2015年南开大学量子力学考研大纲
- 格式:doc
- 大小:41.50 KB
- 文档页数:1
)(Et r p i p Ae-⋅=ρϖηϖψ《量子力学》复习 提纲一、基本假设 1、(1)微观粒子状态的描述 (2)波函数具有什么样的特性 (3)波函数的统计解释2、态叠加原理(说明了经典和量子的区别)3、波函数随时间变化所满足的方程 薛定谔方程4、量子力学中力学量与算符之间的关系5、自旋的基本假设 二、三个实验1、康普顿散射(证明了光子具有粒子性) 第一章2、戴维逊-革末实验(证明了电子具有波动性) 第三章3、史特恩-盖拉赫实验(证明了电子自旋) 第七章 三、证明1、粒子处于定态时几率、几率流密度为什么不随时间变化;2、厄密算符的本征值为实数;3、力学量算符的本征函数在非简并情况下正交;4、力学量算符的本征函数组成完全系;5、量子力学测不准关系的证明;6、常见力学量算符之间对易的证明;7、泡利算符的形成。
四、表象算符在其自身的表象中的矩阵是对角矩阵。
五、计算1、力学量、平均值、几率;2、会解简单的薛定谔方程。
第一章 绪论1、德布洛意假设: 德布洛意关系:戴维孙-革末电子衍射实验的结果: 2、德布洛意平面波:3、光的波动性和粒子性的实验证据:4、光电效应:5、康普顿散射: 附:(1)康普顿散射证明了光具有粒子性(2)戴维逊-革末实验证明了电子具有波动性∑=nnn c ψψ1d 2=⎰τψ(全)()ψψψψμ∇-∇2=**ηϖi j ⎩⎨⎧≥≤∞<<=ax x a x x V 或0,0,0)(0=⋅∇+∂∂j tϖρ⎥⎦⎤⎢⎣⎡+∇-=),(222t r V H ϖημ)(,)(),(r er t r n tE i n n n ϖϖϖηψψψ-=n n n E H ψψ=(3)史特恩-盖拉赫实验证明了电子自旋第二章 波函数和薛定谔方程1.量子力学中用波函数描写微观体系的状态。
2.波函数统计解释:若粒子的状态用()t r ,ρψ描写,τψτψψd d 2*=表示在t 时刻,空间r ρ处体积元τd 内找到粒子的几率(设ψ是归一化的)。
《量子力学》考试大纲
学院(盖章):负责人(签字):
专业代码:070201、070207、070205专业名称:理论物理、光学、凝聚态物理考试科目代码:803 考试科目名称:量子力学(一)考试内容
考试范围为理科院校物理系《量子力学》课程的基本内容。
以曾谨言著《量子力学导论》(第二版)(北京大学出版社)为篮板,内容涵盖该教材的第一至十章,波函数与薛定谔方程、一维定态问题、力学量用算符表达与表象变换、中心力场、定态问题的常用近似方法均在其中。
试题重点考查的内容:
一、波函数与薛定谔方程
1.波函数的统计诠释
2.态叠加原理
3.薛定谔方程
二、一维定态问题
1.方位势
2.一维散射问题
3.一维谐振子
三、力学量用算符表达与表象变换
1.算符的运算规则
2.厄米算符的本征值与本征函数
3.共同本征函数
4.量子力学的矩阵形式与表象变换
5.狄拉克符号
四、中心力场
1.中心力场中粒子运动的一般性质
2.球方势阱
3.氢原子
五、定态问题的常用近似方法
1.非简并态微扰论
2.简并态微扰论
(二)考试的基本要求
1.基本概念要清晰。
2.对知识要会综合运用。
3.具有必要的数学运算能力。
(三)考试基本题型
基本题型可能有:选择题、填空题、判断题、简答题、计算题和分析论述题等。
《量子力学》课程考试大纲
一、课程的任务、性质和作用
本课程的性质:量子力学是物理学专业的一门重要专业必修课程,是物理相关专业本科生必修的四大理论课之一,是他们今后继续提高物理专业水平的一门专业基础理论课程。
同时,量子力学是近代物理学两大支柱之一,是描述微观世界运动规律的基础理论,已成为当今科学技术的基础,凡是涉及到微观粒子(比如分子、原子、电子等)的各门学科和新兴技术,都必须掌握量子力学。
本课程的任务是:(1)使学生了解微观世界的特殊性,了解经典物理不能正确描述微观粒子的运动规律,认识到创立微观世界的理论——量子力学的必然性。
(2)使学生初步掌握量子力学的基本概念、原理和基本方法,能求解量子力学的一些基本问题。
(3)使学生熟悉量子力学在现代科学技术中各种重大应用。
二、教材
周世勋.量子力学.高等教育出版社,1979年
三、试卷结构与题型
1.试题类型
填空题、选择题、证明题、计算题。
2.试卷难易比例
容易题约占40%,中等难度题约占40%,难题约占20%。
3.试卷内容比例
填空题约占15%,选择题约占15%,证明题约占20%,计算题约占50%。
四、考核的知识点及参考题型。
量子力学考试大纲适用于物理学所有学科Ⅰ考查目标理论物理、凝聚态物理、粒子物理与原子核物理、能源与材料物理、能源与材料工程、材料工程等专业研究生入学考试《量子力学》课程,重点考查考生掌握量子力学基本概念、基本原理以及运用量子力学基本理论解决具体相关物理问题的能力,为进一步学习其它专业课程或从事科研和教学工作奠定坚实的基础。
Ⅱ考试形式和试卷结构一、试卷满分及考试时间本试卷满分为150分,考试时间为180分钟。
二、答题方式答题方式为闭卷、笔试。
三、试卷内容结构波粒二象性、波函数和薛定谔方程 50分量子力学的力学量及其表象 50分微扰理论、自旋与全同粒子、粒子在电磁场中的运动 50分四、试卷题型结构简答题2小题,每小题10分,共20分证明题 2小题,每小题15分,共30分计算题4小题,每小题25分,共100分Ⅲ考查范围一、波粒二象性、波函数和薛定谔方程考查主要内容:(1)光的波粒二象性的实验事实及其解释。
(2)原子结构的玻尔理论和索末菲的量子化条件。
(3)德布罗意关于微观粒子的波粒二象性的假设。
(4)德布罗意波的实验验证。
(5)波函数的统计假设和量子态的表示形式。
(6)态叠加原理的内容及其物理意义。
(7)薛定谔方程和定态薛定谔方程的一般形式。
(8)粒子流密度的概念及粒子数守恒的物理内容。
(9)一维薛定谔方程求解的基本步骤和方法。
(10)几个典型的一维定态问题:a.一维无限深势阱;b.一维谐振子;c.一维方势垒;d.一维有限方势阱;e. 势。
二、量子力学的力学量及其表象考查主要内容:(1)动量算符的表示形式及其与坐标算符间的对易关系,动量算符本征函数的归一化。
(2)角动量算符的表示形式及其有关的对易关系,角动量算符2ˆL和z Lˆ的共同本征函数及所对应的本征值。
(3)电子在固定的正点电荷库仑场中运动的定态薛定谔方程及其求解的基本步骤;定态波函数的表示形式;束缚态的能级及其简并度;并由此讨论氢原子的能级、光谱线的规律、电子在核外的概率分布和电离能等。
《量子力学》考试大纲一、考试题型1、名词解释2、简答题3、计算应用题二、考试参考用书《量子力学教程》(第二版),周世勋著,高等教育出版社,2009年1月。
三、考试内容第一章绪论了解:经典物理学的困难;熟悉:原子结构的玻尔理论;掌握:光的波粒二象性、微粒的波粒二象性。
第二章波函数和薛定谔方程了解:连续性方程的推导及其物理意义;熟悉:粒子流密度和粒子数守恒定律;掌握:波函数、波函数的统计解释、态迭加原理、薛定谔方程、定态薛定谔方程、一维无限深势阱、线性谐振子。
第三章量子力学中的力学量了解:量子力学中的力学量;熟悉:电子在库仑场中的运动;掌握:表示力学量的算符、动量算符和角动量算符、氢原子、厄密算符本征函数的正交性、算符与力学量的关系、算符的对易关系两力学量同时有确定值的条件测不准关系、力学量平均值随时间的变化守恒定律。
第四章态和力学量的表象了解:态的表象;熟悉:狄喇克符号;掌握:算符的矩阵表示、量子力学公式的矩阵表述、么正变换、线性谐振子与占有数表象。
第五章微扰理论了解:与时间有关的微扰理论;熟悉:跃迁几率、光的发射和吸收、选择定则;掌握:非简并定态微扰理论、简并情况下的微扰理论、变分法。
第六章散射(不作考试要求)了解:熟悉:掌握:第七章自旋与全同粒子了解:光谱的精细结构、氦原子、氢分子和化学键;熟悉:两个角动量的耦合、全同粒子的特性;掌握:电子自旋、电子的自旋算符和自旋函数、全同粒子体系的波函数泡利原理、两个电子的自旋函数。
其它参考书《量子力学教程》,曾谨言著,科学出版社,2014年1月。
量子力学复习提纲第一章 绪论 1.德布罗意关系, E h νω==(1)hp n k λ==(2)2.微观粒子的波粒二象性.3. 电子被V 伏电压加速,则电子的德布罗意波长为12.25hA λ=≈(3)第二章 波函数和薛定谔方程 1.波函数的统计解释:波函数在空间某一点的强度()2,r t ψ和在该处找到粒子的几率成正比,描写粒子的波是几率波. 其中2w *=ψψ=ψ代表几率密度.2.态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加 1122c c ψ=ψ+ψ,也是体系的一个可能状态.3. 薛定谔方程和定态薛定谔方程薛定谔方程()(),ˆ,r t i H r t t∂ψ=ψ∂ (4)定态薛定谔方程()()ˆHr E r ψ=ψ (5) 其中()22ˆ2H U r μ=-∇+ (6)为哈密顿算符,又称为能量算符,4. 波函数的标准条件: 有限性,连续性(包括ψ及其一阶导数)和单值性.5. 波函数的归一化,1d τ*∞ψψ=⎰(9)6.求解一维薛定谔方程的几个例子.一维无限深势阱及其变种, 一维线性谐振子; 势垒贯穿.第三章 量子力学中的力学量1. 坐标算符, 动量算符及角动量算符;构成量子力学力学量的法则;2. 本征值方程,本征值,本征函数的概念ˆF ψλψ= (10)3. 厄密算符的定义,性质及与力学量的关系.ˆF dx ψφ*=⎰()ˆF dx ψφ*⎰(11)实数性: 厄密算符的本征值是实数.正交性: 厄密算符的属于不同本征值的两个本征函数 相互正交.完全性: 厄密算符ˆF的本征函数()n x φ和()x λφ组成完全系, 即任一函数()x ψ可以按()n x φ和()x λφ展开为级数:()()()n n nx c x c x d λλψφφλ=+∑⎰ (12)展开系数: ()()nnc x x dx φψ*=⎰, (13)()()c x x dx λλφψ*=⎰. (14)2nc 是在()x ψ态中测量力学量F 得到nλ的几率,2c d λλ是在()x ψ态中测量力学量F ,得到测量结果在λ到d λλ+范围内的几率.4. 2ˆL 和ˆZL 算符的本征值方程,本征值和本征函数. ()22ˆ1L l l ψψ=+, ˆzL m ψψ= 本征函数 (),lm Y θφ.5. 氢原子的哈密顿算符及其本征值,本征函数nlm ψ的数学结构, ()()(),,,nlmnl lm r R r Y ψθφθφ= (15)主量子数n ,角量子数l 和磁量子数m 的取值范围,简并态的概念.6. 氢原子的能级公式和能级的简并度.422,1,2,3,...2s n e E n nμ=-= (16)不考虑电子的自旋是2n 度简并的;考虑电子的自旋是22n 度简并的.7. 给定电子波函数的表达式,根据电子在(),,r θφ点周围的体积元内的几率()22,,sin nlm r r drd d ψθφθθφ(17)计算电子几率的径向分布和角分布.计算在半径r 到r dr +的球壳内找到电子的几率. 8. 给定态函数,计算力学量平均值,平均值的计算公式.()()ˆF x F x dx ψψ*=⎰(18) 注意(11)式对波函数所在的空间作积分. 9. 算符的对易关系及测不准关系.(1) 如果一组算符相互对易,则这些算符所表示的力学量同时具有确定值(即对应的本征值), 这些算符有组成完全系的共同的本征函数.例如: 氢原子的哈密顿算符ˆH ,角动量平方算符2ˆL 和角动量算符ˆz L 相互对易, 则(i) 它们有共同的本征函数nlm ψ, (ii) 在态nlm ψ中,它们同时具有确定值:4222s n e E n μ=-,()21l l +,m.(2) 测不准关系:如果算符ˆF和ˆG 不对易,则一般来说它们不能同时有确定值. 设ˆFˆG -ˆG ˆF =ˆik 则算符ˆF和ˆG 的均方偏差满足:()_______2ˆF ∆⋅()_______22ˆ4k G ∆≥(19)其中 ()()________________________2222222F F F F FF F F F ∆=-=-+=-()__________222F F F ∆=-, ()__________222G G G ∆=-(a) 利用测不准关系估计氢原子的基态能量, 线性谐振子的零点能等.(b) 给定态函数ψ,计算两个力学量ˆF和ˆG 的均方偏差的乘积()_______2ˆF∆⋅()_______2ˆ?G ∆=(20)第四章 态和力学量的表象 1. 对表象的理解(1) 状态ψ: 态矢量(2) Q 表象:力学量Q 的本征函数 ()()()12,,...,...n u x u x u x构成无限维希耳伯特空间(坐标系)的基矢量 (4) 将态矢量按照上述基矢量展开:()()(),n n nx t a t u x ψ=∑()()()12,,...,...n a t a t a t 是态矢量ψ在Q 表象中沿各基矢量的分量.(5) ()2n a t 是在(),x t ψ所描写的态中,测量力学量Q 得到结果为n Q 的几率. 2. 算符在Q 表象中的表示(i)算符ˆF在Q 表象中是一个矩阵, nm F 称为矩阵元 ()(),nm nm F u x F x u x dx i x *∂⎛⎫≡ ⎪∂⎝⎭⎰(ii) 算符在自身表象中是一个对角矩阵,其对角矩阵元为该算符对应的本征值. 3. 量子力学公式的矩阵表述 (1) 平均值公式:†F F =ψψ (21)(2) 本征值方程 → 久期方程()()()()()()1111121222122212 ... ... ... ... : : : ... ... : : :m m n n nm mm a t a t F F F a t a t F F F F F F a t a t λ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭→ 111212122212 ... ... ... ... 0... ... ..............................n n n n nn F F F F F F F F F λλλ--=-(3) 薛定谔方程的矩阵形式di H dtψ=ψ (22) 4. 么正变换的概念(1) 么正变换是两个表象基矢量之间的变换矩阵. (2) 么正变换的矩阵元由两个表象的基矢量共同确定,()()()(),.n n m m S x x dx S x x dx ββααψϕψϕ***⎫=⎪⎬=⎪⎭⎰⎰(3) 态矢量由A 表象变换到B 表象的公式1b S a -= (23)(4) 力学量ˆF由A 表象变换到B 表象的公式: 1F S FS -'= (24)5. 么正变换的性质(i) 么正变换不改变算符的本征值; (ii) 么正变换不改变矩阵F 的迹; (iii) 么正变换不改变力学量的平均值.第五章 微扰理论(I) 求解非简并定态微扰问题 (1) 确定微扰的哈密顿算符ˆH'. ()0ˆˆˆHH H '=+, 及与()0ˆH对应的零级近似能量()0n E 和零级近似波函数()0nψ;(2) 计算能量的一级修正:()()()100ˆn nn E H d ψψτ*'=⎰ (25)(3) 计算波函数的一级修正:()()()()10'00mn n m mn mH E E ψψ'=-∑(26) (4) 计算能量的二级修正:()22'0nln ln l H E E E '=-∑ (27)(II) 求解非简并定态微扰问题 (只要求能量的一级修正) 求解步骤(1) 确定微扰的哈密顿算符ˆH'. (2) 确定微扰算符的矩阵元:ˆliH '=ˆl i H d φφτ*'⎰(28)(3) 求解久期方程得到能量的一级修正()()()111121121222112.........................................................n k n k kkkkn H E H H H H E H H H H E '''-'''-='''- (29)(III) 变分法不作要求 (IV) 含时微扰论 (1) 基本步骤设0ˆH 的本征函数为n φ为已知:0ˆn n nH φεφ=(30)将ψ按照0ˆH 的定态波函数n itn n e εφ-Φ=展开:()n nna t ψ=Φ∑(31)展开系数的表达式:()01mk ti t m mka t H e dt iω'''=⎰(32)其中ˆmn m n H H d φφτ*''=⎰(33)是微扰矩阵元,()1m n mn ωεε=-(34)为体系由n ε能级跃迁到m ε能级的玻尔频率. 在t 时刻发现体系处于m Φ态的几率是()2m a t , 体系在微扰的作用下,由初态k Φ跃迁到终态m Φ的几率为()2k m m W a t →= (35)(2) 用于周期微扰()()ˆˆi t i t H t F e e ωω-'=+得到 ()()()11mk mk i t i t mk m mk mk F e e a t ωωωωωωωω''+-⎡⎤--=-+⎢⎥+-⎣⎦ (36)由(36)式,讨论并理解发生跃迁的条件是mkωω=±或m k m kεεω=±(37)(i) 表明只有外界的微扰含有频率mk ω时,体系才能从k Φ态跃迁到m Φ态,这时体系吸收和发射的能量是mk ω;(ii)跃迁是一个共振现象.(3) 能量时间的测不准关系的含义E t ∆∆ (38)(4) 了解原子的跃迁几率和三个爱因斯坦系数:mk A , mkB 和km B 及相互关系. (5) 了解用含时微扰理论计算爱因斯坦发射和吸收系数(6) 记住对角量子数和磁量子数的选择定则1,0, 1.l l l m m m '∆=-=±⎫⎬'∆=-=±⎭(39) 第六章 散射只要求理解微分散射截面的概论, 不作计算要求.第七章 自旋与全同粒子1. 电子的自旋角动量S ,它在空间任何方向的投影只能取 2z S =± (40)2. 自旋算符的矩阵形式01ˆ210x S ⎛⎫= ⎪ ⎪⎝⎭, 0ˆ20y i S i ⎛⎫-= ⎪ ⎪⎝⎭, 10ˆ201z S ⎛⎫= ⎪ ⎪-⎝⎭(41) 3.泡利矩阵01ˆ10x σ⎛⎫= ⎪ ⎪⎝⎭, 0ˆ0y i i σ⎛⎫-= ⎪ ⎪⎝⎭, 10ˆ01z σ⎛⎫= ⎪ ⎪-⎝⎭(42)(1) 求力学量在某个自旋态的平均值和均方偏差.†G G =ψψ (43)()11121†1222122G G G G G G **⎛⎫ψ⎛⎫=ψψ=ψψ ⎪ ⎪ ⎪ψ⎝⎭⎝⎭ (44)(2)求解自旋角动量算符的本征值方程, 本征值和本征函数4. 自旋与轨道角动量的耦合及产生光谱的精细结构的原因.5.6. 全同性原理的表述6. 描写全同粒子体系状态的波函数只能是对称或反对称的,它们的对称性不随时间改变.实验证明,微观粒子按照其波函数的对称性可以分为两类: (I) 费米子: 波函数是反对称的;(II) 玻色子: 波函数是对称的. 2的奇数倍20, 1, 或2的偶数倍7.泡利不相容原理:不能有两个或两个以上的费米子处于同一状态.。
1/11【育明教育】中国考研考博专业课辅导第一品牌官方网站: 1育明教育天津分校2015年天津地区15所高校考研辅导必备天津分校地址南京路新天地大厦2007专注考研专业课辅导8年天津地区专业课辅导第一品牌天津分校王老师与大家分享资料育明教育,创始于2006年,由北京大学、中国人民大学、中央财经大学、北京外国语大学的教授投资创办,并有北京大学、武汉大学、中国人民大学、北京师范大学复旦大学、中央财经大学、等知名高校的博士和硕士加盟,是一个最具权威的全国范围内的考研考博辅导机构。
更多详情可联系育明教育天津分校王老师。
2015考研南开大学物理科学学院参考书考研真题解析复试线院系所名称:物理科学学院电话:23508210普通物理(力学、电磁学)(包括以下两部分)(1)力学《力学》赵凯华、罗尉茵高等教育出版社2004(2)电磁学《电磁学》上册和下册赵凯华、陈熙谋高等教育出版(1985年6月,第二版)大学物理(电磁学、光学部《大学物理学基础教程》上册《大张小兵、宋峰等高等教育出版社2008年2/11【育明教育】中国考研考博专业课辅导第一品牌官方网站:2分)学物理学基础教程》下册光学《光学》赵凯华、钟锡华北京大学出版社量子力学导论《量子力学导论》曾谨言北京大学出版社电动力学《电动力学》郭硕鸿中山大学出版社量子力学《量子力学》(第四版卷I)曾谨言科学出版社2007固体物理(基础部分)《固体物理学》韩汝奇、黄昆高等教育出版社材料物理《材料物理导论》熊兆贤科学出版社(第二版)生物物理学《生物物理学》赵南明等主编高等教育出版社高等数学《高等数学》(物理类专用)(范围1-2册)四川大学数学系高等数学教研室编高等教育出版社(第二版)考研政治每年平均分在4,50分,不是很高,政治取得高分除了靠记忆力还要有一定的技巧,今天我就考研政治中的一些答题技巧,来和同学们分享一下。
选择题分值为50分。
其中单选题16道,满分16分;多选题17道,满分34分。
南开大学量子力学导论考研真题资料含答案解析南开大学量子力学导论考研复习都是有依据可循的,考研学子关注事项流程为:考研报录比-大纲-参考书-资料-真题-复习经验-辅导-复试-导师,缺一不可。
在所有的专业课资料当中,真题的重要性无疑是第一位。
分析历年真题,我们可以找到报考学校的命题规律、题型考点、分值分布、难易程度、重点章节、重要知识点等,从而使我们的复习备考更具有针对性和侧重点,提高复习备考效率。
真题的主要意义在于,它可以让你更直观地接触到考研,让你亲身体验考研的过程,让你在做题过程中慢慢对考研试题形成大致的轮廓,这样一来,你对考研的"畏惧感"便会小很多。
下面是给大家找出来的南开大学量子力学导论考研真题解析含答案部分。
1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长λm与温度T成反比,即λmT=b (常量):并近似计算b的数值,准确到二位有效数字。
1.2在0K附近,钠的价电子能量约为3eV,求其德布罗意波长。
1.3氦原子的动能是E=3kT/2(k为玻尔兹曼常数),求T=1K时,氦原子的德布罗意波长。
1.4利用波尔-索末菲的量子化条件,求:(1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子轨道的可能半径。
已知外磁场H=10特拉斯,玻尔磁子MB=9*10-24焦耳/特拉斯,试计算动能的量子化间隔ΔE,并与T=4K及T=100K的热运动能量相比较。
以上真题答案解析都是来自:“南开大学物理学院光学专业(光学+量子力学导论)考研红宝书”资料。
这套资料中不仅包含历年真题的答案解析,纵向讲解近数年的真题,同时真题试题的讲解过程中要糅合进相应的知识点,通过分析真题带领考生掌握历年命题规律,预测下一年的考试重点。
还包含专业动向介绍、本科授课课件讲义和期末模拟试卷、非常详细的为大家讲解每个章节的重点,政治、英语、数学的辅导材料都是赠送的。
大家可以参考一下。
研究南开大学量子力学导论考研真题,重点是要训练自己解答分析题的能力,做完以后,考生一定要将自己的答案和参考答案进行比较,得出之间的差别,然后对参考答案的答题角度进行分析,最终总结出自己的解答方法,自己慢慢体会,如果你能把一道题举一反三,那你的复习效果就能达到事半功倍。
附件7:
《量子力学》考试大纲
一、考试目的
本考试是全日制“理论物理”和“粒子物理与原子核物理”硕士专业学位研究生的入学资格考试之专业基础课。
根据考生参加本考试的成绩和其他三门考试的成绩总分选择参加第二轮,即复试的考生。
二、考试的性质与范围
本考试是测试考生量子力学知识和计算能力的水平考试。
考试范围包括本大纲规定的知识内容。
三、考试基本要求
1. 具备一定的物理学基础知识和数理方程解题能力。
2. 正确理解量子力学的基本概念,掌握量子力学的基本解题方法。
四、考试形式
本考试采取基本概念测试与基本计算能力测试相结合的方法。
试题分类参见“考试内容一览表”。
五、考试内容
本考试涉及的量子力学知识内容包括:
(1)波函数和薛定谔方程;
(2)量子力学中的力学量;
(3)态和力学量的表象;
(4)自旋;
(5)近似方法;
(6)量子跃迁;
(7)全同粒子和多体问题。
《量子力学》考试内容一览表
1。