21.3实际问题和一元二次方程(变化率)
- 格式:ppt
- 大小:294.00 KB
- 文档页数:15
21.3 实际问题与一元二次方程教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1. 掌握用“倍数关系”、“面积法”等建立数学模型,并利用它解决实际问题.2. 掌握建立数学模型以解决增长率与降低率问题.3. 经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.教学难点根据“倍数关系”、“面积法”等之间的等量关系建立一元二次方程的数学模型.课时安排3课时.1教案A第1课时教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1.掌握用“倍数关系”建立数学模型,并利用它解决实际问题.2.经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点用“倍数关系”建立数学模型.教学难点用“倍数关系”建立数学模型.教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、新课教学探究1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?教师引导学生审题,让学生思考怎样设未知数,找等量关系列出方程.分析:设每轮传染中平均一个人传染了x个人.开始有一个人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有个人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有个人患了流感.列方程1+x+x(x+1)=121,整理,得x2+2x-120=0.解方程,得x1=10,x2=-12(不合题意,舍去)2答:每轮传染中平均一个人传染了10个人.思考:按照这样的传染速度,经过三轮传染后共有多少人患流感?121+121×10=1331(人)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?后一轮被传染的人数是前一轮患病人数的x倍.三、巩固练习某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.四、课堂小结本节课应掌握:1.利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.2.解一元二次方程的一般步骤:一审、二设、三列、四解、五验(检验方程的解是否符合题意,将不符合题意的解舍去)、六答.五、布置作业习题21.3 第6题.第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标掌握建立数学模型以解决增长率与降低率问题.教学重点如何解决增长率与降低率问题.教学难点解决增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x是增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.教学过程一、导入新课同学们好,我们上节课学习了探究1关于“倍数”的问题,知道了解一元二次方程的一般步骤.今天,我们就学习如何解决“增长率”与“降低率”的问题.二、新课教学探究2:两年前生产1 t甲种药品的成本是5 000元,生产1 t乙种药品的成本是6 0003元,随着生产技术的进步,现在生产1 t甲种药品的成本是3 000元,生产1 t乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析:根据题意,很容易知道甲种药品成本的年平均下降额为(5 000-3 000)÷2=1 000(元);乙种药品成本的年平均下降额为(6 000-3 600)÷2=1 200(元).显然,乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数).解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5 000(1-x)元,两年后甲种药品成本为5 000(1-x)2元,于是有5 000(1-x)2=3 000.解方程,得x1≈0.225,x2≈1.775.根据药品的实际意义,甲种药品成本的年平均下降率约为22.5%.答:甲种药品成本的年平均下降率约为22.5%.算一算:乙种药品成本的年平均下降率是多少?试比较这两种药品成本的年平均下降率.解:设乙种药品成本的年平均下降率为x,则一年后乙种药品成本为6 000(1-x)元,两年后甲种药品成本为6 000(1-x)2元,于是有6 000(1-x)2=3 600.解方程,得x1≈0.225,x2≈1.775.同理,乙种药品成本的年平均下降率约为22.5%.甲、乙两种药品成本的年平均下降率相同,均约为22.5%.思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较对象的变化状况?经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.小结:类似地,这种增长率的问题有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(增长取+,降低取-).三、巩固练习某人将2 000元人民币按一年定期存入银行,到期后支取1 000元用于购物,剩下的1 000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1 320元,求这种存款方式的年利率.分析:设这种存款方式的年利率为x,第一次存2 000元取1 000元,剩下的本金和利息是1 000+2 000x×80%;第二次存,本金就变为1 000+2000x×80%,其它依此类推.解:设这种存款方式的年利率为x,则1 000+2 000x×80%+(1 000+2 000x×8%)x×80%=1 320.整理,得1 280x2+800x+1 600x=320,即8x2+15x-2=0.解得4。
1、传播问题:公式:(a+x)n=M 其中a为传染源(一般a=1),n为传染轮数,M为最后得病总人数某种细菌,一个细菌经过两轮繁殖后,共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌?2、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?2、循环问题又可分为单循环问题1/2n(n-1),双循环问题n(n-1)和复杂循环问题1/2n(n-3)a.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?b.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?c.一个正多边形,它共有20条对角线,问是几边形?3、平均率问题M=a(1±x)n,n为增长或降低次数 , M为最后产量,a为基数,x为平均增长率或降低率4、商品销售问题常用关系式:售价—进价=利润一件商品的利润×销售量=总利润单价×销售量=销售额利润率= 利润÷进价b\某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件,如果商场平均每天要盈利1200元,每件衬衫应降价多少元?每件衬衫降价多少元时,商场平均每天赢利最多?5、数字问题:(!)两个相邻偶数的积是168,求这两个偶数。
(2)一个两位数,十位上数字与个位上数字之和为5;把十位上的数字与个位上数字互换后再乘以原数得736,求原来两位数.例、在宽为20米、长为32米的矩形地面上,修筑同样宽的两条互相垂直的道路,余下部分作为耕地,要使耕地面积为540米2,道路的宽应为多少?解法一、如图,矩形地面面积为,设道路的宽为x米,则横向的路面面积为纵向的路面面积为如图,设路宽为x米,横向路面为纵向路面面积为。
21.3 实际问题与一元二次方程+教学设计+2024—2025学年人教版数学九年级上册【学情分析】一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位.其中一元二次方程的应用也是初中数学应用问题的重点内容,同时也是难点.它是一元一次方程应用的继续,二次函数学习的基础,具有承前启后的作用,是研究现实世界数量关系和变化规律的重要数学模型.【教学目标】1.能根据具体问题中的数量关系,列出一元二次方程,并根据具体问题的实际意义,检验结果是否合理.2.经历将实际问题抽象为数学问题的过程,体会一元二次方程是刻画现实世界的一个有效的数学模型.3.感受与“增长率、下降率”相关的数学模型中的数量关系,提高用数学模型解释现实问题的能力,培养分析问题和解决问题的能力.【重点难点】重点:掌握建立数学模型以解决平均变化率问题.难点:分析题意,建立正确的数学模型【新课导入】复习:用方程解决实际问题的步骤是什么?设计意图:梳理前一节课所学,体会建立数学模型解决实际问题的思想和方法,为本节课后续学习做好铺垫.【新课讲解】2019年,研究人员在某杂志发表论文说,他们分析了两颗卫星的观测数据,发现在2000年至2017年间全球绿化面积增加了5%.其中约四分之一来自中国,贡献比例居全球首位.研究人员认为原因是中国在植树造林和集约农业等方面有突出表现.经调查,2000年全球绿化面积大约是38亿公顷,则2017年全球绿化面积大约是多少亿公顷?如果保持此增长率继续增长,那么到2034年,全球绿化面积约能达到多少呢?如果增长率是6%,那么2017年和2034年的全球绿化面积又该怎么表示呢?如果增长率用x表示,那么2017年和2034年的全球绿化面积又该怎么表示呢?设计意图:(1)-(4)通过层层递进的问题,帮助学生理解“增长率”的含义:并自然生成关于连续增长的数量关系,形成数学模型,建立一元二次方程和平均变化率实际问题之间的联系.当增长率为多少时,2034年的全球绿化面积可以达到45亿公顷?(精确到1%)设计意图:在形成和熟悉增长率有关模型的前提下,建立方程,解决实际问题..在解决问题的过程中,在此巩固用方程解决实际问题的思想和流程.归纳小结:类似地,这种变化率的问题在实际生活普遍存在,例如人口增长率、成本下降率等.本节讨论的是两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型,设平均变化率为x,则有下列关系:变化前数量×( 1±x )²=变化后数量.设计意图:通过小结,归纳变化率问题的共同特征,并在一元二次方程和连续增长两次的问题之间建立知识联系,帮助学生形成解决同类问题的策略,并适时补充下降率的有关知识.【课堂小结】用一元二次方程解决实际问题的基本步骤阅读分析题意,建立模型,列出一元二次方程,将实际问题转化为数学问题.选择合适的方法求解一元二次方程.经过检验,找到符合题意的答案,解决实际问题.设计意图:一元二次方程是刻画现实世界中某些数量关系的有效数学模型.在运用一元二次方程分析、表达和解决实际问题的过程中,要注意体会建立数学模型解决实际问题的思想和方法.【布置作业】1.有一人患了流感,经过两轮传染后共有100人患了流感,则每轮传染中,平均一个人传染的人数为(C)A.11人B.10人C.9人D.8人2.两个相邻正整数的平方和比这两个数中较小的数的2倍大51,则这两个数是5,6.3.某人用手机发短信,获得信息人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信中,平均一个人向9个人发送短信.【板书设计】21.3实际问题与一元二次方程第3课时用一元二次方程解决几何图形问题图形的面积(或体积)建立模型【教学反思】一元二次方程是刻画现实世界中某些数量关系的有效数学模型.在运用一元二次方程分析、表达和解决实际问题的过程中,要注意体会建立数学模型解决实际问题的思想和方法.。
实际问题与一元二次方程第1课时传播类和增长率问题1.掌握利用两轮的传播问题、平均变化率问题建立一元二次方程的数学模型.2.根据两轮的传播的等量关系、两轮的平均变化的等量关系建立一元二次方程的数学模型并运用它解决实际问题.【重点难点】根据平均变化率及两轮的传播的等量关系建立一元二次方程的数学模型并运用它解决实际问题.【新课导入】复习:用一元一次方程解应用题的一般步骤有哪些?那么如何用一元二次方程解决实际问题呢?【课堂探究】一、用一元二次方程解决两轮传播问题1.将传染问题公式化:即有1人开始传染,第一轮传染给x人,第二轮以同样速度传染,两轮过后共有a人被感染.可列方程为: (1+x)2=a .三轮过后有(1+x)3人被感染.2.(2013襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+(1+x)x=64,解得x1=7,x2=-9(舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又有448人被传染.二、用一元二次方程解决平均变化率问题3.(2013安徽)目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是( B )(A)438(1+x)2=389 (B)389(1+x)2=438(C)389(1+2x)=438 (D)438 (1+2x)=3894.将平均变化率问题公式化:设平均变化率为x,经过两个相同的平均变化后,有如下关系,变化前的数量×(1+x)2=变化后的数量.11.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是( B )(A)x(x-1)=10 (B) =10(C) x(x+1)=10 (D) =102.庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,这次有队参加比赛.( D )(A)12 (B)11 (C) 9 (D)103.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( B )(A)8人(B)9人(C)10人(D)11人4.某种药品零售价经过两次降价后的价格为降价前的81%,则平均每次降价( A )(A)10% (B)19%(C)9.5% (D)20%5.(2013青岛)某企业2010年底缴税40万元, 2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x,根据题意,可得方程40(1+x)2=48.4 .6.在一次手拉手活动中,参加活动的学生将自己制作的贺卡向其他成员各赠送一张;全体学生共互赠了1980张贺卡.这次活动共有多少名学生参加?解:设共有x名学生,根据题意可得:x(x-1)=1980x2-x-1980=0(x-45)(x+44)=0x-45=0或 x+44=0x=45或 x=-44(舍去)答:这次活动共有45名学生参加.。
21.3实际问题与一元二次方程单循环和双循环问题1.(1)2人互赠礼物,每人要送 1 份礼物,共赠出 2 份礼物(2)3人互赠礼物,每人要送 2 份礼物,共赠出 6 份礼物(3)4人互赠礼物,每人要送 3 份礼物,共赠出 12 份礼物(4)x 人互赠礼物,每人要送 (x-1) 份礼物,共赠出 x (x-1) 份礼物 2.(1)2人握手,每人和他人握手 1 次,共握手 1 次。
(2)3人握手,每人和他人握手 2 次, 共握手 3 次。
(3)4人握手,每人和他人握手 3 次, 共握手 6 次。
(4)x 人握手,每人和他人握手 (x-1) 次,共握手 12x (x-1) 次。
总结:(1)互赠问题∶若每两人之间进行2次活动,则x 人共进行了x (x-1)次活动;(2)握手问题∶若每两人之间进行1次活动,则x 人共进行了12x (x-1)次活动;(3)x 人握手总次数=x 人互赠总次数×12题型1:单循环和双循环问题1.在一次同学聚会上,参加的每个人都与其他人握手一次,共握手95次,设参加这次同学聚会的有x 人,可得方程( ) A .x (x ﹣1)=190B .x (x ﹣1)=380C .x (x ﹣1)=95D .(x ﹣1)2=380【答案】A【解析】【解答】解:设共有x 人参加联欢会,可得方程:x (x ﹣1)÷2=95,x (x ﹣1)=190.故答案为:A .【分析】根据“ 共握手95次 ”即可列出方程。
【变式1-1】要组织一次足球联赛,赛制为双循环形式(每两队之间都进行两场比赛),共要比赛90场.设共有x 个队参加比赛,则x 满足的关系式为( ) A .12x (x +1)=90B .12x (x ﹣1)=90C .x (x +1)=90D .x (x ﹣1)=90【答案】D【解析】【解答】解:设有x 个队参赛,则x (x ﹣1)=90.故答案为:D .【分析】设有x 个队参赛,根据参加一次足球联赛每两队之间都进行两场比赛,可得共比赛x (x ﹣1)场,根据共比赛90场建立方程即可.【变式1-2】某旅游团旅游结束时,其中一名旅客建议大家互相握手道别,细心的小明发现,每两个参加旅游的人互握一次手,共握了66次,问这次旅游的旅客人数是多少?【答案】解:这次旅游的游客人数为 x .依题意,得 12x ( x -1 ) =66 ,解得 x 1 =12 , x 2 =-11 (不合题意,舍去) 答:这次旅游的游客人数为12.【解析】【分析】 设这次旅游的游客人数为 x ,根据题意列出方程,解方程求出x 的值,再进行检验,即可得出答案.传播问题(2轮):解决传播问题的关键点需要找清楚两个量:1)每一轮传播的传播源的数量a ,2)每一个传播源每轮传播的数量x 。