七年级上册数学易错题集
- 格式:doc
- 大小:116.00 KB
- 文档页数:9
有理数类型一:正数和负数1.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解答:解:表示互为相反意义的量:足球比赛胜5场与负5场.故选A点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.此题的难点在“增产10吨粮食与减产﹣10吨粮食”在这一点上要理解“﹣”就是减产的意思.变式1:2.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:A、前进与后退,具有相反意义,但没有量.故错误;B、正确;C、升高与降低是具有相反意义的量,气温为﹣3℃只表示某一时刻的温度,故错误;D、盈利与亏损是具有相反意义的量.与支出2万元不具有相反意义,故错误.故选B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.类型二:有理数1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数。
分析:按照有理数的分类判断:有理数.解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.变式:2.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个B.3个C.2个D.1个考点:有理数。
人教版七年级上册数学易错题集及解析有理数类型一:正数和负数1.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解答:解:表示互为相反意义的量:足球比赛胜5场与负5场.故选A点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.此题的难点在“增产10吨粮食与减产﹣10吨粮食”在这一点上要理解“﹣”就是减产的意思.变式1:2.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:A、前进与后退,具有相反意义,但没有量.故错误;B、正确;C、升高与降低是具有相反意义的量,气温为﹣3℃只表示某一时刻的温度,故错误;D、盈利与亏损是具有相反意义的量.与支出2万元不具有相反意义,故错误.故选B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.类型二:有理数1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数。
分析:按照有理数的分类判断:有理数.解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.变式:2.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个B.3个C.2个D.1个考点:有理数。
一、选择题:
1.下列说法正确的是:()
1)异号两数相乘,取绝对值较大的因数的符号
2)同号两数相乘,符号不变
3)两数相乘,如果积为负数,那么这两个因数异号
4)两数相乘,如果积为正数,那么这两个因数都是正数
2.如果ab=0,那么一定有()
1)a=b=0 2)a=0 3)a、b至少有一个为0 4))a、b最多有一个为0 3.如果两个有理数的和为正数,积也是正数,那么这两个数()
1)都是正数2)都是负数3)一正一负4)符号不能确定
4.下列说法错误的是()
1)两个有理数的和为负数时,这两个数都是负数
2)两个有负数相加,和一定是负数
3)两个有理数的和,可能等于其中一个加数
4)两个有理数的和,可能等于零。
初一数学上册易错题整理完整版有理数易错题练习(一)一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑸ 绝对值小于4.5而大于3的整数是3、4. ⑺ 如果-x =- (-11),那么x = -11.⑻ 如果四个有理数相乘,积为负数,那么负因数个数是1个.⑼ 若0,a =则0ab=.⑽绝对值等于本身的数是1. 二.填空题⑴若1a -=a -1,则a 的取值范围是: .⑵式子3-5│x │的最 值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________.⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移 个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为 ;如果│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻如果a <b <0,那么1a 1b. ⑼在数轴上表示数-113的点和表示152-的点之间的距离为: .⑽11a b⋅=-,则a 、b 的关系是________.⑾若a b <0,bc<0,则ac 0. ⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 . 三.解答题⑴已知a 、b 互为倒数,- c 与2d互为相反数,且│x │=4,求2ab -2c +d +3x 的值.⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9)+(+2)- (-5); ②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分):⑺比较4a和-4a的大小①已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;②已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;③已知3.412=11.63,那么(34.1)2=116300;④近似数2.40×104精确到百分位,它的有效数字是2,4;⑤已知5.4953=165.9,x3=0.0001659,则x=0.5495.⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x、y是有理数,且|x|-x=0,|y|+y=0,|y|>|x|,化简|x|-|y|-|x+y|.⑽已知abcd≠0,试说明ac、-ad、bc、bd中至少有一个取正值,并且至少有一个取负值.⑾已知a<0,b<0,c>0,判断(a+b)(c-b)和(a+b)(b-c)的大小.⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵12133344⎛⎫---+----⎪⎝⎭⑶77(35)9-÷+⑷523120001999400016342⎛⎫⎛⎫-+-++-⎪ ⎪⎝⎭⎝⎭⑸221.430.57()33⨯-⨯-⑹6(5)(6)()5-÷-÷-⑺91118×18 ⑻-15×12÷6×5 ⑼24221(10.5)2(3)3⎡⎤---⨯÷---⎣⎦⑽-24-(-2)4⑾33(32)32-⨯+⨯有理数易错题练习(二)一.多种情况的问题(考虑问题要全面) (1)已知:,3=x 则x=_______;,5=-x 则x=_______;(2)绝对值不大于4的负整数是________; (3)绝对值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______; (7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择 (1)若a 是负数,则a________-a ;a --是一个________数;(2)已知,x x -=则x 满足________;若,x x =则x 满足________;若x=-x, x 满足________;若=-<2,2a a 化简____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示: 则( 0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 (4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。
有理数类型一:正数和负数1.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【发现易错点】【反思及感悟】变式:2.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元【发现易错点】【反思及感悟】类型二:有理数1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.是小数,也是分数【发现易错点】【反思及感悟】变式:2.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个B.3个C.2个D.1个3.下列说法正确的是()A.零是最小的整数B.有理数中存在最大的数C.整数包括正整数和负整数D.0是最小的非负数4.把下面的有理数填在相应的大括号里:(★友情提示:将各数用逗号分开)15,,0,﹣30,,﹣128,,+20,﹣正数集合﹛____ _____ …﹜负数集合﹛_____ ____ …﹜整数集合﹛_____ ____ …﹜分数集合﹛_____ ____ …﹜【发现易错点】数轴类型一:数轴选择题1.(2009•绍兴)将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“15cm”分别对应数轴上的﹣和x,则()A.9<x<10 B.10<x<11C.11<x<12 D.12<x<132.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2D.1或﹣33.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB 盖住的整点的个数是()A.2002或2003 B.2003或2004C.2004或2005 D.2005或20064.数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是()A.5 B.±5C.7 D.7或﹣35.如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C表示的数是()A.﹣B.﹣C.0 D.6.点M在数轴上距原点4个单位长度,若将M向右移动2个单位长度至N点,点N表示的数是()A.6 B.﹣2 C.﹣6 D.6或﹣27.如图,A、B、C、D、E为某未标出原点的数轴上的五个点,且AB=BC=CD=DE,则点D所表示的数是()A.10 B.9 C.6 D.0填空题8.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是_________ .解答题9.已知在纸面上有一数轴(如图),折叠纸面.(1)若折叠后,数1表示的点与数﹣1表示的点重合,则此时数﹣2表示的点与数_________ 表示的点重合;(2)若折叠后,数3表示的点与数﹣1表示的点重合,则此时数5表示的点与数_________ 表示的点重合;若这样折叠后,数轴上有A、B两点也重合,且A、B两点之间的距离为9(A在B的左侧),则A点表示的数为,B点表示的数为.10.如图,数轴上A、B两点,表示的数分别为﹣1和,点B关于点A的对称点为C,点C 所表示的实数是_________ .11.把﹣,,3,﹣,﹣π,表示在数轴上,并把它们用“<”连接起来,得到:_________ .12.如图,数轴上的点A、O、B、C、D分别表示﹣3,0,,5,﹣6,回答下列问题.(1)O、B两点间的距离是_________ .(2)A、D两点间的距离是_________ .(3)C、B两点间的距离是_________ .(4)请观察思考,若点A表示数m,且m<0,点B表示数n,且n>0,那么用含m,n的代数式表示A、B两点间的距离是___.绝对值类型一:数轴1.若|a|=3,则a的值是_________ .2.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或23.若=﹣1,则a为()A.a>0 B.a<0 C.0<a<1 D.﹣1<a<0【发现易错点】【反思及感悟】变式:4.﹣|﹣2|的绝对值是_________ .5.已知a是有理数,且|a|=﹣a,则有理数a在数轴上的对应点在()A.原点的左边B.原点的右边C.原点或原点的左边D.原点或原点的右边6.若ab>0,则++的值为()A.3 B.﹣1 C.±1或±3D.3或﹣1【发现易错点】【反思及感悟】有理数的大小比较类型一:有理数的大小比较1、如图,正确的判断是()A.a<-2 B.a>-1 C.a>b D.b>22、比较1,-,-4的相反数的大小,并按从小到大的顺序用“<”边接起来,为_______【发现易错点】【反思及感悟】第二章有理数的运算有理数的加法类型一:有理数的加法1.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1 B.0 C.1 D.2【发现易错点】【反思及感悟】类型二:有理数的加法与绝对值1.已知|a|=3,|b|=5,且ab<0,那么a+b的值等于()A.8 B.﹣2 C.8或﹣8 D.2或﹣2变式:2.已知a,b,c的位置如图,化简:|a﹣b|+|b+c|+|c﹣a|= _________ .【发现易错点】【反思及感悟】有理数的减法类型一:正数和负数,有理数的加法与减法 选择题1.某汽车厂上半年一月份生产汽车200辆,由于另有任务,每月上班人数不一定相等,上半年各月与一月份的生产量比较如下表(增加为正,减少为负).则上半年每月的平均产量为( ).205辆 .204辆 .195辆.194辆 2.某商店出售三种不同品牌的大米,米袋上分别标有质量如下表: 现从中任意拿出两袋不同品牌的大米,这两袋大米的质量最多相填空题3.﹣9,6,﹣3三个数的和比它们绝对值的和小 ______ . 4.已知a 、b 互为相反数,且|a ﹣b |=6,则b ﹣1= ______ . 解答题5.一家饭店,地面上18层,地下1层,地面上1楼为接待处,顶楼为公共设施处,其余16层为客房;地面下1楼为停车场. (1)客房7楼与停车场相差 _________ 层楼;(2)某会议接待员把汽车停在停车场,进入该层电梯,往上14层,又下5层,再下3层,最后上6层,那么他最后停在 层; (3)某日,电梯检修,一服务生在停车场停好汽车后,只能走楼梯,他先去客房,依次到了8楼、接待处、4楼,又回接待处,最后回到停车场,他共走了 _________ 层楼梯.6.某人用400元购买了8套儿童服装,准备以一定价格出售.他以每套55元的价格为标准,将超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2(单位:元)他卖完这八套儿童服装后是______ ,盈利或亏损了元.有理数的乘法类型一:有理数的乘法1.绝对值不大于4的整数的积是()A.16 B.0 C.576 D.﹣1【发现易错点】【反思及感悟】变式:2.五个有理数的积为负数,则五个数中负数的个数是()A.1 B.3 C.5 D.1或3或53.比﹣3大,但不大于2的所有整数的和为_________ ,积为_________ .4.已知四个数:2,﹣3,﹣4,5,任取其中两个数相乘,所得积的最大值是.【发现易错点】【反思及感悟】有理数的除法类型一:倒数1.负实数a的倒数是()A.﹣a B.C.﹣D.a【发现易错点】【反思及感悟】变式:2.﹣的相反数是_________ ,倒数是_________ ,绝对值是_________ .3.倒数是它本身的数是_________ ,相反数是它本身的数是_________ .【发现易错点】【反思及感悟】类型二:有理数的除法1.下列等式中不成立的是()A.﹣B.=C.÷÷D.【发现易错点】【反思及感悟】变式:2.甲小时做16个零件,乙小时做18个零件,那么()A.甲的工作效率高B.乙的工作效率高C.两人工作效率一样高D.无法比较【发现易错点】【反思及感悟】有理数的乘方类型一:有理数的乘方选择题1.下列说法错误的是()A.两个互为相反数的和是0B.两个互为相反数的绝对值相等C.两个互为相反数的商是﹣1D.两个互为相反数的平方相等2.计算(﹣1)2005的结果是()A.﹣1 B.1 C.﹣2005 D.2005 3.计算(﹣2)3+()﹣3的结果是()A.0 B.2 C.16 D.﹣16 4.下列说法中正确的是()A.平方是它本身的数是正数B.绝对值是它本身的数是零5.若a3=a,则a这样的有理数有()个.A.0个B.1个C.2个D.3个6.若(﹣ab)103>0,则下列各式正确的是()A.<0 B.>0 C.a>0,b<0 D.a<0,b>07.如果n是正整数,那么[1﹣(﹣1)n](n2﹣1)的值()A.一定是零B.一定是偶数C.是整数但不一定是偶数D.不一定是整数8.﹣22,(﹣1)2,(﹣1)3的大小顺序是()A.﹣22<(﹣1)2<(﹣1)3B.﹣22<(﹣1)3<(﹣1)2C.(﹣1)3<﹣22<(﹣1)2D.(﹣1)2<(﹣1)3<﹣229.最大的负整数的2005次方与绝对值最小的数的2006次方的和是()A.﹣1 B.0 C.1 D.210.若a是有理数,则下列各式一定成立的有()(1)(﹣a)2=a2;(2)(﹣a)2=﹣a2;(3)(﹣a)3=a3;(4)|﹣a3|=a3.A.1个B.2个C.3个D.4个11.a为有理数,下列说法中,正确的是()A.(a+)2是正数B.a2+是正数C.﹣(a﹣)2是负数D.﹣a2+的值不小于12.下列计算结果为正数的是()A.﹣76×5B.(﹣7)6×5C.1﹣76×5D.(1﹣76)×5 13.下列说法正确的是()A.倒数等于它本身的数只有1B.平方等于它本身的数只有1C.立方等于它本身的数只有1D.正数的绝对值是它本身14.下列说法正确的是()A.零除以任何数都得0B.绝对值相等的两个数相等C.几个有理数相乘,积的符号由负因数的个数决定D.两个数互为倒数,则它们的相同次幂仍互为倒数15.(﹣2)100比(﹣2)99大()A.2 B.﹣2 C.299D.3×29916.1118×1311×1410的积的末位数字是()A.8 B.6 C.4 D.217.(﹣5)2的结果是()A.﹣10 B.10 C.﹣25 D.2518.下列各数中正确的是()A.平方得64的数是8 B.立方得﹣64的数是﹣4C.43=12 D.﹣(﹣2)2=419.下列结论中,错误的是()Array A.平方得1的有理数有两个,它们互为相反数B.没有平方得﹣1的有理数C.没有立方得﹣1的有理数D.立方得1的有理数只有一个20.已知(x+3)2+|3x+y+m|=0中,y为负数,则m的取值范围是()A.m>9 B.m<9 C.m>﹣9 D.m<﹣921.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为纳米的碳纳米管,1纳米=米,则纳米用科学记数法表示为()A.×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米22.﹣×105表示的原数为()A.﹣204000 B.﹣C.﹣D.﹣20400填空题23.(2008•十堰)观察两行数根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果)_________ .24.我们平常的数都是十进制数,如2639=2×103+6×102+3×10+9,表示十进制的数要用10个数码(也叫数字):0,1,2,3,4,5,6,7,8,9.在电子数字计算机中用二进制,只要两个数码0和1.如二进制数101=1×22+0×21+1=5,故二进制的101等于十进制的数5;10111=1×24+0×23+1×22+1×2+1=23,故二进制的10111等于十进制的数23,那么二进制的110111等于十进制的数_________ .25.若n为自然数,那么(﹣1)2n+(﹣1)2n+1= _________ .26.平方等于的数是_________ .27.×(﹣8)2008= _________ .28.已知x2=4,则x= _________ .有理数的混合运算类型一:有理数的混合运算1.绝对值小于3的所有整数的和与积分别是()A.0,﹣2 B.0,0 C.3,2 D.0,22.计算48÷(+)之值为何()A.75 B.160 C.D.903.下列式子中,不能成立的是()A.﹣(﹣2)=2 B.﹣|﹣2|=﹣2 C.23=6 D.(﹣2)2=44.按图中的程序运算:当输入的数据为4时,则输出的数据是_________ .5.计算:﹣5×(﹣2)3+(﹣39)= _________ .6.计算:(﹣3)2﹣1= _________ .= _________ .7.计算:(1)= _________ ;(2)= _________ .准确数和近似数类型一:近似数和有效数字1.用四舍五入法得到的近似数是万,关于这个数下列说法正确的是()A.它精确到万分位B.它精确到C.它精确到万位D.它精确到十位2.已知a=是由四舍五入得到的近似数,则a的可能取值范围是()A.≤a≤B.≤a<C.<a≤D.<a<【发现易错点】【反思及感悟】变式:3.据统计,海南省2009年财政总收入达到1580亿元,近似数1580亿精确到()A.个位B.十位C.千位D.亿位4.若测得某本书的厚度,若这本书的实际厚度记作acm,则a应满足()A.a= B.≤a<C.<a≤D.≤a<【发现易错点】【反思及感悟】类型二:科学记数法和有效数字1.760 340(精确到千位)≈_________ ,(保留两个有效数字)≈_________ .【发现易错点】【反思及感悟】变式:2.用四舍五入得到的近似数×106有______个有效数字,精确到______位.3.太阳的半径是×104千米,它是精确到_____位,有效数字有_____ 个.4.用科学记数法表示9 349 000(保留2个有效数字)为_________ .【发现易错点】【反思及感悟】第三章实数平方根类型一:平方根1.下列判断中,错误的是()A.﹣1的平方根是±1B.﹣1的倒数是﹣1C.﹣1的绝对值是1 D.﹣1的平方的相反数是﹣1【发现易错点】【反思及感悟】变式:2.下列说法正确的是()A.是的一个平方根B.正数有两个平方根,且这两个平方根之和等于0 C.72的平方根是7 D.负数有一个平方根3.如果一个数的平方根等于这个数本身,那么这个数是()A.1 B.﹣1 C.0 D.±1【发现易错点】【反思及感悟】类型二:算术平方根1.的算术平方根是()A.±81B.±9C.9 D.3【发现易错点】【反思及感悟】变式:2.的平方根是()A.3 B.±3C.D.±【发现易错点】【反思及感悟】实数类型一:无理数1.下列说法正确的是()A.带根号的数是无理数B.无理数就是开方开不尽而产生的数C.无理数是无限小数D.无限小数是无理数2.在实数﹣,,,,,中,无理数的个数为()A.1 B.2 C.3 D.4【发现易错点】【反思及感悟】变式:3.在中无理数有()个.A.3个B.4个C.5个D.64.在中,无理数有_________ 个.【发现易错点】【反思及感悟】立方根类型一:立方根1.如果一个实数的平方根与它的立方根相等,则这个数是()A.0 B.正实数C.0和1 D.12.若一个数的平方根是±8,则这个数的立方根是()A.±2B.±4C.2 D.43.﹣64的立方根是_________ ,的平方根是_________ .【发现易错点】【反思及感悟】变式:1.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零2.若x2=(﹣3)2,y3﹣27=0,则x+y的值是()A.0 B.6 C.0或6 D.0或﹣63.= _________ ,= _________ ,的平方根是_________ .4.若16的平方根是m,﹣27的立方根是n,那么m+n的值为_________ .【发现易错点】【反思及感悟】实数的运算类型一:实数的混合运算1.两个无理数的和,差,积,商一定是()A.无理数B.有理数C.0 D.实数2.计算:(1)﹣13+10﹣7= _________ ;(2)13+4÷(﹣)= _________ ;(3)﹣32﹣(﹣2)2×=_________ ;(4)(+﹣)×(﹣60)= _________ ;(5)4×(﹣2)+3≈_________ (先化简,结果保留3个有效数字).【发现易错点】【反思及感悟】变式:3.已知:a和b都是无理数,且a≠b,下面提供的6个数a+b,a﹣b,ab,,ab+a﹣b,ab+a+b 可能成为有理数的个数有_________ 个.4.计算:(1)= _________(2)3﹣2×(﹣5)2= _________(3)﹣≈_________ (精确到);(4)= _________ ;(5)= _________ ;(6)= _________ .【发现易错点】【反思及感悟】第四章代数式代数式类型一:代数式的规范1.下列代数式书写正确的是()A.a48 B.x÷y C.a(x+y)D.abc【发现易错点】【反思及感悟】类型二:列代数式1.a是一个三位数,b是一个一位数,把a放在b的右边组成一个四位数,这个四位数是()A.ba B.100b+a C.1000b+a D.10b+a2.为参加“爱我校园”摄影赛,小明同学将参与植树活动的照片放大为长acm,宽acm的形状,又精心在四周加上了宽2cm的木框,则这幅摄影作品占的面积是()cm2.A.a2﹣a+4 B.a2﹣7a+16 C.a2+a+4 D.a2+7a+163.李先生要用按揭贷款的方式购买一套商品房,由于银行提高了贷款利率,他想尽量减少贷款额,就将自己的全部积蓄a元交付了所需购房款的60%,其余部分向银行贷款,则李先生应向银行贷款_________ 元.【发现易错点】【反思及感悟】变式:4.有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()A.60n厘米B.50n厘米C.(50n+10)厘米D.(60n﹣10)厘米5.今年某种药品的单价比去年便宜了10%,如果今年的单价是a元,则去年的单价是()A.(1+10%)a元B.(1﹣10%)a元C.元D.元6.若一个二位数为x;一个一位数字为y;把一位数字为y放到二位数为x的前面,组成一个三位数,则这个三位数可表示为_________ .【发现易错点】【反思及感悟】代数式的值类型一:代数式求值1.如果a是最小的正整数,b是绝对值最小的数,c与a2互为相反数,那么(a+b)2009﹣c2009= _________ .2.(1)当x=2,y=﹣1时,﹣9y+6 x2+3(y)= _________ ;(2)已知A=3b2﹣2a2,B=ab﹣2b2﹣a2.当a=2,b=﹣时,A﹣2B= _________ ;(3)已知3b2=2a﹣7,代数式9b2﹣6a+4= _________ .【发现易错点】【反思及感悟】变式:3.当x=6,y=﹣1时,代数式的值是()A.﹣5 B.﹣2 C.D.4.某长方形广场的长为a米,宽为b米,中间有一个圆形花坛,半径为c米.(1)用整式表示图中阴影部分的面积为_________ m2;(2)若长方形的长a为100米,b为50米,圆形半径c为10米,则阴影部分的面积为_________ m2.(π取)【发现易错点】【反思及感悟】类型二:新定义运算1.如果我们用“♀”、“♂”来定义新运算:对于任意实数a,b,都有a♀b=a,a♂b=b,例如3♀2=3,3♂2=2.则(瑞♀安)♀(中♂学)= _________ .【发现易错点】【反思及感悟】变式:2.设a*b=2a﹣3b﹣1,那么①2*(﹣3)= _________ ;②a*(﹣3)*(﹣4)= _________ .【发现易错点】【反思及感悟】整式类型一:整式1.已知代数式,其中整式有()A.5个B.4个C.3个D.2个【发现易错点】【反思及感悟】变式:2.在代数式x﹣y,3a,a2﹣y+,,xyz,,中有()A.5个整式B.4个单项式,3个多项式C.6个整式,4个单项式D.6个整式,单项式与多项式个数相同【发现易错点】【反思及感悟】类型二:单项式1.下列各式:,,﹣25,中单项式的个数有()A.4个B.3个C.2个D.1个2.单项式﹣26πab的次数是_________ ,系数是_________ .【发现易错点】【反思及感悟】变式:3.单项式﹣34a2b5的系数是_________ ,次数是_________ ;单项式﹣的系数是_________ ,次数是_________ .4.是_________ 次单项式.5.﹣的系数是_________ ,次数是_________ .【发现易错点】【反思及感悟】类型三:多项式1.多项式﹣2a2b+3x2﹣π5的项数和次数分别为()A.3,2 B.3,5 C.3,3 D.2,32.m,n都是正整数,多项式x m+y n+3m+n的次数是()A.2m+2n B.m或n C.m+n D.m,n中的较大数【发现易错点】【反思及感悟】变式:3.多项式2x2﹣3×105xy2+y的次数是()A.1次B.2次C.3次D.8次4.一个五次多项式,它的任何一项的次数()A.都小于5 B.都等于5 C.都不大于5 D.都不小于55.若m,n为自然数,则多项式x m﹣y n﹣4m+n的次数应当是()A.m B.n C.m+n D.m,n中较大的数6.若A和B都是4次多项式,则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式7.若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式【发现易错点】【反思及感悟】合并同类项类型一:同类项1.下列各式中是同类项的是()A.3x2y2和﹣3xy2B.和C.5xyz和8yz D.ab2和2.已知﹣25a2m b和7b3﹣n a4是同类项,则m+n的值是_________ .【发现易错点】【反思及感悟】变式:3.下列各组中的两项是同类项的是()A.﹣m2和3m B.﹣m2n和﹣mn2C.8xy2和D.和4.已知9x4和3n x n是同类项,则n的值是()A.2 B.4 C.2或4 D.无法确定5.3x n y4与﹣x3y m是同类项,则2m﹣n= _________ .6.若﹣x2y4n与﹣x2m y16是同类项,则m+n= _________ .【发现易错点】【反思及感悟】类型一:整式的加减选择题1.x、y、z在数轴上的位置如图所示,则化简|x﹣y|+|z﹣y|的结果是()A.x﹣z B.z﹣x C.x+z﹣2y D.以上都不对2.已知﹣1<y<3,化简|y+1|+|y﹣3|=()A.4 B.﹣4 C.2y﹣2 D.﹣23.已知x>0,xy<0,则|x﹣y+4|﹣|y﹣x﹣6|的值是()A.﹣2 B.2 C.﹣x+y﹣10 D.不能确定4.A、B都是4次多项式,则A+B一定是()A.8次多项式B.次数不低于4的多项式C.4次多项式D.次数不高于4的多项式或单项式5.若A和B都是五次多项式,则A+B一定是()A.十次多项式B.五次多项式C.数次不高于5的整式D.次数不低于5次的多项式6.M,N分别代表四次多项式,则M+N是()A.八次多项式B.四次多项式C.次数不低于四次的整式D.次数不高于四次的整式7.多项式a2﹣a+5减去3a2﹣4,结果是()A.﹣2a2﹣a+9 B.﹣2a2﹣a+1C.2a2﹣a+9 D.﹣2a2+a+98.两个三次多项式相加,结果一定是()A.三次多项式B.六次多项式C.零次多项式D.不超过三次的整式.9.与x2﹣y2相差x2+y2的代数式为()A.﹣2y2B.2x2C.2y2或﹣2y2D.以上都错10.若m是一个六次多项式,n也是一个六次多项式,则m﹣n一定是()A.十二次多项式B.六次多项式C.次数不高于六次的整式D.次数不低于六次的整式11.下列计算正确的是()A.B.﹣18=8C.(﹣1)÷(﹣1)×(﹣1)=﹣3 D.n﹣(n﹣1)=1 12.下列各式计算正确的是()A.5x+x=5x2B.3ab2﹣8b2a=﹣5ab2C.5m2n﹣3mn2=2mn D.﹣2a+7b=5ab13.两个三次多项式的和的次数是()A.六次B.三次C.不低于三次D.不高于三次14.如果M是一个3次多项式,N是3次多项式,则M+N一定是()A.6次多项式B.次数不高于3次整式15.三个连续整数的积是0,则这三个整数的和是()A.﹣3 B.0 C.3 D.﹣3或0或316.已知x+y+2(﹣x﹣y+1)=3(1﹣y﹣x)﹣4(y+x﹣1),则x+y等于()A.﹣B.C.﹣D.17.已知a<b,那么a﹣b和它的相反数的差的绝对值是()A.b﹣a B.2b﹣2a C.﹣2a D.2b填空题18.当1≤m<3时,化简|m﹣1|﹣|m﹣3|= _________ .19.(﹣4)+(﹣3)﹣(﹣2)﹣(+1)省略括号的形式是_________ .20.计算m+n﹣(m﹣n)的结果为_________ .21.有一道题目是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3,则原来的多项式是_________ .22.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m= _________23.若a<0,则|1﹣a|+|2a﹣1|+|a﹣3|= _________ .解答题24.化简(2m2+2m﹣1)﹣(5﹣m2+2m)25.先化简再求值.①②若a﹣b=5,ab=﹣5,求(2a+3b﹣2ab)﹣(a+4b+ab)﹣(3ab﹣2a+2b)的值的值27.已知|a﹣2|+(b+1)2=0,求3a2b+ab2﹣3a2b+5ab+ab2﹣4ab+a2b=的值专题训练(找规律题型)选择题1.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,其中a0a1a2均为0或1,传输信息为h0a0a1a2h1,其中h0=a0+a1,h1=h0+a2.运算规则为:0+0=0,0+1=1,1+0=1,1+1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.10111 C.01100 D.000112.在一列数1,2,3,4,…,200中,数字“0”出现的次数是()A.30个B.31个C.32个D.33个3.把在各个面上写有同样顺序的数字1~6的五个正方体木块排成一排(如图所示),那么与数字6相对的面上写的数字是()A.2 B.3 C.5 D.以上都不对4.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的长度构造一组正方形(如下图),再分别依次从左到右取2个,3个,4个,5个正方形拼成如下长方形并记为①,②,③,④,相应长方形的周长如下表所示:A.288 B.178 C.28 D.110 Array 5.如图,△ABC中,D为BC的中点,E为AC上任意一点,BE交AD 于O.某同学在研究这一问题时,发现了如下事实:①当==时,有==;②当==时,有=;③当==时,有=;…;则当=时,=()A.B.C.D.填空题6.古希腊数学家把数1,3,6,10,15,21…叫做三角形数,它有一定的规律性,若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为a n,计算a2﹣a1,a3﹣a2,a4﹣a3,…,由此推算,a100﹣a99= _________ ,a100= _________ .7.表2是从表1中截取的一部分,则a= _________ .8.瑞士的一位中学教师巴尔末从光谱数据,…中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第9个数_________ .9.有一列数:1,2,3,4,5,6,…,当按顺序从第2个数数到第6个数时,共数了_________ 个数;当按顺序从第m个数数到第n个数(n>m)时,共数了_________ 个数.10.我们把形如的四位数称为“对称数”,如1991、2002等.在1000~10000之间有_________ 个“对称数”.11.在十进制的十位数中,被9整除并且各位数字都是0或5的数有_________ 个.12.下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依次规律,拼搭第8个图案需小木棒______ 根.13.如下图所示,由一些点组成形如三角形的图形,每条边(包括两个顶点)有n(n>1)个点,每个图形总的点数是S,当n=50时,S= _________ .14.请你将一根细长的绳子,沿中间对折,再沿对折后的绳子中间再对折,这样连续对折5次,最后用剪刀沿对折5次后的绳子的中间将绳子剪断,此时绳子将被剪成_________ 段.15.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为_________ .16.如图所示,黑珠、白珠共126个,穿成一串,这串珠子中最后Array一个珠子是_________ 颜色的,这种颜色的珠子共有_________ 个.17.观察规律:如图,PM1⊥M1M2,PM2⊥M2M3,PM3⊥M3M4,…,且PM1=M1M2=M2M3=M3M4=…=M n﹣1M n=1,那么PM n的长是_________ (n为正整数).18.探索规律:右边是用棋子摆成的“H”字,按这样的规律摆下去,摆成第10个“H”字需要_________ 个棋子.19.现有各边长度均为1cm的小正方体若干个,按下图规律摆放,则第5个图形的表面积是_________ cm2.20.正五边形广场ABCDE的周长为2000米.甲,乙两人分别从A,C两点同时出发,沿A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过_________ 分钟,甲、乙两人第一次行走在同一条边上.解答题21.(试比较与的大小.为了解决这个问题,写出它的一般形式,即比较n n+1和(n+1)n的大小(为正整数),从分析n=1、2、3、…这些简单问题入手,从中发现规律,经过归纳、猜想出结论:(1)在横线上填写“<”、“>”、“=”号:12_________ 21,23_________ 32,34_________ 43,45_________ 54,56_________ 65,…(2)从上面的结果经过归纳,可以猜想出n n+1和(n+1)n的大小关系是:当n≤_________ 时,n n+1_________ (n+1)n;当n>_________ 时,n n+1_________ (n+1)n;(3)根据上面猜想得出的结论试比较下列两个数的大小:与.22.从1开始,连续的自然数相加,它们的和的倒数情况如下表:(1)根据表中规律,求= _________ .(2)根据表中规律,则= _________ .(3)求+++的值.23.从1开始,连续的奇数相加,它们和的情况如下表:(1)如果n=11时,那么S的值为_________ ;(2)猜想:用n的代数式表示S的公式为S=1+3+5+7+…+2n﹣1= _________ ;(3)根据上题的规律计算1001+1003+1005+…+2007+2009.第五章一元一次方程一元一次方程类型一:等式的性质1.下列说法中,正确的个数是()①若mx=my,则mx﹣my=0;②若mx=my,则x=y;③若mx=my,则mx+my=2my;④若x=y,则mx=my.A.1 B.2 C.3 D.4【发现易错点】【反思及感悟】变式:2.已知x=y,则下面变形不一定成立的是()A.x+a=y+a B.x﹣a=y﹣a C.D.2x=2y3.等式的下列变形属于等式性质2的变形为()A.B.C.2(3x+1)﹣6=3x D.2(3x+1)﹣x=2【发现易错点】【反思及感悟】类型二:一元一次方程的定义1.如果关于x的方程是一元一次方程,则m的值为()A.B.3 C.﹣3 D.不存在【发现易错点】【反思及感悟】 变式:2.若2x 3﹣2k+2k =41是关于x 的一元一次方程,则x = _________ .3.已知3x |n ﹣1|+5=0为一元一次方程,则n = _________ . 4.下列方程中,一元一次方程的个数是 _________ 个.(1)2x =x ﹣(1﹣x );(2)x 2﹣x +=x 2+1;(3)3y =x +;(4)=2;(5)3x ﹣=2. 【发现易错点】【反思及感悟】类型三:由实际问题抽象出一元一次方程 1.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x 米,根据题意,列出方程为( ) A .2x +4×20=4×340 B .2x ﹣4×72=4×340 C .2x +4×72=4×340 D .2x ﹣4×20=4×340 2.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m +10=43m ﹣1;② ;③ ;④40m +10=43m +1,其中正确的是( ) A .①② B .②④ C .②③ D .③④ 3.某电视机厂10月份产量为10万台,以后每月增长率为5%,那么到年底再能生产( )万台. A .10(1+5%) B .10(1+5%)2C .10(1+5%)3D .10(1+5%)+10(1+5%)24.一个数x ,减去3得6,列出方程是( ) A .3﹣x =6 B .x +6=3 C .x +3=6 D .x ﹣3=6 5.某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作,则正好按期完工.问该工程的工期是几天?设该工程的工期为x 天.则方程为( ) A . B . C . D . 6.如图,六位朋友均匀的围坐在圆桌旁聚会.圆桌的半径为80cm ,每人离桌边10cm ,有后来两位客人,每人向后挪动了相同距离并左右调整位置,使8个人都坐下,每相邻两人之间的距离与原来相邻两人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人Array向后挪动的距离为xcm.则根据题意,可列方程为:()A.B.C.2π(80+10)×8=2π(80+x)×10D.2π(80﹣x)×10=2π(80+x)×87.在一个笼子里面放着几只鸡与几只兔,数了数一共有14个头,44只脚.问鸡兔各有几只设鸡为x只,得方程()A.2x+4(14﹣x)=44 B.4x+2(14﹣x)=44C.4x+2(x﹣14)=44 D.2x+4(x﹣14)=448.把一张纸剪成5块,从所得的纸片中取出若干块,每块又剪成5块,如此下去,至剪完某一次后,共得纸片总数N可能是()A.1990 B.1991 C.1992 D.19939.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少设定价为x,则下列方程中正确的是()A.x﹣20=x+25 B.x+20=x+25C.x﹣25=x+20 D.x+25=x﹣2010.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.B.C.D.一元一次方程的解法类型一:一元一次方程的解1.当a=0时,方程ax+b=0(其中x是未知数,b是已知数)()A.有且只有一个解B.无解C.有无限多个解D.无解或有无限多个解2.下面是一个被墨水污染过的方程:,答案显示此方程的解是x=,被墨水遮盖的是一个常数,则这个常数是()A.2 B.﹣2 C.﹣D.【发现易错点】。
有理数部分1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_______.错解(1)a为任何有理数;(2)+5;(3)+3;(4)-6.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.错解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.错解(1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;错解(1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.错解(1)11;(2)-1,-2,-3;(3)4.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?错解代数式-|x|的意义是:x的相反数的绝对值.11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.错解(1)>;(2)<;(3)<.12.写出绝对值不大于2的整数.错解绝对值不大2的整数有-1,1.13.由|x|=a能推出x=±a吗?错解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5.14.由|a|=|b|一定能得出a=b吗?错解一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.15.绝对值小于5的偶数是几?错解绝对值小于5的偶数是2,4.16.用代数式表示:比a的相反数大11的数.错解-a-11.17.用语言叙述代数式:-a-3.错解代数式-a-3用语言叙述为:a与3的差的相反数.18.算式-3+5-7+2-9如何读?错解算式-3+5-7+2-9读作:负三、正五、减七、正二、减九.19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.解(1)(-7)-(-4)-(+9)+(+2)-(-5)=-7-4+9+2-5=-5;(2)(-5)-(+7)-(-6)+4=5-7+6-4=8.20.计算下列各题:(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.错解(1)>;(2)≥;(3)≥.22.若a为有理数,求a的相反数与a的绝对值的和.错解-a+|a|=-a+a=0.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.错解由|a|=4,得a=±4;由|b|=2,得b=±2.当a=4,b=2时,a-b=2;当a=4,b=-2时,a-b=6;当a=-4,b=2时,a-b=-6;当a=-4,b=-2时,a-b=-2.24.列式并计算:-7与-15的绝对值的和.错解|-7|+|-15|=7+15=22.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.错解(1)不都;(2)不都;(3)都;(4)不都.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.错解(1)负数;(2)正数;(3)负数;(4)正数.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;错解(1)3;(2)b>0.29.用简便方法计算:解30.比较4a和-4a的大小:错解因为4a是正数,-4a是负数.而正数大于负数,所以4a>-4a.31.计算下列各题:(5)-15×12÷6×5.解=-48÷(-4)=12;(5)-15×12÷6×5错解因为|a|=|b|,所以a=b.=1+1+1=3.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;错解(1)正确;(2)正确;(3)正确.35.计算下列各题;(1)-0.752;(2)2×32.解36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.错解(1)一定不;(2)不一定;(3)一定不.37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.错解(1)一定;(2)一定;(3)一定;(4)一定不.39.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;解(1)(-3×2)3+3×23=-3×23+3×23=0;(2)-24-(-2)4=0;40.用科学记数法记出下列各数:(1)314000000;(2)0.000034.错解(1)314000000=3.14×106;(2)0.000034=3.4×10-4.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有4个有效数字.(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63.(3)由四舍五入得到的近似数3.70和3.7是一样的.(4)由四舍五入得到的近似数4.7万,它精确到十分位.42.改错(只改动横线上的部分):(1)已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;(2)已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;(3)已知3.412=11.63,那么(34.1)2=116300;(4)近似数2.40×104精确到百分位,它的有效数字是2,4;(5)已知5.4953=165.9,x3=0.0001659,则x=0.5495.有理数·错解诊断练习正确答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)3.14×108;(2)3.4×10-5.41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.42.(1)2536,0.002536;(2)409700,0.0004097;(3)341;(4)百位,有效数字2,4,0;(5)0.05495.整式的加减例1 下列说法正确的是()A. b 的指数是0B. b 没有系数C. -3是一次单项式D. -3是单项式分析:正确答案应选D 。
人教版七年级数学上册易错题100道相交线和平行线易错题(28题)1、一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A 、第一次向左拐300,第二次向右拐300 ;B 、第一次向右拐500,第二次向左拐1300;C 、第一次向右拐500,第二次向右拐1300 ;D 、第一次向左拐500,第二次向左拐1300. 2、如图1,AB ∥CD ,那么∠A+∠C+∠AEC =( ) A .360° B .270° C .200° D .180°(1) (2) (3) 3、如图2所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D.180=∠+∠ACD D 4 如图3所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( ) A. 3对 B. 4对 C. 5对 D. 6对 5 观察图形,下列说法正确的个数是( ) ①过点A 有且只有一条直线AC 垂直于直线l ; ②线段AC 的长是点A 到直线l 的距离。
③线段AB 、AC 、AD 中,线段AC 最短,根据是垂线段最短; ④线段AB 、AC 、AD 中,线段AC 最短,根据是两点之间线段最短; A .1个 B .2个 C .3个 D .4个6、下列说法中正确的是( )A .三角形三条高所在的直线交于一点。
B .有且只有一条直线与已知直线平行。
C .垂直于同一条直线的两条直线互相垂直。
EDCBA4321E DCBACD .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
7、如图,DH ∥EG ∥BC ,且DC ∥EF ,那么图中和∠1相等的角的个数是( )A 、2B 、4C 、5D 、6H C1G D FEB A8 下列语句:①直线外一点到这条直线的垂线段叫做点到直线的距离;②若两条直线被第三条截,则内错角相等;③过一点有且只有一条直线与已知直线平行,真命题有( )个 A .1 B .2 C .3 D .以上结论皆错9 如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是( )A . 42138 、;B . 都是10 ;C . 42138 、或4210 、;D . 以上都不对10、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补D .平移变换中,各组对应点连成两线段平行且相等11、如图5,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( )A .180 B .270 C .360 D .54012、已知:如图6,AB//CD ,则图中α、β、γ三个角之间的数量关系为( ).A 、α+β+γ=360︒B 、α+β+γ=180︒C 、α+β-γ=180︒D 、α-β-γ=90︒abMP N 1 23 图5A B 120°α25°C D15、把“等角的补角相等”写成“如果…,那么…”形式 16、如图7,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C = 17、如图8,把长方形纸片沿折叠,使,分别落在,的位置,若,则等于图7 图818、如图,已知AB ∥CD ,∠ABE 和∠CDE 的平分线相交于F ,∠E = 140º,求∠BFD 的度数.CDFEBA19、如图,已知直线AB 、CD 被直线EF 所截,如果∠BMN =∠DNF ,∠1=∠2,那么MG ∥NP ,试写出推理过程.图6ABCDE20 如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.⑴若∠B=35°,∠ACB=85°,求∠E的度数;⑵当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系.写出结论无需证明.APB DC E21如图,在一块长为20m,宽为14m的草地上有一条宽为2m的曲折小路,你能运用你学的知识求出这块草地的绿地面积吗?22 如图,已知直线 1l ∥2l ,且 3l和1l 、2l 分别交于A 、B 两点,点P 在AB 上。
数学初一上学期期末易错题一、计算题1.解方程:(1)0.1−0.2x 0.3−1=0.7−x 0.4(2)3x ﹣7(x ﹣1)=3+2(x+3)2.解方程(1)0.1x+0.030.2−0.2x−0.030.3+34=0 (2)2014−x 2013+2016−x 2015=2018−x 2017+2020−x20193.若有理数a 、b 、c 在数轴上对应的点A 、B 、C 位置如图 化简 |c|−|c −b|+|a +b|+|b|4.已知2x m y 2与-3xy n 是同类项 试计算下面代数式的值:m -(m 2n +3m -4n)+(2nm 2-3n). 5.解关于x 的方程mx-1=nx6.计算: −12016×[(−2)5−32−514÷(−17)]−2.57.计算 |13−12|+|14−13|+|15−14|+⋯|12002−12001| |8.−(−3)2−[3+0.4×(−112)]÷(−2)9.如果1<x <2 求代数式 |x−2|x−2−|x−1|1−x +|x|x 的值.10.化简 | |x−1|−2|+|x+1| 11. 解下列方程:(1)3x+2=2x-5 (2)3(2x+1)=4(x-3)(3)13(4−3x)=12(5x −6)(4)313x +123=511x +17(5)2x −23(x −2)=13[x −12(3x +1)](6)12{12[12(12x −2)−2]−2}−2=2 12. 计算下列各式(1)(3x 2+2x −3)(2x −1)(2)(4x 4−6x 2+2)(5x 3−2x 2+x −1) (3)(a +b)2−(a −b)2 (4)(a +b)3−3ab(a +b)(5)(a +b +c)(a 2+b 2+c 2−ab −bc −ca) (6)(3x 3−4x 2+5x −1)÷(x 2+3x −1) (7)(5x 3−7x +1)÷(2x +1) (8)(x 3+1)÷(x +1)(9)(a 2−b 2)÷(a 2+2ab +b 2)×(a 3+b 3) (10)(7x 2+3x)÷(2x +1)×(6x +3)÷(7x +3)13.观察 11×2 + 12×3 =(1- 12 )+( 12 - 13 )=1- 13 = 23(1)计算:11×2 + 12×3 + 13×4 +……+ 12013×2014 = (2)计算: 11×3+13×5+15×7+⋯…+199×10114.先化简 再求值.(1)2−(3x −2)−x 2 其中 x =1(2)2(12x 2−3xy −y 2)−2(−2x 2−7xy +3y 2) 其中 x y 满足 |x −2|=−√y −2x15.已知 |a|a + |b|b+ |c|c =-1 试求 ab |ab| + bc |bc| + ca |ca| + abc|abc| 的值. 16.试证明: (x +y −2z)3+(y +z −2x)3+(z +x −2y)3 = 3(x +y −2z)(y +z −2x)(z +x −2y)17.若 a <0 试化简 2a−|3a|||3a|−a|18.已知 |a|=523,|b|=113求a-b 的值19.解关于x 的方程 x−a b −x−b a =b a 其中 a ≠0,b ≠0,a ≠b20.若 x <0 化简 ||x|−2x||x−3|−|x|二、解答题21.已知关于x 的方程3a(x+2)=(2b-1)x+5有无数多个解 求a 与b 的值.22.数字1、2、3、4、5及6可组成不同组合的三个两位数 且每个数字恰好用一次.把每组合的三个两位数相加 写出全部由此得到的和.(例如 因为12+34+56=102 所以102是其中一个得到的和.)23.已知a 、b 、c 为有理数 且满足a=8-b c 2=ab-16.求a 、b 、c 的值.24.已知线段AB=10cm 直线AB上有一点C 且BC=4cm M是线段AC的中点求AM的长.25.一项工程甲单独做15天完工乙单独做20天完工丙单独做24天完工.现在先让甲、乙合做5天剩下工程由丙一个人完成.丙需做多少天?26.设(ax3−x+6)(3x2+5x+b)=6x5+10x4−7x3+13x2+32x−12求a与b的值27.8点20分时针与分针所成的角是多少度?28.已知A B C三点在同一条直线上AB=16.D是BC中点并且AD=12 求BC。
有理数部分1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_______.错解(1)a为任何有理数;(2)+5;(3)+3;(4)-6.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.错解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.错解(1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;错解(1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.错解(1)11;(2)-1,-2,-3;(3)4.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?错解代数式-|x|的意义是:x的相反数的绝对值.11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.错解(1)>;(2)<;(3)<.12.写出绝对值不大于2的整数.错解绝对值不大2的整数有-1,1.13.由|x|=a能推出x=±a吗?错解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5.14.由|a|=|b|一定能得出a=b吗?错解一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.15.绝对值小于5的偶数是几?错解绝对值小于5的偶数是2,4.16.用代数式表示:比a的相反数大11的数.错解-a-11.17.用语言叙述代数式:-a-3.错解代数式-a-3用语言叙述为:a与3的差的相反数.18.算式-3+5-7+2-9如何读?错解算式-3+5-7+2-9读作:负三、正五、减七、正二、减九.19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.解(1)(-7)-(-4)-(+9)+(+2)-(-5)=-7-4+9+2-5=-5;(2)(-5)-(+7)-(-6)+4=5-7+6-4=8.20.计算下列各题:(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.错解(1)>;(2)≥;(3)≥.22.若a为有理数,求a的相反数与a的绝对值的和.错解-a+|a|=-a+a=0.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.错解由|a|=4,得a=±4;由|b|=2,得b=±2.当a=4,b=2时,a-b=2;当a=4,b=-2时,a-b=6;当a=-4,b=2时,a-b=-6;当a=-4,b=-2时,a-b=-2.24.列式并计算:-7与-15的绝对值的和.错解|-7|+|-15|=7+15=22.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.错解(1)不都;(2)不都;(3)都;(4)不都.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.错解(1)负数;(2)正数;(3)负数;(4)正数.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;错解(1)3;(2)b>0.29.用简便方法计算:解30.比较4a和-4a的大小:错解因为4a是正数,-4a是负数.而正数大于负数,所以4a>-4a.31.计算下列各题:(5)-15×12÷6×5.解=-48÷(-4)=12;(5)-15×12÷6×5错解因为|a|=|b|,所以a=b.=1+1+1=3.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;错解(1)正确;(2)正确;(3)正确.35.计算下列各题;(1)-0.752;(2)2×32.解36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.错解(1)一定不;(2)不一定;(3)一定不.37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.错解(1)一定;(2)一定;(3)一定;(4)一定不.39.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;解(1)(-3×2)3+3×23=-3×23+3×23=0;(2)-24-(-2)4=0;40.用科学记数法记出下列各数:(1)314000000;(2)0.000034.错解(1)314000000=3.14×106;(2)0.000034=3.4×10-4.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有4个有效数字.(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63.(3)由四舍五入得到的近似数3.70和3.7是一样的.(4)由四舍五入得到的近似数4.7万,它精确到十分位.42.改错(只改动横线上的部分):(1)已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;(2)已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;(3)已知3.412=11.63,那么(34.1)2=116300;(4)近似数2.40×104精确到百分位,它的有效数字是2,4;(5)已知5.4953=165.9,x3=0.0001659,则x=0.5495.有理数·错解诊断练习正确答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)3.14×108;(2)3.4×10-5.41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.42.(1)2536,0.002536;(2)409700,0.0004097;(3)341;(4)百位,有效数字2,4,0;(5)0.05495.整式的加减例1 下列说法正确的是()A. b 的指数是0B. b 没有系数C. -3是一次单项式D. -3是单项式分析:正确答案应选D 。
有理数部分1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_______.错解(1)a为任何有理数;(2)+5;(3)+3;(4)-6.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.错解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.错解(1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;错解(1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.错解(1)11;(2)-1,-2,-3;(3)4.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?错解代数式-|x|的意义是:x的相反数的绝对值.11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.错解(1)>;(2)<;(3)<.12.写出绝对值不大于2的整数.错解绝对值不大2的整数有-1,1.13.由|x|=a能推出x=±a吗?错解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5.14.由|a|=|b|一定能得出a=b吗?错解一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.15.绝对值小于5的偶数是几?错解绝对值小于5的偶数是2,4.16.用代数式表示:比a的相反数大11的数.错解-a-11.17.用语言叙述代数式:-a-3.错解代数式-a-3用语言叙述为:a与3的差的相反数.18.算式-3+5-7+2-9如何读?错解算式-3+5-7+2-9读作:负三、正五、减七、正二、减九.19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.解(1)(-7)-(-4)-(+9)+(+2)-(-5)=-7-4+9+2-5=-5;(2)(-5)-(+7)-(-6)+4=5-7+6-4=8.20.计算下列各题:(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.错解(1)>;(2)≥;(3)≥.22.若a为有理数,求a的相反数与a的绝对值的和.错解-a+|a|=-a+a=0.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.错解由|a|=4,得a=±4;由|b|=2,得b=±2.当a=4,b=2时,a-b=2;当a=4,b=-2时,a-b=6;当a=-4,b=2时,a-b=-6;当a=-4,b=-2时,a-b=-2.24.列式并计算:-7与-15的绝对值的和.错解|-7|+|-15|=7+15=22.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.错解(1)不都;(2)不都;(3)都;(4)不都.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.错解(1)负数;(2)正数;(3)负数;(4)正数.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;错解(1)3;(2)b>0.29.用简便方法计算:解30.比较4a和-4a的大小:错解因为4a是正数,-4a是负数.而正数大于负数,所以4a>-4a.31.计算下列各题:(5)-15×12÷6×5.解=-48÷(-4)=12;(5)-15×12÷6×5错解因为|a|=|b|,所以a=b.=1+1+1=3.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;错解(1)正确;(2)正确;(3)正确.35.计算下列各题;(1)-0.752;(2)2×32.解36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.错解(1)一定不;(2)不一定;(3)一定不.37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.错解(1)一定;(2)一定;(3)一定;(4)一定不.39.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;解(1)(-3×2)3+3×23=-3×23+3×23=0;(2)-24-(-2)4=0;40.用科学记数法记出下列各数:(1)314000000;(2)0.000034.错解(1)314000000=3.14×106;(2)0.000034=3.4×10-4.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有4个有效数字.(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63.(3)由四舍五入得到的近似数3.70和3.7是一样的.(4)由四舍五入得到的近似数4.7万,它精确到十分位.42.改错(只改动横线上的部分):(1)已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;(2)已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;(3)已知3.412=11.63,那么(34.1)2=116300;(4)近似数2.40×104精确到百分位,它的有效数字是2,4;(5)已知5.4953=165.9,x3=0.0001659,则x=0.5495.有理数·错解诊断练习正确答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)3.14×108;(2)3.4×10-5.41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.42.(1)2536,0.002536;(2)409700,0.0004097;(3)341;(4)百位,有效数字2,4,0;(5)0.05495.整式的加减例1 下列说法正确的是()A. 的指数是0B. 没有系数C. -3是一次单项式D. -3是单项式分析:正确答案应选D。
错 题 集1一、填空:1、{-[1-(a+b)]}-{-[-(a-b)]}去掉括号得2、单项式x 、-2x 2、3x3、-4x4、5x 5……则第100项是 第n 项是 。
3、比-321大而比231小的所有整数的和为 。
4、一个三角形的第一边长为(2a-b )厘米,第二边的长比第一边长(a+b )厘米,第三边的长比第一边的2倍少b 厘米,那么这个三角形的周长是5、若(x+3)2+|y+1|+z 2=0,则x 2+y 2+z 2的值为6、已知3x-6y-5=0,则2x-4y+6=7、已知关于x 的方程(k-2)x |k|-1+5=3k 是一元一次方程,则x=8、关于x 的一元一次方程2x+a=x+1的解是-4,则方程-ay+1=3的解为9、如果5x |m|y 2-(m-2)xy-3x 是关于x 、y 的四次三次式,则m=10、科学计数法 人=11、若a 2=b 2,则 ;若a+b=0,则 ;若|a|=|b|则 ;若a 2=a 1则 ;若a 3=a1,则 12、已知|a|=3,|b|=2,且ab<0,则a-b=13、观察下列数-2,-1,2,1,-2,-1……从左边第一个数算起,第99个数是14、在一块长a m ,宽b m 的长方形草坪中间有一条1m 宽的人行道,那么草坪中的绿地面积是15、一个两位数,它的十位数字为x ,个位数字比十位数字大3,则这个两位数为16、代数式-(-32)2a 2b 2c 的系数是 ,次数是 17、一件上衣a 元,降低了15%后的售价是 元。
18、如果正午(中午12:00)记作0小时,午后3点钟记作+3小时,那么上午8点钟表示为19、倒数是它本身的数是 ;相反数是它本身的数是 ;绝对值是它本身的数是20、平方得9的数是 ,平方得0的数是 ,立方得8的数是 ,立方得-27的数是 .21、x 2=9,|y|=2,则x+y= 。
22、亿用科学计数法表示为有 用科学计数法表示为23、一个数a 的绝对值是指数轴上表示a 的点与 距离,记作①一个正数的绝对值是 ,即如果a>0,则|a|=②一个负数的绝对值是 ,即如果a<0,则|a|=③0的绝对值是 ,即如果a=0,则|a|=反之,若一个数的绝对值是它本身,则这个数是 ,若一个数的绝对值是它的相反数,则这个数是 ,即若|a|=a ,,则a 0,若|a|=-a,则a= 024、若|a|=4 ,|b|=2,且ab<0,则a+b=25、m 千克香蕉的售价是10元,2千克香蕉的售价是 元。
26、某校现有学生x 人,比十年前增加了20%,则该校十年前的学生数是 。
27、判断 同号两数相乘,符号不变,再把绝对值相乘 ( )28、一次数学测验的平均分为85分,某同学考了82分,记作-3分,则87分和79分应分别记作 、 。
29、成本降低-4%,实际表示 。
二、选择:1、某商品原价为a 元,因需求量大,经营者连续两次提价,每次提价10%,后因市场物价调整,又一次降价20%,降价后这种商品的价格是( )A 、元B 、元C 、元D 、a 元2、把a 千克碘溶在b 千克的酒精中,则m 千克的碘酒含碘 千克。
A 、b a am +B 、b a m a ++C 、b a bm +D 、bam 3、当x=1时,代数式px 3+qx+1的值为2,则当x=﹣1时,代数式px 3+qx+1的值为( )A 、3B 、2C 、1D 、04、已知|x|=4,|y|=5,且x>y ,则2x-y 的值是( )A 、-13B 、+13C 、﹣3或+13D 、+3或﹣135、若|a|+|b|=0,则a 与b 的大小关系是( )A 、a=b=0B 、a 与b 不相等C 、a 、b 异号D 、a 、b 互为相反数6、若a-(b-c)=a+( )成立,则括号应填入( )A 、b-cB 、b+cC 、-b+cD 、-b-c7、代数式3(x 2-2xy+y 2)-3(x 2-3xy+y 2-1)的值( )A 、与x 、y 无关B 、与x 、y 有关C 、仅与x 有关D 、与y 有关8、关于x 的一元一次方程(a-1)x 2+x+a 2-1=0的一个解是0,则a 的值为( )A 、1B 、-1C 、1或-1D 、21 9、已知n 表示正整数,则(-1)n +(-1)n+1的结果是( )A 、0B 、1C 、0或1D 、无法确定,随n 的不同而不同10、若M=5x 3-4x 2+3,N=5x 3-6x 2+2,则M 、N 的大小关系是( )A 、M<NB 、M=NC 、M>ND 、以上都有可能11、美是一种感觉,当人体下半身长与身高的比值接近时,越给人一种美感,某女士身高165cm ,下身长与身高的比值为,为尽可能达到好的效果,她应穿的高跟鞋的高度大约是( )A 、4cmB 、6cmC 、8cmD 、10cm12、同时含有a,b,c 且系数为1的五次单项式有( )A 、1个B 、3个C 、6个D 、9个13、小强学习了有理数运算法则后,编了一个计算机程序,当他输入任何一个有理数时,显示屏上出现的结果总是等于所输入有理数的平方与1的和,当他第一次输入-2,然后又将所得的结果再次输入后,显示屏上出现的结果应是( )A 、-8B 、5C 、24D 、2614、下列式子符合代数式的书写格式的是( )A 、x .20yB 、2÷abC 、(a-b )千克D 、231mn 千米15、下列说法中正确的有( )①互为相反数的两个数的绝对值相等.②正数和0的绝对值都等于它本身③绝对值等于它的相反数的数是非正数④一个数的绝对值相反数一定是负数A 、1个B 、2个C 、3个D 、4个16、如图,点A 、B 、C 、D 、所表示数分别为a 、b 、c 、d ,则a 、b 、c 、d 的大小关系为( )A 、a<c<d<bB 、b<d<a<cC 、b<d<c<aD 、a<b<c<d17、在计算4×(-7)×(-5)=(4×5)×7中,运用了乘法的( )A 、交换律B 、结合律C 、分配率D 、交换率和结合率18、下列说法中,不正确的是( )A 、一个数与它的倒数之积为1B 、一个数与它的相反数之商为﹣1C 、两个数商为﹣1,则两个数互为相反数D 、两个数积为1,则这两个数互为倒数19、下列说法错误的是( )A 、互为倒数的两个数同号B 、零没有倒数C 、零没有相反数D 、零除以任意非零数商为020、如果两个有理数在数轴上对应的点分别在原点两侧,则这两个数相除所得的商是()A 、一定是负数B 、一定是正数C 、等于0D 、以上都不是21、a b ≠0 ,则a a ||+||b b的取值不可能是( )A 、0B 、1C 、2D 、-222、两个数的商是正数,下面判断中正确的是( )A 、和是正数B 、差是正数C 、积是正数D 、以上都不对23、课堂上老师要求就数“0”发表自己的意见,四位同学共说了下列四句话:①0是整数,但不是自然数。
②0既不是正数,也不是负数。
③0不是整数,是自然数。
④0没有实际意义。
其中正确的是()A、4B、3C、2D、124、下列说法正确的是②正整数和负整数统为整数。
②既是分数,也是负数.③0只表示没有。
④整数和负数统称为有理数。
⑤一个数不是正数就是负数。
⑥既不是正数也不是整数的有理数是负分数。
三、计算1、若正数a的倒数等于其本身,负数b的绝对值等于3,且c<a,c2=36。
求代数式2(a-2b2)-5c的值。
2、(x-y-z)+(x-y+z)-(x-y-z)3、已知:c>0>a>b,试化简代数式|a|-|a+b|+|c-a|+|b-c|4、有这样一道题目:当a=2时,求(a3+3a2+4a-1)+(a2-3a+a3-3)+(8-a-4a2-2a3)的值。
乙同学把题目中的“a=2”炒成了“a=﹣2”计算的结果与甲同学得出的正确结果一样,你知道为什么吗?5、解关于x的方程2a-3x=12时,粗心的小虎误将﹣3x看做3x,得方程的解为x=3,请你帮小虎求出原方程的解。
6、3x-[5-6(2-x )]=87、7.0x -3.027.1x -=1 710x-32017x -=18、关于x 的方程653x m + =4m -47x 与方程4(3x-7)=19-35x 有相同的解。
求m 的值。
9、-3 ×22-(-3 ×2)3 10、y -21-y =2-62+y11、某巡警骑车在一条南北大道上巡逻,某人他从岗停出发,晚上停留A 处。
规定向北方向为正,当天行驶记录如下(单位:千米)①该巡警巡逻时离岗亭最远是多少千米?②在岗亭背面6千米处有个加油站,该巡警巡逻时经过加油站几次?③A 在岗亭何方?距岗亭多远?④此车每行1千米耗油升,那么该车这天巡逻共耗油多少升?12、对于a,b 有理数,规定a*b=a 2+2ab ,例如3*2=32+2×3×2=21,①计算(-2)*(﹣31)+21*(﹣3)的值。
②若(-2)*x=﹣2+x ,求x 的值。
13、-6÷()×2411 32+50÷(-2)2×(-101)-1 5ab 2-3[2a 2b-2(a 2b-2ab 2)]14、(5a+2a 2-3-4a 3)-(-a+3a 3-a 2),其中a=-23x 2-[7x-(6x-8)-x 2],其中x=-115、A=3a-2b+c,B=a+4b-2c,C=a-3c,求A-(B+C )的值,其中a=1,b=-2,c=-316、已知(x+2)2+|y ﹣21|=0 求2(xy 2+x 2y )-[2xy 2-3(1-x 2y)]-2的值17、4(x-1)-2(x 2+1)-21(4x 2-2x),其中x=-318、已知m ,x ,y 满足①(x-5)2+|m|=0,②-2ab y+1与4ab 3是同类项, 求(2x 2-3xy+6y 2)﹣m(3x 2-xy+9y 2)的值19、若|x-2|与(y+7)2互为相反数,求y x 的值,你能求出×8102的结果吗?20、已知|a-2|+(b+1)2=0,求(-a-b)2004+(-1)2004+28×(a 1)921、412+x -1=312-x -12110+x [12411-(83+61-43)×(-24)]÷(-5)-250-(-492524)×(-5)22、已知|x-3|+|y+5|=0,求x-y23、x 为有理数,|x|=x ,x 表示什么数?若|x|=﹣x ,这样的x 又表示什么数?24、 22-35-(-76)-(-103) ﹣997271×3625、列式并计算(1)一个数与﹣的和等于﹣,这个数是多少?(2)﹣2减去一个﹣31与21的和,差是多少?26、已知|a|=﹣5,|b|=4,且|a+b|=a+b ,求a -b 的值。