椭圆的标准方程及性质应用(2)
- 格式:ppt
- 大小:3.52 MB
- 文档页数:55
椭圆的标准方程及性质椭圆作为二维空间中的图形,具有一些独特的性质和特点。
本文将介绍椭圆的标准方程以及其相应的性质。
一、椭圆的标准方程椭圆的标准方程可以通过平面几何的推导得出。
设椭圆的中心为点(h,k),椭圆的长轴为2a,短轴为2b,则可得出椭圆的标准方程:(x-h)^2/a^2 +(y-k)^2/b^2 = 1其中,h和k分别是椭圆的中心在x轴和y轴上的坐标,a和b分别是椭圆长轴和短轴的一半。
二、椭圆的性质1. 中心:椭圆的中心即标准方程中的点(h,k),表示椭圆在平面上的位置。
2. 焦点:椭圆上的每个点到两个焦点的距离之和等于定值2a,即椭圆的长轴长度。
焦点是椭圆的重要特点,用于定义椭圆的几何性质。
3. 长轴和短轴:标准方程中a和b分别表示椭圆的长轴和短轴的一半。
长轴是椭圆的最长直径,短轴是椭圆的最短直径。
4. 离心率:椭圆的离心率定义为焦距与长轴之比,通常用e表示。
离心率决定了椭圆的扁平程度,e<1时表示椭圆,e=0时表示圆。
5. 直径:椭圆上的两个端点同时到椭圆内一点的距离相等,则这两个端点和该内点连成的线段叫做该椭圆的直径。
6. 弦:椭圆上任意两点连线和椭圆的直径所围内部的线段叫做椭圆的弦。
7. 准线:椭圆上与两个焦点连线垂直的直线,与椭圆的侧弦相切。
8. 焦散性:入射到椭圆的平行光线在反射后会汇聚到另一个焦点上,这是椭圆焦散性的一个重要表现。
三、椭圆的应用椭圆作为一种常见的数学曲线,在现实生活中有广泛的应用。
以下是一些椭圆应用的例子:1. 天体运动:行星围绕太阳的轨迹、人造卫星轨道等可以近似看作椭圆。
2. 光学器件:抛物面镜、椭圆面镜等。
3. 固定时间下的最短路径问题。
4. 卫星通信:卫星的定位和通信领域中使用椭圆轨道。
4. 造船工业:船体的椭圆剖面设计,可以减少水的阻力。
5. 圆锥曲线中的一类,在几何光学中,椭球曲面可以聚焦光线。
总结:本文介绍了椭圆的标准方程及其性质。
椭圆作为一种重要的数学曲线,其在几何和物理学中有着广泛的应用。
3.1.2第2课时椭圆的标准方程及性质的应用
教材分析
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习椭圆的简单几何性质
教材的地位和作用地位:本节课是在椭圆的概念和标准方程的基础上,运用代数的方法,研究椭圆的简单几何性质及简单应用. 本节课内容的掌握程度直接影响学习双曲线和抛物线几何性质。
作用:提高学生的数学素质,培养学生的数形结合思想,及分析问题和解决问题的能力。
因此,内容在解析几何中占有非常重要的地位。
教学目标与核心素养
重点难点
重点:椭圆的方程及其性质的应用
难点:直线与椭圆的位置关系
课前准备
多媒体.
教学过程
离心率
解:建立如图所示的平面直角坐标系,
2 2+y2
b2
=1(a>b>0) ,
=2x +m ,椭圆C :x 24+y 2
2=
2F B n =,则22,AF n BF =
教学反思
通过椭圆几何性质的应用,培养学生数学建模能力,并介绍椭圆的定义二定义,体会圆锥曲线的统一性。
在直线与椭圆学习过程中,注意类比直线与圆的位置关系的判断方法。
椭圆及标准方程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
这两个定点称为椭圆的焦点,且椭圆的长轴是以焦点为端点的线段的长度的两倍。
椭圆也可以用数学方程来描述,下面我们来介绍椭圆的标准方程以及相关性质。
1. 椭圆的标准方程。
椭圆的标准方程是指在平面直角坐标系中,椭圆的中心在原点,长轴与x轴平行,短轴与y轴平行的情况下,椭圆的方程。
假设椭圆的长轴长度为2a,短轴长度为2b,则椭圆的标准方程可以表示为:x^2/a^2 + y^2/b^2 = 1。
当椭圆的中心不在原点时,可以通过平移坐标轴的方法将椭圆的中心移动到原点,然后再求解标准方程。
2. 椭圆的性质。
椭圆有许多独特的性质,下面我们来介绍其中的一些重要性质:(1)焦点和离心率,椭圆的焦点到中心的距离称为椭圆的焦距,用2c表示。
椭圆的离心率定义为e=c/a,表示焦点到中心的距离与长轴长度的比值。
离心率是一个重要的参数,可以描述椭圆的形状。
(2)焦点和直角坐标系,椭圆的焦点与坐标系有着重要的几何关系。
设椭圆的焦点为F1(c,0)和F2(-c,0),则椭圆上任意一点P(x,y)到焦点的距离之和等于常数2a,即PF1+PF2=2a。
(3)椭圆的参数方程,椭圆还可以用参数方程来描述,参数方程为x=acosθ,y=bsinθ,其中θ为参数,取值范围为0到2π。
参数方程可以直观地描述椭圆上的点的位置,方便进行曲线的分析和计算。
3. 椭圆的图形和应用。
椭圆作为一种重要的几何图形,在数学、物理、工程等领域都有着广泛的应用。
在数学领域,椭圆是圆锥曲线中的一种,具有独特的几何性质和数学特征,是研究曲线和几何形状的重要对象。
在物理学中,椭圆的运动规律被广泛应用于天体运动、机械振动等领域。
在工程领域,椭圆的形状被广泛应用于建筑设计、轨道设计等领域。
总之,椭圆是一种重要的几何图形,具有独特的几何性质和广泛的应用价值。
通过了解椭圆的标准方程和相关性质,我们可以更好地理解和应用椭圆,为实际问题的分析和解决提供更多的可能性。
第5讲 椭圆的性质及应用一、知识梳理1x 2y 2y 2x 22(1)一类是与坐标系无关的椭圆本身故有的性质:长轴长、短轴长、焦距、离心率等. (2)一类是与坐标系有关的性质:顶点坐标、焦点坐标等.在解题时要特别注意第二类性质,应根据椭圆方程的形式,首先判断椭圆的焦点在哪条坐标轴上,然后再进行求解.问题 为什么椭圆的离心率决定椭圆的扁平程度?提示:椭圆的离心率反映了焦点远离中心的程度,e 的大小决定了椭圆的形状,反映了椭圆的圆扁程度.因为a 2=b 2+c 2,所以b a =1-e 2,因此,当e 越趋近于1时,ba越接近于0,椭圆越扁;当e 越趋近于0时,ba越接近于1,椭圆越接近于圆. 题型(一) 求椭圆的离心率例1 (1)下列椭圆中最扁的一个是( ) A .B .C .D .【解答】解:椭圆的离心率越小,椭圆越圆,越大,离心率越大,椭圆越扁,越小, A 中=,B 中=,C 中=,D 中=,故选:B .(2)若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为________. 解析: 依题意,△BF 1F 2是正三角形,∵在Rt △OBF 2中,|OF 2|=c ,|BF 2|=a ,∠OF 2B =60°,∴a cos 60°=c ,∴c a =12,即椭圆的离心率e =12.,答案: 12(3)如图,设椭圆的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆于C 点,若直线BF 平分线段AC 于M ,则椭圆的离心率是( )A .B .C .D .【解答】解:如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, ∴OM ∥AB ,于是△OF A ∽△AFB ,且==,即=,可得e ==.故选:C .(4)《九章算术)是我国古代内容极为丰富的数学名著第九章“勾股”,讲述了“勾股定理及一些应用.直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“勾2+股2=弦2”.设F 是椭圆=1(a >b >0)的左焦点,直线y =x 交椭圆于A 、B 两点,若|AF |,|BF |恰好是Rt △ABF 的”勾”“股”,则此椭圆的离心率为( ) A .B .C .D .【解答】解:∵|AF |,|BF |恰好是Rt △ABF 的”勾”“股”,∴AF 1⊥BF 1,∴OA =OB =OF 1=c . ∴A (,),∴⇒,,⇒,e 2=1﹣=4﹣2,∴﹣1.故选:A .变式训练:1、美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括了明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆,若“切面”所在平面与底面成60°角,则该椭圆的离心率为()A.B.C.D.【解答】解:椭圆的长轴为2a,短轴的长为2b,“切面”是一个椭圆,若“切面”所在平面与底面成60°角,可得,即a=2b,所以e===.故选:C.2、己知椭圆C:(a>b>0)的右焦点为F,过点F作圆x2+y2=b2的切线,若两条切线互相垂直,则椭圆C的离心率为()A.B.C.D.【解答】解:如图,由题意可得,,则2b2=c2,即2(a2﹣c2)=c2,则2a2=3c2,∴,即e=.故选:D.[题后感悟] (1)求离心率e 时,除用关系式a 2=b 2+c 2外,还要注意e =的代换,通过方程思想求离心率. (2) 在椭圆中涉及三角形问题时,要充分利用椭圆的定义、正弦定理及余弦定理、全等三角形、相似三角形等知识. 例21、设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1解法一:由题意知F 1(-c ,0),F 2(c ,0),P ⎝⎛⎭⎫a2c ,y ,∵PF 1的中垂线过点F 2,∴|F 1F 2|=|F 2P|,即2c =⎝⎛⎭⎫a 2c -c 2+y 2,整理得y 2=3c 2+2a 2-a 4c 2.∵y 2≥0,∴3c 2+2a 2-a 4c 2≥0,即3e 2-1e 2+2≥0,解得e ≥33.∴e 的取值范围是⎣⎡⎭⎫33,1.解法二:设直线x =a 2c 与x 轴交于M 点,则|F 1F 2|=|F 2P |≥|MF 2|,即2c ≥a 2c -c ,整理得13≤e 2<1,33≤e <1.∴椭圆离心率的取值范围是⎣⎡⎭⎫33,1.故选D.2、已知椭圆的标准方程为,F 1,F 2为椭圆的左右焦点,椭圆上存在一点P ,使得21PF F ∠为直角,求椭圆的离心率的取值范围 3、椭圆C 的两个焦点分别是F 1,F 2若C 上的点P 满足21123F F PF =,则椭圆C 的离心率e 的取值范围是A.21≤eB.41≥eC.2141≤≤eD.410≤<e 或121<≤e【答案】C 解析:∵12233,2PF F F c ==∴,由三角形中,两边之和大于第三边得,故选C.点拨:(1)对于参数的取值范围问题,要能从几何特征的角度去分析参数变化引起的图形的变化.在学习中,要能主动的研究几何特征变化的根本性原因.(2)对几何对象的本质属性的把握越准确,代数化就越容易.(3)整个图形都随着P 点的变化而变化,P 点的变化使得线段||PF 2的长度也在变化,进而||PF 2与||MF 2的长度关系也在变化.正确的描述这一变化中量与量之间的数量关系是解题的关键所在.(4)求椭圆的离心率通常要构造关于a ,c 的齐次式,再转化为关于e 的方程或不等式.题型二 直线与椭圆位置关系1、直线和椭圆位置关系判定方法概述①直线斜率存在时221y kx b mx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-= 当0∆>时 直线和椭圆相交 当0∆=时 直线和椭圆相切当0∆<时 直线和椭圆相离②直线斜率不存在时22221x x y a bλ=⎧⎪⎨+=⎪⎩判断y 有几个解注:1︒无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。