最新数学冀教版初中七年级上册2.易错专题:有理数中的易错题
- 格式:doc
- 大小:31.50 KB
- 文档页数:4
第二章《有理数》检测试题一、选择题(每题2分,共20分)1,在数轴上表示-10的点与表示-4的点的距离是( )A.6B.-6C.10D.-4 2,在有理数中,绝对值等于它本身的数有( )A.1个B.2个C. 3个D.无穷多个 3,若a 是有理数,则4a 与3a 的大小关系是( )A.4a >3aB.4a =3aC.4a <3aD.不能确定 4,下列各对数中互为相反数的是( )A.32与-23B.-23与(-2)3C.-32与(-3)2D.(-3×2)2与23×(-3) 5,当a <0,化简a a a-得( )A.-2B.0C.1D.2 6,下列各项判断正确的是( )A.a +b 一定大于a -bB.若-ab <0,则a 、b 异号C.若a 3=b 3,则a =bD.若a 2=b 2,则a =b7,l00米长的小棒,第1次截去一半,第2次截去剩下的31,第三次截去剩下的41,如此下去,直到截去剩下的1001,则剩下的小棒长为( )米 。
A 、 20B 、15C 、 1D 、508,若a =-2×32,b =(-2×3)2,c =-(2×3)2,则下列大小关系中正确的是( )A.a >b >0B.b >c >aC.b >a >cD.c >a >b9,一张纸的厚度是0.1mm ,假如将它连续对折10次后,则它折后的高度为 ( )A.1mmB.2mmC.102.4mmD.1024mm 10.若a b b a -=-,且3=a ,2=b ,则3)(b a +的值为( )A .1或125B .-1C .-125D .-1或-12511.已知0<a <1,则a ,-a ,-a 1,a1的大小关系为( )A 、a 1>-a 1>-a >aB 、-a 1>a >-a >a 1C 、a 1>a >-a 1>-aD 、a 1>a >-a >-a112.观察图中中每一个正方形各顶点所标数字的规律,2012应标在( )A .第502个正方形左上角顶点处B .第502个正方形右上角顶点处C .第503个正方形左上角顶点处D .第503个正方形右上角顶点处 二、填空题(每题2分,共20分)13,如果盈利350元,记作:+350元,那么-80元表示__________.14,某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃,这时气温是___.15,一个数的相反数的倒数是-113,这个数是________.16,如图1所示,数轴的一部分被墨水污染,被污染的部分内含有的整数为 .17,若│-a │=5,则a =________.18、已知x 与y 互为相反数,m 与n 互为倒数,且3a =,则()23a x y mn+-=___.19,用科学记数法表示13040000应记作_____ .20,.如图所示的运算程序中,若开始输入的x 的值为10,我们发现第一次输出的结果为5,第二次输出的结果为8,,则第10次输出的结果为三、解答题(共60分) 21,计算:(1)223261(3)(0.2)23(1)254-⎡⎤⎡⎤--++-⨯-÷⎣⎦⎢⎥⎣⎦; (2)2223333(2)0.12512( 1.25)32248⎡⎤⎛⎫-÷-+-⨯+÷÷⨯--⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;图1(3)24811313(1)1232442834⎛⎫⎛⎫⎛⎫-÷-⨯--+-⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.22、若│a│=2,b=-3,c是最大的负整数,求a+b-c的值..23,检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8、-9、+4、+7、-2、-10、+18、-3、+7、+5回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?24、已知某粮库已存有粮食100吨,本周内粮库进出粮食的记录如下(运进为正):(1)通过计算,说明本周内哪天粮库剩下的粮食最多?(2)若运进的粮食为购进的,购买价格为每吨2000元,运出的粮食为卖出的,价格为每吨2300元,则这一周的利润为多少?(3)若每周平均进出的粮食大致相同,则再过几周粮库存的粮食可达到200吨?25、小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,-1,-1.5,0.8,1,-1.5,-2,1.9,0.9(1)这10枝钢笔的最高的售价和最低的售价各是几元?(2)当小亮卖完钢笔后是盈还是亏?四、拓展题26,如图2所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是____,A,B两点间的距离是_______.(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是_______,A,B两点间的距离为_________.(3)如果点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256 个单位长度,那么终点B 表示的数是_______,A ,B 两点间的距离是________.(4)一般地,如果A 点表示的数为m ,将A 点向右移动n 个单位长度,再向左移动p 个单位长度,那么请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?27、已知数轴上A 、B 两点所表示的数分别为a 和b . (1)如图,a=﹣1,b=7时①求线段AB 的长;②若点P 为数轴上与A 、B 不重合的动点,M 为PA 的中点,N 为PB 的中点,当点P 在数轴上运动时,MN 的长度是否发生改变?若不变,并求出线段MN 的长;若改变,请说明理由. (2)不相等的有理数a 、b 、c 在数轴上的对应点分别为A 、B 、Q ,如果|a ﹣c|﹣|b ﹣c|=|a ﹣b|,那么,Q 点应在什么位置?请说明理由.28、我们知道,|a|表示数a 到原点的距离,这是绝对值的几何意义。
冀教版七年级上册数学第一章有理数含答案一、单选题(共15题,共计45分)1、有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A. B. C. D.2、下列计算正确的是()A. B. C. D.3、四个数-3,0,1,2,其中负数是()A.-3B.0C.1D.24、有理数a,b在数轴上的位置如图所示,下列式子成立的是()A.ab>0B. >0C.a>bD.a<b5、下列运算正确的是()A. =±3B.(﹣2)3=8C.﹣2 2=﹣4D.﹣|﹣3|=36、在实数,0,π,,1.41中,有理数有()A.4个B.3个C.2个D.1个7、下面互为倒数的是()。
A. 和B. 和C. 和1D. 和8、下列各组数中,互为相反数的一组是()A.3与B.2与|-2|C.(-1) 2 与1D.-4与(-2) 29、在﹣4,0,﹣1,3这四个数中,最大的数是()A.-4B.0C.-1D.310、若a是负数,且|a|<1,则的值是()A.等于1B.大于-1,且小于0C.小于-1D.大于111、有理数在数轴上的位置如图,则下列各式成立的是()A. B. C. D.12、如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A.m+n<0B. m<nC.|m| |n|>0D.2+m<2+n13、甲‚乙‚丙三地的海拔高度为30米,-15米,-10米,那么最高的地方比最低的地方高()A.20米B.25米C.45米D.15米14、若a+|a|=0,则等于()A.2﹣2aB.2a﹣2C.﹣2D.215、-3的倒数是()A. B. C. D.二、填空题(共10题,共计30分)16、如果数轴上的点A对应的数为﹣1,那么与A点相距3个单位长度的点所对应的有理数为________17、若(t-3)t-2=1,则t=________.18、两个有理数的和是5,其中一个加数是12,那么另一个加数是________.19、已知,则________.20、在计算:“ ”时,甲同学的做法如下:①②=7 ③在上面的甲同学的计算过程中,开始出错的步骤是________(写出不符合题意所在行的序号),这一步依据的运算法则应当:同号两数相加,________.21、如图是一幅“苹果图”,第一行有1个苹果,第二行有2个苹果,第三行有4个苹果,第四行有8个苹果,…,你是否发现苹果的排列规律?猜猜看,第六行有________个苹果,第十行有________个苹果.(可用乘方的形式表示)22、把式子写成乘方的形式为________.23、某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y℃与向上攀登的高度xkm的几组对应值如表:若每向上攀登1km,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.5km时,登山队所在位置的气温约为________.24、探究思考:(本题直接填空,不必写出解题过程)问题:在数轴上,点A表示的数为,则到点A的距离等于3的点所表示的数是________;变式思考一:如图1,在数轴上有六个点A、B、C、D、E、F,且相邻两点间距离相等,若点A表示的数是,点F表示的数为11,则与点C表示的数最近的整数是________;变式思考二:已知数轴上有A、B、C三点,分别代表,电子蚂蚁从A向点C方向以4个单位/秒的速度爬行.则爬行到________秒时,电子蚂蚁到A、B、C的距离和为40个单位.25、南昌一月的某天最高气温为10℃,最低气温为-1℃,那么这天的最高气温比最低气温高________ ℃.三、解答题(共5题,共计25分)26、计算:27、已知实数x,y满足x2﹣10x++25=0,则(x+y)2015的值是多少?28、在一条东西走向的马路上,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校西边300 m处,商场在学校西边600 m处,医院在学校西边500 m处,若将该马路近似地看作一条直线,向东为正方向,1个单位长度表示100 m.找一个公共场所作为原点,在数轴上表示出这四家公共场所的位置,并使得其中两个公共场所所在位置表示的数互为相反数.29、一种商品的标准价格是200元,但随着季节的变化,商品的价格可浮动±10%,想一想±10%的含义是什么?30、设有理数在数轴上的对应点如图所示,化简.参考答案一、单选题(共15题,共计45分)1、B2、D3、A4、C5、C6、B7、C8、D9、D10、C11、B12、D13、C14、A15、B二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、。
冀教版七年级数学上册第一章《有理数》专题练习题基础检测1.中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数 6.向东行进-30米表示的意义是( ) A.向东行进30米 B.向东行进-30米 C.向西行进30米 D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时521,76,106,14.3,732.1,34,5.2,0,1−−−−+−物体离它两次移动前的位置多远?1.1正数和负数参考答案基础检测: 1. 2.-3, 0. 3.相反 4.解:2010年我国全年平均降水量比上年的增长量记作-24㎜ 2009年我国全年平均降水量比上年的增长量记作+8㎜ 2008年我国全年平均降水量比上年的增长量记作-20㎜ 拓展提高:5.B6.C7.-32m ,808.18 22℃9. +5m 表示向左移动5米,这时物体离它两次前的位置有0米,即它回到原处。
自我小测基础巩固JICHU GONGGU 1.-7是( ) A .自然数B .分数C .非负数D .负整数2.下列各项的两个量中,不具有相反意义的是( ) A .升高3m 与降低3mB .弹簧伸长2m 与缩短3mC .节约5t 水与浪费8t 水D .向前走5步和向左走5步3.某工厂计划每月生产800t 产品,一月份生产了700t ,将超额记为“+”,那么它超额完成计划的吨数是( )A .-100B .100C .10D .15004.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg5.在-227,π,0,0.333四个数中,有理数的个数为( )A .1B .2C .3D .4;106,34,5.2521,76,14.3,732.1,1−−−−−6.在下列各数-3,15,-0.4,0,23,9.5,+156,-20%中,正数有________,负数有________.7.如果海平面的高度记作0m ,一潜水艇在海面下方30m 深处,记作________,一飞机在海面上空1000m 的高度记作________.8.将下列各数分别填入相应的圈内: -113,3,6.2,-0.03,0,-14.01,114,π.能力提升NENGLI TISHENG9.观察下列数:-1,2,-3,4,-5,6,-7,…将这一列数排成下列形式:-1 2 -3 4-5 6 -7 8 -9 10 -11 12-1314 -15 16……按照上述规律排下去,那么第10行从左数第9个数是________.10.新华中学七年级(1)班学生的平均身高为150cm(超过部分为正),下表是该班5名同学身高情况:+2指出以上5名同学谁最高?谁最矮?最高与最矮相差多少?参考答案1.D 点拨:自然数是指正整数和0. 2.D3.A 点拨:将超额记为“+”,差是100t ,故为A.4.B 点拨:最高质量为(25+0.3)kg ,最低质量为(25-0.3)kg ,所以它们的质量最多相差0.6kg.5.C 点拨:π不是有理数.6.15,23,9.5,+156 -3,-0.4,-20%点拨:正数前面的“+”通常会省略.7.-30m +1000m 点拨:高于海平面记为正,低于海平面记为负. 8.解:点拨:根据有理数的两种分类解题.9.90 点拨:前9行的数字个数为1+3+5+7+9+11+13+15+17=81,再把第10行从左数9个数字,数字为90.再由奇数为负、偶数为正的符号规律可知,这个数为+90.10.解:刘丽最高,李强最矮,相差8cm.1.1 正数和负数1、下列说法正确的是( )A 、零是正数不是负数B 、零既不是正数也不是负数C 、零既是正数也是负数D 、不是正数的数一定是负数,不是负数的数一定是正数 2、向东行进-30米表示的意义是( ) A 、向东行进30米 B 、向东行进-30米C 、向西行进30米D 、向西行进-30米 3、零上13℃记作+13℃,零下2℃可记作( ) A 、2 B 、-2 C 、2℃ D 、-2℃4、某市2015年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高( )A 、-10℃B 、-6℃C 、6℃D 、10℃ 5、521,76,106,14.3,732.1,34,5.2,0,1−−−−+−中,正数有 , 负数有 .6、如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m .7、在同一个问题中,分别用正数与负数表示的量具有 的意义.8、甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 ,这时甲乙两人相距 m. .9、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃~ ℃范围内保存才合适.10、2014年我国全年平均降水量比上年减少24㎜,2013年比上年增长8㎜,2012年比上年减少20㎜。
易错专题:有理数中的易错题——易错归纳、逐个击破◆类型一 遗漏“0”及对“0”的认识不够1.下列说法正确的是( )A.符号相反的数互为相反数B.当a ≠0时,|a |总大于0C.一个数的绝对值越大,表示它的点在数轴上越靠右D.一个有理数不是正数就是负数2.绝对值小于2.5的所有非负整数的积为 .◆类型二 与运算相关的符号的判断不准确3.在-32,-|-2.5|,-(-2.5),-(-3)2,(-3)2016,(-3)3中,负数的个数是( )A.1B.2C.3D.44.下列式子中成立的是( )A.-|-5|>4B.-3<|-3|C.-|-4|=4D.|-5.5|<55.-⎪⎪⎪⎪-23的相反数是 . 6.a 是有理数,则下列各式:①|-a |=a ;②-(-a )=a ;③a ≤-a ;④a >-a .其中正确的是 (填序号).7.(-1)2016+(-1)2015= .◆类型三 运算法则、运算顺序及符号错误8.化简:|π-4|+|3-π|= .9.计算下列各题:(1)(-3.1)-(-4.5)+(+4.4)-(+1.3);(2)-24×⎝⎛⎭⎫-23+34+112;(3)-14-15×[|-2|-(-3)3]-(-4)2.◆类型四 多种情况时漏解10.在数轴上到原点距离等于2的点所表示的数是( )A.-2B.2C.±2D.不能确定11.已知|x |=3,|y |=2,且x >y ,则x +y 的值为( )A.5B.-1C.-5或-1D.5或112.若|x |=|-2|,则x = .13.在数轴上点A 表示的数为-2,若点B 离点A 的距离为3个单位,则点B 表示的数为 .【易错3】14.若a ,b 互为相反数,c ,d 互为倒数,|x |=3,求式子2(a +b )-(-cd )2016+x 的值.15.★已知abc |abc |=1,求|a |a +|b |b +|c |c的值.参考答案与解析1.B 2.0 3.D 4.B5.236.②7.08.19.解:(1)原式=4.5;(2)原式=-4;(3)原式=-2245. 10.C 11.D 12.±2 13.-5或114.解:因为a ,b 互为相反数,c ,d 互为倒数,|x |=3,所以a +b =0,cd =1,x =±3.所以2(a +b )-(-cd )2016+x =0-(-1)2016+x =-1+x .当x =3时,-1+x =-1+3=2;当x =-3时,-1+x =-1+(-3)=-4.15.解:因为abc |abc |=1,可得a ,b ,c 三个都为正数或a ,b ,c 中只有一个为正数.分两种情况讨论:①当a ,b ,c 三个都为正数时,则有|a |a ,|b |b ,|c |c 三个都为1,可得|a |a +|b |b +|c |c=3;②当a ,b ,c 中只有一个为正数时,则有|a |a ,|b |b ,|c |c中有一个为1,其余两个都为-1,可得|a |a +|b |b +|c |c=-1.综上可得:所求式子的值为3或-1.。
易错专题:有理数中的易错题——易错归纳、逐个击破◆类型一 遗漏“0”及对“0”的认识不够1.下列说法正确的是( )A.符号相反的数互为相反数B.当a ≠0时,|a |总大于0C.一个数的绝对值越大,表示它的点在数轴上越靠右D.一个有理数不是正数就是负数2.绝对值小于2.5的所有非负整数的积为 .◆类型二 与运算相关的符号的判断不准确3.在-32,-|-2.5|,-(-2.5),-(-3)2,(-3)2016,(-3)3中,负数的个数是( )A.1B.2C.3D.44.下列式子中成立的是( )A.-|-5|>4B.-3<|-3|C.-|-4|=4D.|-5.5|<55.-⎪⎪⎪⎪⎪⎪-23的相反数是 . 6.a 是有理数,则下列各式:①|-a |=a ;②-(-a )=a ;③a ≤-a ;④a >-a .其中正确的是 (填序号).7.(-1)2016+(-1)2015= .◆类型三 运算法则、运算顺序及符号错误8.化简:|π-4|+|3-π|= .9.计算下列各题:(1)(-3.1)-(-4.5)+(+4.4)-(+1.3);(2)-24×⎝ ⎛⎭⎪⎫-23+34+112;(3)-14-15×[|-2|-(-3)3]-(-4)2.◆类型四 多种情况时漏解10.在数轴上到原点距离等于2的点所表示的数是( )A.-2B.2C.±2D.不能确定11.已知|x |=3,|y |=2,且x >y ,则x +y 的值为( )A.5B.-1C.-5或-1D.5或112.若|x |=|-2|,则x = .13.在数轴上点A 表示的数为-2,若点B 离点A 的距离为3个单位,则点B 表示的数为 .【易错3】14.若a ,b 互为相反数,c ,d 互为倒数,|x |=3,求式子2(a +b )-(-cd )2016+x 的值.15.★已知abc |abc |=1,求|a |a +|b |b +|c |c的值.参考答案与解析1.B 2.0 3.D 4.B5.236.②7.08.1 9.解:(1)原式=4.5;(2)原式=-4;(3)原式=-2245. 10.C 11.D 12.±2 13.-5或114.解:因为a ,b 互为相反数,c ,d 互为倒数,|x |=3,所以a +b =0,cd =1,x =±3.所以2(a +b )-(-cd )2016+x =0-(-1)2016+x =-1+x .当x =3时,-1+x =-1+3=2;当x =-3时,-1+x =-1+(-3)=-4.15.解:因为abc |abc |=1,可得a ,b ,c 三个都为正数或a ,b ,c 中只有一个为正数.分两种情况讨论:①当a ,b ,c 三个都为正数时,则有|a |a ,|b |b ,|c |c 三个都为1,可得|a |a +|b |b+|c |c =3;②当a ,b ,c 中只有一个为正数时,则有|a |a ,|b |b ,|c |c中有一个为1,其余两个都为-1,可得|a |a +|b |b +|c |c=-1.综上可得:所求式子的值为3或-1.。
专题二 有理数运算和应用一、教学目标1、能够熟练应用有理数运算法则2、学会利用有理数相关知识解决实际问题 二、知识点梳理 1、有理数的加法法则(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两个数相加得零; (4)一个数与零相加,仍得这个数。
2、有理数加法的运算律(1)加法交换律:两个数相加,交换加数的位置,和不变。
即a b b a +=+。
(2)加法结合律:三个数相加,先把前两个数相加,和不变。
即())(c b a c b a ++=++。
注意:当四个或四个以上的有理数相加时,可以通过加法结合律,让其中的两个或三个相加,把所得的和与另外加数相加。
方法:(1)应用交换律时,要连同加数的符号一起交换位置,交换的原则是正数与正数放在一起,负数与负数放在一起。
(2)在有理数中,交换律与结合律中的字母c b a ,,除了表示正数外,还可以表示负数和0。
3、有理数的减法法则:减去一个数等于加上这个数的相反数。
即)()();()();(b a b a b a b a b a b a -+=+--+=---+=- 0减一个数等于加上这个数的相反数。
注意:三个或三个以上有理数相减时,根据法则可以从左到右分别把减法全部变为加法,然后依次相加。
4、方法(1)不论减数是正数、负数或是零,都符合有理数减法法则。
在使用法则时,注意被减数是永不变的。
(2)进行有理数减法运算有两个步骤:第一,将算式中的减号改为加号;第二将减数改为它的相反数,即遵循“二变”原则。
有理数的减数(1)减去一个正数等于加上一个负数;(2)减去一个负数等于加上一个正数。
(3)任何数减0仍得原数;0减去一个数等于这个数的相反数。
5、代数和:是省略加号和括号的和的形式。
在一个和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
冀教版数学七年级上册第一章专训1绝对值的七种常见的应用题型名师点金:绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须明确绝对值的意义和性质.对于数X而言,它的绝对值表示为|x|.送<1已知一个数求这个数的绝对值1.化简:(1)|—(+7)1;⑵一|一8|;,4(3)—+];(4)—|—a|(a<0).i表饕2:已知一个数的绝对值求这个数2.若|a|=2,则a=.3.若|x|=|y|,且x=—3,贝。
y=.4.绝对值不大于3的所有整数为5.右|一x|——(—8),则x=,右|一x|=|—2|,则x=.i遴室,绝对值在求字母的取值范围中的应用6.如果|-2a|=-2a,则a的取值范围是()A.a>0B.aNOC.asSOD.a<07.若|x|=-x,则x的取值范围是.8.若|x-2|=2-x,则x的取值范围是差.壑1绝对值在比较大小中的应用249.把—(―1),一§——5,0用"〉"连接正确的是()42A.0>-(-1)>------->-324B.0>—(—1)>—歹〉一一厅24C.一(―1)>0>—3>——§42D.—(―l)>0>—一§>—^绝对值非负性在求字母值中的应用10.(1)已知|a|=5,|b|=8,且a<b,KO a=,b=;(2)有理数a,b在数轴上的位置如图所示,若|a|=4,|b|=2,求a,b的值.b a>(第10题)11.若a—2+b—3+c—=0,求a+b—c的值.羔夷互绝对值非负性在求最值中的应用12.根据|a|NO这条性质,解答下列问题:(1)当2=时,|a-4|有最小值,此时最小值为:(2)当a取何值时,|a—1|+3有最小值?这个最小值是多少?(3)当a取何值时,4-|a|有最大值?这个最大值是多少?【导学号:11972006】奏方绝对值在实际中的应用13.某工厂生产一批零件,零件质量要求为“零件的长度可以有0.2cm的误差”.现抽查5个零件,超过规定长度的厘米数记为正,不足规定长度的厘米数记为负,检查结果如下表:零件号数①②③④⑤数据+0.13-0.25+0.09-0.11+0.23(1)指出哪些零件是合格产品(即在规定误差范围内);(2)在合格产品中,几号产品的质量最好?为什么?试用绝对值的知识说明.答案1.解:⑴原式=7.(2)原式=-8.-4(3)原式=,.(4)原式=a.2.±23.±34.0,±1,±2,±35.±8;±26.C7.xWO8.xW29.C10.解:(1)±5;8(2)a=4,b=±2.11.解:由题意得a=;,b=?,c=*1117所以a+b—c=a+厂彳=正.12.解:(1)4;0(2)因为|a—1|NO,所以当a=l时,|a—1|+3有最小值.这个最小值是3.(3)因为|a|NO,所以一|a|WO,所以当a=0时,4—|a|有最大值,这个最大值是4.13.解:(1)因为|+0.13|=0.13<0.2,|—0.25|=0.25>0.2,|+0.09|=0.09<0.2,|~0.11| =0.11<0.2,|+0.23|=0.23>0.2,所以①③④号零件是合格产品.(2)在合格产品中,③号产品的质量最好.因为|+0.09|<|—0.11|<|+0.13|.所以质量最好的产品是③号零件.专训2数轴在有理数中五种常见应用名师点金:数轴在有理数这章中有着广泛的应用,引进了数轴后,我们把数和点对应起来,也就是把“数”与“形”结合起来,常常可以使复杂的问题简单化,抽象的问题直观化.用数轴表示有理数1.如图,在数轴上表示数一2的点是()A.PB.QC.MD.NQ P(N M-2-10123,(第]题),手,-2-10123*(第2题)2.如图,数轴上点M表示的数是.3.如图,在没有标出原点的数轴上每相邻两刻度之间的距离为1个单位长度,A,B, C,D四点表示的有理数都是整数,若A,B表示的有理数a,b满足2b+a=4,那么数轴的原点只能是A,B,C,D四点中的哪个点?为什么?-4----1-----1----A——I-----1_A_I_>e*C AD B(第3题):麦室..z用数轴表示相反数4.数轴上的点A到原点的距离为9,则点A表示的数是()A.9B.-9C.9或一9D. 4.5或一4.55.己知有理数a,-3,b在数轴上对应的点的位置如图所示,在数轴上标出a,—3, b的相反数对应的点.-3―a―1—0—b—'—(第5题)谈壑3.用数轴表示绝对值6.如图,数轴的单位长度为1,如果点B表示的数的绝对值是点A表示的数的绝对值的3倍,那么点A表示的数是.A B(第6题)7.已知x是整数,且3W|x|<5,则x:如壑生用数轴比较有理数的大小8.如图,点A,B,C,D在数轴上表示的数分别是a,b,c,d,则这四个数中最大的一个是()A.aB.bC.cD.dC tD A t B-2,-l0?23*(第8题)-2-10*123*(第9题)9.如图,数轴上A,B两点分别表示数a,b,贝加与|b|的大小关系是()A.|a|>|b|B.|a|=|b|C.|a|<|b|D.无法确定10.将下列各数在数轴上表示出来,并用将它们连接起来.一5.5,4,-2, 3.25,0,-1.用数轴说明覆盖整点问题11.数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在该数轴上随意画出一条长为2016cm的线段AB,则线段AB盖住的整点有多少个?【导学号:11972007】答案1.B2.13.解:D点.理由如下:若点C为原点,则A表示1,B表示6,则2b+a=13,不符合题意;若A为原点,则A表示0,B表示5,则2b+a=10,不符合题意;若D为原点,则A表示一2,B表示3,则2b+a=4,符合题意;若B为原点,则A表示一5,B表示0,则2b+a=—5,不符合题意.故D点为原点.4.C5.解:如图所示.-=3_a-b~~0"""b-a~~3^(第5题)6.—1或27.—4或一3或3或4点拨:首先在数轴上找到符合条件的所有有理数的范围,再从其中选出整数.如图,阴影部分就是绝对值小于5,而不小于3的所有有理数的范围,观察可知,其中包含的整数有一4,-3,3, 4..........,-5-4-3-2-1012345(第7题)8.B9A10.解:如图所示.75.5-2-10 3.254-6-5-4-3-2-10123*45*(第]0题)所以一5.5<-2<-1<0<3.25<4,11.分析:线段的长端点为整点端点不为整点1cm盖住2个整点盖住1个整点2cm盖住3个整点盖住2个整点,・・,・・,・・n cm盖住(n+1)个整点盖住n个整点解:⑴当长度为2016cm的线段AB的两端点A与B均为整点时,线段AB盖住的整点有2016+1=2017(个).(2)若A点不是整点,则B点也不是整点,即当长度为2016cm的线段AB的两端点A 与B均不为整点时,线段AB盖住的整点有2016个.综上所述,线段AB盖住的整点有2017个或2016个.专训1巧用运算的特殊规律进行有理数计算名师点金:进行有理数的运算时,我们可以根据题目的特征,采用相应的运算技巧,这样不但能化繁为简,而且会妙趣横生,新颖别致.*5;:归类一将同类数(如正负数、整数、分数)归类计算1.计算:(一100)+70+(—23)+50+(—6).23122.计算:一厂§+5一汶+4.:戒捋Z凑整——将和为整数的数结合计算3•计算:2^+(—2%)+5|+(—《)+2|+"3奇)15*:对消将相加得零的数结合计算4.计算:350+(—26)+700+26+(—1050). 5殳:变序一运用运算律改变运算顺序5.计算:2_5J__7X(-24).5S;换位一将被除数与除数颠倒位置6.计算:1,121)我丢捋丘分解—将一个数拆分成两个或几个数之和的形式,或分解为它的因数相乘的形式7.计算:一2才+5§—4§+3§8.计算:1.1.1,1,1,1,1.1 2+6+12+20+30+42+56+72-答案1.解:原式=[(—100)+(—23)+(—6)]+(70+50)=-129+120=-9.2.解:原式=(一:—:一|'一旦+(5+4)=—2+9=7.3.解:原式=[2§+(—1$]+[(—2习+(—3习]+(5|+2§)=1+(—6)+8=3.4.解:原式=[350+700+(—1050)]+[(—26)+26]=0.一25175.解:原式=^X(—24)—gX(—24)+正X(—24)—§X(—24)=—16+20—2+21=23.6.解:因为(\,121、=lj+s亏一刃X(-30)=—10+(—5)+12+15=12,7.解:原式=(一2+5—4+3)+(—=2+=2+志=212-18・解:^^=1X2+2X3+3X41 8X9,1,11,11,,111_2+2-3+3_4+"-+8_91-989'专训2有理数中六种易错类型'、矣.鬓^对有理数有关概念理解不清造成错误1.下列说法正确的是()A.最小的正整数是0B.—a是负数C.符号不同的两个数互为相反数£).—a的相反数是a2.已知|a|=7,则a W.遴塑.2:误认为|a|=a,忽略对字母a分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是()A.负数B.负数或零C.正数或零£>.正数4.巳知a=8,|a|=|b|,则b的值等于()A.8B.-8GO D.±8[轰壑普:对括号使用不当导致错误5.计算:一7—5.6.计算:2-(-§+?-£)•〔美忽略或不清楚运算顺序947.计算:—81个*X"(—16).(-5) 8.计算:(-5)-(-5)X~~~-X1010i,.鎏5;乘法运算中积的符号的确定与加法运算中和的符号的确定相混淆9.计算:(-2^)x(—10.计算:_36乂仕_¥_1).孩如除法没有分配律11.计算:24』|—孑一3【导学号:"972016】答案1.D2+7 3.C4.D点拨:因为|a|=|b|=8,所以b=±8.5.解:原式=—7+(—5)=—12.111Q6.解:原式=2+厅一孑+万=2药.7.解:原式=一81X言X音X(—*)=l.点拨:本题易出现“原式=—81小(一16)=盖'的错误.8.解:原式=(一5)—(―5)X法X10X(—5)=(-5)-25=一30.9.解:原式=(-3)x(-孕)171~20'点拨:解本题时常常会出现乘法运算中积的符号的确定与加法运算中和的符号的确定相混淆的错误.如:(―2»X(—3§)=—(:乂号)=—坍.7510.解:原式=—36X正一(一36)Xg—(―36)X1=-21+30+36=45.11.解:原式=24;24令=576.点拨:解本题时往往会出现将乘法分配律运用到除法运算中,从而出现“原式=24马一24土2^=72-192-144=-264”这样的错误.专训1有理数混合运算的四种解题思路名师点金:对于有理数的混合运算,根据题目特征,理清解题思路,是正确解题的关键,有理数混合运算中常见的解题思路有:弄清运算顺序,再计算;先转化,再计算;确定运算符号,再计算;找准方法,再计算.厩路1弄清运算顺序,再计算1.计算:_^x5 8'53'2.计算:—23—12:(-2+12-3).:最蹬Z 先转化,再计算3.计算:274.计算:—4X (—1参( — 1.4).:惑悠3;确定运算符号,再计算5 .计算:〔2 017—1 —2_r 3-2X (—6).6.计算:一32—(—2—5)2———X(—2)4,透殴¥:找准方法,再计算7.计算:(一§+*一习X(-24).8.计算:1—2—3+4+5—6—7+8+…+97—98—99+100.【导学号:11972020】答案3 5 5 251. 解:原式=一灵X r X r =一元.o J □ Z42. 解:原式=—8 —124-2= —14.1- 7-2- 9-4-7+- 4-9 +- 2-7原 刀牛 角 3.4板4- 7 2-72-9 +- 1-7-_23-63*4. 解:原式=_4X(—*)X(—沪一5.5. 解:原式=—1一gX(—6)=0.6. 解:原式=一9一49—4=—62.7. 解:原式=(一|)X(—24)+%X(—24)+(一£)X(—24)= 18-20+14= 12.8. 解:原式= (1—2—3+4)+(5—6—7+8)----(97—98—99+100) = 0.专训2有理数的比较大小的八种方法名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.诲1利用作差法比较大小17521.比较抬啧的大小.打/淑鼻利用作商法比较大小17342.比较一2016和—4071的大小•遂痿3利用找中间量法比较大小,007.1009,,,.3.比较床与而的大小.【遂.淑生:利用倒数法比较大小4.比较日,和土岩的大小.佥虻:利用变形法比较大小~y201414201515,.,.5.比较一2015,―任,-2016'—16的大小•,一[[/、64312,A I.6.比较一赤,—育,—yy,一石的大小.遂知:利用数轴法比较大小7.已知a>0,b<0,且|b|<a,试比较a,—a,b,—b的大小.【导学号:11972021】[拿淑芬利用特殊值法比较大小8.已知a,b是有理数,且a,b异号,则|a+b|,|a—b|,|a|+|b|的大小关系为遂碌&利用分类讨论法比较大小9.比较a与飘勺大小.答案1.解:因为普一导=普一H=尚>0,所以!1>芫・点拨:当比较的两个数的大小非常接近,无法直接比较大小时,作差比较是常采用的方 法.C 切 E 、J . 1734 17、,4 071 1 357、, 『 1734 17 ,2-解:因为 2 016^4 071-2 016 X 34 -1 344>1,所以 2 016>4 07T 所以 2016<344 071'点拨:作商比较法是比较两个数大小的常用方法,当比较的两个正分数作商易约分时, 作商比较往往能起到事半功倍的效果;当这两个数是负数时,可先分别求出它们的绝对值, 再作商比较它们绝对值的大小,最后根据绝对值大的反而小下结论.3. 解:因为芸普<§,滞>§,所以器滞.点拨:对于类似的两数的大小比 较,我们可以引入一个中间量,分别比较它们与中间量的大小,从而得出问题的答案.4. 解:若%的倒数是lOy%, 土号■的倒数是lO^.因为1高>i 总,所以吾1<浩¥点拨:利用创邈迭比较两个正数的大小时,需先求出其倒数,再根据倒数大的反而小, 从而确定这两个数的大小.5. 解:每个分数都加1,分别得云东,%,2016' 土,因为击<赤4<%'所以—辿v —辿< _15 _14所以 2 016 2015 16 15-点拨:本题直接比较很困难,但通过把这些数适当变形,再进行比较就简单多了.•"中* 6 12 4 12 3 12 12 一 12 一 12 一 12 而 e 6-解:因为—23=-46' —17=一氟,—TT=一苞’一荫〈一话〈一行〈―豆,所以计算量太大,可以把分子变为相同的,再进行比较.一b 在数轴上表示出来,如图所示,根据数轴可得一a<b<-b ~b ~~0 -b ~~a * 第 7 题)点拨:本题运用了爨级性比较有理数的大小,在数轴上找出这几个数对应的点的大致位 置,即可作出判断.8. |a+b|<|a-b| = |a| + |b|3 右 6 12 ±一TT<一有<一节<一讦点拨:此题如果通分,7.解:把 a, —a, b,<a.点拨:已知a,b异号,不妨取a=2,b=—1或a=—1,b=2.当a=2,b=—1时,|a +b|=|2+(—1)|=1,|a—b|=|2—(—1)|=3,|a|+|b|=|2|+|一l|=3;当a=~l,b=2时,|a +b|=|—1+2|=1,|a—b|=|—1—2|=3,|a|+|b|=|一1|+|2|=3.所以|a+b|<|a—b|=|a|+|b|.方法总结:本题运用及好迭解题,取特殊值时要注意所取的值既要符合题目条件,又要考虑可能出现的多种情况.以本题为例,可以分为a正、b负和a负、b正两种情况.9.解:分三种情况讨论:①当a>0时,a>p②当a=0时,a=|;a a③当a<0时,|a|>3-贝'J a<3-专训3数轴、相反数、绝对值的综合应用名师点金:数轴是“数”与“形”结合的工具,有了数轴可以由点读数,也可以由数定点,还可以从几何意义上去理解相反数和绝对值;同时利用数轴可以求相反数,化简绝对值等.总之,这三者之间是相互依存,紧密联系的.盏成I点、数对应问题题型1数轴上的整数点的问题1.某同学在做数学作业时,不小心将墨水洒在所画的数轴上,如图,被墨水污染部分的整数点有个.-12.2^7.309.:9?^6.2(第]题)2.在数轴上任取一条长为2016?个单位长度的线段,则此线段在数轴上最多能盖住的整数点的个数为()A.2017B.2016C.2015D.2014题型2数轴上的点表示的数的确定3.已知数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过32个单位长度.(1)求A,B两点分别表示的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C表示的数./冬取.求值问题题型1利用数轴求值4.如图,巳知数轴上的点A和点B分别表示互为相反数的两个数a,b,且a<b,A,B 两点间的距离为*,求a,b的值.A Ba0b(第4题)题型2绝对值非负性的应用5.已矢口|15—a|+|b—12|=0,求2a_b+7的值.6.当a为何值时,|1—a|+2有最小值?并求这个最小值.7.当a为何值时,2—14—a|有最大值?并求这个最大值.[应星3:化简问题8.三个有理数a,b,c在数轴上的对应点的位置如图所示,其中数a,b互为相反数.试求解以下问题:a c b(第8题)(1)判断a,b,c的正负性;(2)化简|a—b|+2a+|b|..•成••祖••实际应用问题9.一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,—3,+12,—11,—13,+3,—12, -18,请问小王将最后一位乘客送到目的地时,一共行驶了多少千米?【导学号:11972022]答案1.12点拨:被墨水污染部分对应的整数有一12,—11,—10,~9,-8,10,11, 12,13,14,15,16,共12个.2.A3.解:(1)A点表示的数为一8,B点表示的数为24.(2)由已知得,当点C在原点左边时,点C到原点的距离为12个单位长度;当点C在原点右边时,点C到原点的距离为6个单位长度.综上所述,点C表示的数为6或一12.4.解:因为a与b互为相反数,所以|a|=|b|=4;:2=2§.又因为a<b,所以a=—2^,b =2I5.解:由|15—a|+|b—12|=0,得15—a=0,b—12=0,所以a=15,b=12,所以2a一b+7=2X15—12+7=25.6.解:当a=l时,|1—a|+2有最小值,这个最小值为2.7.解:当a=4时,2—14—a|有最大值,这个最大值为2.8.解:(l)a<0,b>0,c<0.(2)因为a,b互为相反数,所以b=—a.又因为a<0,b>0,所以|a—b|+2a+|b|=|2a|+2a+|b|=—2a+2a+b=b.点拨:本题中虽没有标出数轴上原点的位置,但由已知条件a,b互为相反数,即可确定出原点位置在表示数c和数b的两点之间,从而可以确定出a,b,c的正负性.(2)题化简时,既用到了a,b的正负性,同时还利用了a,b互为相反数这一条件.9.解:1+151+1—3|+|+12|+|—11|+|—13|+|+3|+|—12|+|—18|=15+3+12+11+ 13+3+12+18=87(千米).答:一共行驶了87千米.点拨:利用绝对值求距离、路程问题中,当出现用“+”“一”号表示带方向的路程时,求一共行驶的路程时,实际上是求绝对值的和.冀教版数学七年级上册第二章专训1线段或角的计数问题名师点金:1.几何计数问题应用广泛,解决方法是“有序数数法",数数时要做到不重复、不遗漏.2.解决这类问题要用到分类讨论思想及从特殊到一般的思想.3.回顾前面线段、直线的计数公式,比较这些计数公式的区别与联系.羽房鱼魂线段条数的计数问题1.先阅读文字,再解答问题.I I_1______I________-1---------------------—Ai Ai Ai A2Aa A i A2As At①②③Al血A3A a A5二;―i―二一④⑤(第1题)如图①,在一条直线上取两点,可以得到1条线段,如图②,在一条直线上取三点可得到3条线段,其中以Ai为端点的向右的线段有2条,以A2为端点的向右的线段有1条,所以共有2+1=3(条).(1)如图③,在一条直线上取四个点,以Ai为端点的向右的线段有—条,以A2为端点的向右的线段有—条,以A3为端点的向右的线段有条,共有++ =(条);(2)如图④,在一条直线上取五个点,以Ai为端点的向右的线段有条,以A?为端点的向右的线段有条,以A3为端点的向右的线段有条,以A4为端点的向右的线段有条,共有+++=(条);(3)如图⑤,在一条直线上取n个点(nN2),共有条线段;(4)某学校七年级共有6个班进行辩论赛,规定进行单循环赛(每两个班赛一场),那么该校七年级的辩论赛共要进行多少场?研房鱼魂2:平面内直线相交所得交点与平面的计数问题2.为了探究同一平面内的几条直线相交最多能产生多少个交点,能把平面最多分成几部 分,我们从最简单的情形入手,如图所示.1 2(第2题)列表如下:(1)当直线条数为5时,最多有 个交点,可写成和的形式为;把平直线条数最多交点个数把平面最多分成的部分数102214337,・・,・・,・・面最多分成 部分,可写成和的形式为;(2) 当直线条数为10时,最多有 个交点,把平面最多分成 部分;(3) 当直线条数为n 时,最多有多少个交点?把平面最多分成多少部分?【导学号:53482038]•溯痍顶度壬关于角的个数的计数问题3.有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,如图,如果过角的顶点A:(1)在角的内部作一条射线,那么图中一共有几个角?(2)在角的内部作两条射线,那么图中一共有几个角?(3)在角的内部作三条射线,那么图中一共有几个角?(4)在角的内部作n条射线,那么图中一共有几个角?①②③(第3题)答案1.解:(1)3;2;1;3;2;1;6(2)4;3;2;1;4;3;2;1;10n(n—1)⑶(4)七年级有6个班,类似于一条直线上有6个点,每两个班赛一场,类似于两点之间有一条线段,那么七年级的辩论赛共要进行&乂(厂1)=15(场).2.解:(1)10;1+2+3+4;16;1+1+2+3+4+5(2)45;56⑶当直线条数为n时,最多有l+2+3+.“+(n_l)=n(丁)(个)交点;把平面最多分成1+1+2+3——n=n (n+1)2""卜1部分.3.解:(1)如题图①,已知ZBAC,如果在其内部作一条射线,显然这条射线就会和ZBAC 的两条边都组成一个角,这样一共就有1+2=3(个)角.(2)题图①中有1+2=3(个)角,如果再在题图①的角的内部增加一条射线,即为题图②,显然这条射线就会和图中原来的三条射线再组成三个角,即题图②中共有1+2+3=6(个)角.(3)如题图③,在角的内部作三条射线,即在题图②中再增加一条射线,同样这条射线就会和图中原来的四条射线再组成四个角,即题图③中共有1+2+3+4=10(个)角.(4)如果在一个角的内部作n条射线,则图中共有1+2+3+•••+n+(n+l)=(n+1)(n+2)•(个)角.2专训2分类讨论思想在线段和角的计算中的应用名师点金:解答有关点和线的位置关系、线段条数或长度、角的个数或大小等问题时,由于题目中没有给出具体的图形,而根据题意又可能出现多种情况,就应不重不漏地分情况加以讨论,这种思想称为分类讨论思想.需要进行分类讨论的题目,综合性一般较强.汐;费遗度1分类讨论思想在线段的计算中的应用1.已知线段AB=12,在AB上有C,D,M,N四点,且AC:CD:DB=1:2:3,AM =§AC,DN=|d B,求线段MN的长.2.如图,点O为原点,点A对应的数为1,点B对应的数为一3.(1)若点P在数轴上,且PA+PB=6,求点P对应的数;(2)若点M在数轴上,且MA:MB=1:3,求点M对应的数;(3)若点A的速度为5个单位长度/秒,点B的速度为2个单位长度/秒,点O的速度为1个单位长度/秒,A,B,O同时向右运动,几秒后,点。
七年级上数学有理数易错题易错题1:有理数的加减法有理数的加减法是七年级上数学中的一个重要知识点。
但是在学习过程中,很多同学常常会出现一些易错的题目。
下面我们来看一些常见的易错题,并学习如何正确解答。
1. 将-5.2和3.8相加,结果是多少?答案:-5.2 + 3.8 = -1.4解析:在这道题中,我们需要将-5.2和3.8进行相加。
我们可以先将两个数的小数部分相加,得到0.6。
然后将两个数的整数部分相加,得到-9。
将整数部分和小数部分的结果合并,得到-9.6。
2. 将-8.7和7.9相减,结果是多少?答案:-8.7 - 7.9 = -16.6解析:在这道题中,我们需要将-8.7和7.9进行相减。
我们可以先将两个数的小数部分相减,得到-0.8。
然后将两个数的整数部分相减,得到-16。
将整数部分和小数部分的结果合并,得到-16.8。
3. 将-4.3加上-2.7,结果是多少?答案:-4.3 + (-2.7) = -7解析:在这道题中,我们需要将-4.3和-2.7进行相加。
首先,我们将两个数的小数部分相加,得到-0.6。
然后将两个数的整数部分相加,得到-7。
将整数部分和小数部分的结果合并,得到-7.6。
4. 将-6.5减去-3.9,结果是多少?答案:-6.5 - (-3.9) = -2.6解析:在这道题中,我们需要将-6.5和-3.9进行相减。
我们可以先将两个数的小数部分相减,得到-2.6。
然后将两个数的整数部分相减,得到-2。
将整数部分和小数部分的结果合并,得到-2.6。
通过以上题目的解答,我们可以发现,有理数的加减法实际上是将整数部分和小数部分分别进行运算,然后再将结果合并。
在进行运算的过程中,我们需要注意整数部分和小数部分的运算规则,以及正负数的运算法则。
在解答这些题目时,我们可以使用数轴的概念来帮助我们进行思考和计算。
数轴可以将有理数的大小和相对关系进行直观的表示,帮助我们更好地理解和运用有理数的加减法。
易错专题:有理数中的易错题
——易错归纳、逐个击破
◆类型一遗漏“0”及对“0”的认识不够
1下列说法正确的是()
A符号相反的数互为相反数
B当a≠0时,|a|总大于0
一个数的绝对值越大,表示它的点在数轴上越靠右
D一个有理数不是正数就是负数
2绝对值小于25的所有非负整数的积为
◆类型二与运算相关的符号的判断不准确
3在-32,-|-25|,-(-25),-(-3)2,(-3)2016,(-3)3中,负数的个数是()
A1 B2 3 D4
4下列式子中成立的是()
A-|-5|>4 B-3<|-3|
-|-4|=4 D|-55|<5
5-错误!的相反数是
6a是有理数,则下列各式:①|-a|=a;②-(-a)=a;③a≤-a;④a>-a其中正确的是(填序号)
7(-1)2016+(-1)2015=
◆类型三运算法则、运算顺序及符号错误
8化简:|π-4|+|3-π|=
9计算下列各题:
(1)(-31)-(-45)+(+44)-(+13);
(2)-24×错误!;
(3)-14-错误!×[|-2|-(-3)3]-(-4)2
◆类型四多种情况时漏解
10在数轴上到原点距离等于2的点所表示的数是()
A-2 B2
±2 D不能确定
11已知||=3,|y|=2,且>y,则+y的值为()
A5 B-1
-5或-1 D5或1
12若||=|-2|,则=
13在数轴上点A表示的数为-2,若点B离点A的距离为3个单位,则点B表示的数为【易错3】
14若a,b互为相反数,c,d互为倒数,||=3,求式子2(a+b)-(-cd)2016+的
15★已知错误!=1,求错误!+错误!+错误!的值
参考答案与解析
1.B 20 3D 4B
5错误!6②70 81
9.解:(1)原式=45;(2)原式=-4;(3)原式=-22错误!
10.11D 12±213-5或1
14.解:因为a,b互为相反数,c,d互为倒数,||=3,所以a+b=0,cd=1,=±3所以2(a+b)-(-cd)2016+=0-(-1)2016+=-1+当=3时,-1+=-1+3=2;当=-3时,-1+=-1+(-3)=-4
15.解:因为错误!=1,可得a,b,c三个都为正数或a,b,c中只有一个为正数.分两种情况讨论:①当a,b,c三个都为正数时,则有错误!,错误!,错误!三个都为1,可得错误!+错误!+错误!=3;②当a,b,c中只有一个为正数时,则有错误!,错误!,错误!中有一个为1,其余两个都为-1,可得错误!+错误!+错误!=-1综上可得:所求式子的值为3或-1。