1.理解立方根的概念,会用根号表示数的立方根;2.理解立方根的性质并会运用;3.会根据立方根的定义求某些数的立方根,了解开立方和立方互为逆运算; 学习重点:理解立方根的意义并会求一个数的立方根。
学习难点:理解立方根的性质及拓展性质。
一、知识预备1.说一说,你怎样理解平方根的概念?2.平方根有哪些性质?说一说你怎样理解?二、自主探究 (请同学们自主阅读课文P2页,回答以下问题)(1) 观察思考,发现规律,类比平方根,认识立方根。
概括立方根的定义(2)立方根的表示方法一个数a 的立方根记作______,读作“______________”。
在立方根的表 达式中,a 称为________。
例:38的被开方数是______。
(3) 立方根的性质类比平方根的性质,归纳立方根的性质:(4)开立方1.定义:求一个数的__________的运算叫做开立方。
2.利用立方根的定义求某些数的立方根【解法示例】∵( )3=8 ,∴ 8 的立方根是_______。
①-125的立方根是__________。
②-81的立方根是__________。
③0的立方根是________。
三、基础练习1.求下列各数的立方根:① -1的立方根是______;② 27的立方根是______; ③ -0.001的立方根是______;④8125-的立方根是______; ⑤31000=________,⑥3125.0-=________, 2.求下列各式的立方根 (1)27371;(2)-0.216;(3)0;四、小结本节课的收获 五、达标检测完成练习1、2小题 3.64的立方根是______。
4.立方根等于它本身的数是______。
5.10的立方根是______。
6.364的平方根是______. 7.(3x -2)3=0.343,则x=______. 8.若x=(35-)3,则1--x =______. 9.若344a +=,那么()367a -的值是( )A .64B .-27C .-343D .34310. 如果163+x 的立方根是4,求42+x 的算术平方根;11. 已知()215169x -=,()310.125y -=-,求322x xy y x ---的值 12. 若,求36x y +的立方根学(教)后反思我的收获:______________________________________________________ 我的问题:_____________________________________________________。
11.1.2立方根一、教学目标知识与技能:1、了解立方根的概念,初步学会用根号表示一个数的立方根,让学生体会一个数的立方根的唯一性.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根,分清一个数的立方根与平方根的区别。
过程与方法1、帮助学生了解数的立方根的概念和性质,会用三次根号表示数的立方根,让学生体会一个数的立方根的惟一性.2、帮助学生了解开立方运算与立方运算之间的互逆关系,掌握用立方运算求一个数的立方根的方法,帮助学生了解用计算器求某些数的立方根的方法..3、帮助学生认识平方根与立方根的区别.情感、态度与价值观1、通过立方根的学习,认识数学与人类生活的密切联系,激发学生的学习兴趣.2、通过探究活动,锻炼克服困难的意志,增强自信心,激发学生的探索热情.二、教学重难点教学重点:了解数的立方根的概念和性质,会用三次根号表示数的立方根,用立方运算求一个数的立方根.教学难点:用立方运算求一个数的立方根,认识平方根与立方根的区别.三、教法学法:”三疑三探”四、教学用具:小黑板五、教学过程:一、回顾旧识1. 什么叫做平方根?2. 在-5,2,0,64中哪些有平方根?分别是什么?哪些没有平方根,为什么?3. 0.49的平方根记作( )=( ),其中算术平方根是什么?4. 若 2x a =,则 x =,那么若 3x a = ,则x=?5. 问题:同学们在家里或者商场里都见过电热水器,像一般家庭常用的是容积50L (dm ³)的。
如果要生产这种容积为50L 的圆柱形热水器,使它的高等于底面直径的2倍,这种容器的底面直径应取多少?若设直径为x,你会求x的值吗?这就是我们这节课所要学习的内容———立方根(板书课题)二、设疑自探(一)1.什么叫做立方?你会求333332,(2),0,0.4,(0.4)--吗?请分别求出。
2.要做一种容积为27m3的正方体形状的包装箱,这种包装箱的边长应该是多少?3.试总结立方根的概念。
立方根
三维教学目标 知识与技能:
情感态度与价值观:
1、 培养学生积极思维,动口、动手能力。
2、 培养学生团结协作的团队精神。
教学重点:会用根号表示一个数的立方根,能通过立方运算求某些数的立方根。
教学难点:立方根与平方根性质的区分。
课堂导入
现有一个体积为216立方厘米的正方体纸盒,它的每一条棱长是多少?
教学过程
一、探索发现
问题:1、这个实际问题,是个怎样的计算问题?
2、你能找一个数,使这个数的立方等于216吗?
3、如果,正方体的体积依次为:64,125,343,那么相应的正方体的棱长为多少?
4、从这里可以抽象出一个什么数学概念?
概括:立方根的概念
如果一个数的立方等于a ,那么这个数叫做a 的立方根。
二、试一试
(1) 27的立方根是什么?
(2) -27的立方根是什么?
(3) 0的立方根是什么?
请你自己也编三道求立方根的题目,并给出解答.
思考:通过计算你发现了什么?(和平方根的性质比较。
) 概括:立方根的性质和表示方法。
正数有一个正的立方根,负数有一个负的立方根,0的立方根是0.
为了计算方便,数a 的立方根,记作
a ,读作“三次根号a ”.a 称为被开方数。
三、举例应用
例4求下列各数的立方根:
(1)27
8; (2) -125; (3) -0.008. 解(1) 因为(3
2)3,所以.322783= (2) 因为(-5)3=-125,所以3125-=-5.
(3)因为(),008.02.03-=-所以2.0008.03-=-
例5用计算器求下列各数的立方根:
(1) 1331;(2) -343;(3) 9.263
解(1) 在计算器上依次键入
(3■) , 显示结果为11,所以31331=11.
(2)、(3)略
四、课堂练习
五、课堂小结
1、什么是立方根?
2、正数、0、负数的立方根有何特点?
3、通过本节课的学习,有何体会?
课堂作业
1、求下列各数的立方根:
(1) 0.125;(2) -6427
;(3) 1728.
2、求下列各式的值。
(1) (2) 3、10在哪两个整数之间?
答案:
1、(1)0.5因为125.0)5.0(3=所以5.0125.03=(2)43
- (3)12
2、(1)1.0001.03-=- (2)54
12564
3-=-
3、因为16109<< 所以4103<<
教学反思:
SHIFT ■ 1 3 3 1 = 3001.0-3125
64
-
混淆平方根与立方根的性质
平方根与立方根是两个不同的概念,具有不同的性质。
它们有如下区别:(1)只有非负数有平方根,而任何数都有立方根:
(2)正数有两个平方根,而立方根只有一个。
如果对以上区别理解不清,解题时就容易把平方根与立方根混淆起来。