八年级数学上册第十三章轴对称13.4课题学习最短路径问题教案(新版)新人教版
- 格式:doc
- 大小:2.84 MB
- 文档页数:8
13.4 课题学习最短路径问题教学目标:1、能利用轴对称解决简单的最短路径问题.2、体会图形的变化在解决最值问题中的作用.3、感悟转化思想.学习重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.教学过程一、探索新知问题1 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?追问2你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?(1)从A 地出发,到河边l 饮马,然后到B 地;(2)在河边饮马的地点有无穷多处,把这些地点与A, B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图).问题2如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB的和最小?追问1 对于问题2,如何将点B“移”到l 的另一侧B′处,满足直线l 上的任意一点C,都保持CB 与CB′的长度相等?追问2 你能利用轴对称的有关知识,找到上问中符合条件的点B′吗?问题2如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB的和最小?作法:(1)作点B 关于直线l 的对称点B′;(2)连接AB′,与直线l 相交于点C.则点C 即为所求.问题3 你能用所学的知识证明AC +BC最短吗?证明:如图,在直线l 上任取一点C′(与点C 不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC′=B′C′.∴AC +BC= AC +B′C = AB′,AC′+BC′= AC′+B′C′.追问1 证明AC +BC 最短时,为什么要在直线l 上任取一点C′(与点C 不重合),证明AC +BC <AC′+BC′?这里的“C′”的作用是什么?C 不重合)与A,B 两点的距离和都大于AC +BC,就说明AC + BC 最小.追问2回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?二、练习如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.基本思路:由于两点之间线段最短,所以首先可连接PQ,线段PQ 为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC,这样问题就转化为“点P,Q 在直线BC的同侧,如何在BC上找到一点R,使PR与QR 的和最小”.三、归纳小结1、本节课研究问题的基本过程是什么?2、轴对称在所研究问题中起什么作用?四、布置作业教科书P93复习题13第15题中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
13.4 课题学习最短路径问题教课内容分析:本节课的主要内容是利用轴对称研究某些最短路径问题,最短路径问题在现实生活中常常碰到,初中阶段,主要以“两点之间,线段最短” “三角形两边之和大于第三边”为知识基础,有时还要借助轴对称、平移变换进行研究。
本节课以数学史中的一个经典故事----“将军饮马问题”为载体展开对“最短路径问题”的课题研究,让学生经历将实质问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转变为“两点之间、线段最短”的问题。
教课目的设置:1、能利用轴对称解决简单的最短路径问题.2、在谈最短路径的过程中,领会“轴对称”的桥梁作用,感悟转变的数学思想。
教课要点难点:要点:利用轴对称将最短路径问题转变为“两点之间、线段最短”问题。
难点:如何利用轴对称将最短路径问题转变为线段和最小问题。
学生学情剖析:1、八年级学生的察看、操作、猜想能力较强,但演绎推理、概括和运用数学意识的思想比较单薄,自主研究和合作学习能力也需要在讲堂教课中进一步指引。
此年纪段的学生拥有一定的研究精神和合作意识,能在必定的亲自经历和体验中获得必定的数学新知识,但在数学的说理上还不规范,会合演绎推理能力有待增强。
2、学生已经学习过“两点之间,线段最短”“垂线段最短”以及刚才学习的轴对称和垂直均分线的性质作为本节知识的基础。
教课策略剖析:最短路径问题从实质上说是最值问题,作为八年级学生,在此前极少波及最值问题,解决这方面问题的数学经验尚显不足,特别是面对拥有实质背景的最值问题,更会感觉陌生,无从下手。
解答“当点 A、B 在直线 l 的同侧时,如安在 l 上找到点 C,使 AC与 BC的和最小”,需要将其转变为“直线 l 异侧的两点,与直线 l 上的点的线段的和最小”的问题,为何需要这样转变,如何经过轴对称实现转变,一些学生会存在理解上和操作上的困难。
在证明“最短”时,需要在直线上任取一点(与所求做的点不重合),证明所连线段和大于所求作的线段和,这类思路和方法,一些学生想不到。
13.4课题学习最短路径问题课标要求掌握基本事实:两点Z间,线段最短。
理解线段垂直平分线的概念,探索并证明线段垂直平分线性质定理:线段垂直平分线上的点到线段两端距离相等;反Z,到线段两端距离相等的点在线段的垂直平分线上。
教材分析本节课是在已经学习了轴对称图形性质的基础上进一步学习“经过直线上一点,在直线同侧两点之1'可路径最短问题”的解决方案。
为后续平面几何线段之和最短一类问题奠基。
学情分析1.学生己经学习了已经掌握轴对称的性质以及“两点之间,线段最短”、三角形三边不等公理,这为学习最短路径问题做好了知识和能力上的准备。
2.学生已经具备了一定的学习能力及作图能力,所以本节课屮,主要采用学生自主学习、合作探究的方式,教师引导让每位学生都参与探究。
课时目标1.能利用轴对称解决简单的最短路径问题;2•体会图形的变化在解决最值问题中的作用;3.能通过逻辑推理证明所求距离最短,感悟转化思想;4.体验数学活动中的探索与创新、感受数学的严谨性.教学重卢直线线上一点,到同侧两点距离之和最短问题利用作轴对称将直线线上一点,到同侧两点距离之和最短问题转化为“两点之间,线段最短”问题.教学难点利用作轴对称将直线线上一点,到同侧两点距离之和最短问题转化为“两点之间,线段最短”问题. 提炼的课题利用作轴对称将直线线上一点,到同侧两点距离之和最短问题转化为“两点之间,线段最短”问题.教学过程教学环节教学内容及师生活动设计意图媒体选择分析1 •情境引入引入新课PPT1-4:通过创设情景,•引导学生思考,激发学生学习兴趣。
1出示问题:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边1饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?2、倾听学生对上面问题的回答,揭示课题3、引入新课。
从小故事出发,引发学生思考问题的兴趣;激励自主学习探索直线线上一点,到同侧两点距离之和最短问题.类型:t+w作用:b使用:3、b时间:3回顾“两点之间,线段最短”,思考故事中存在的数学问题。
13.4课题学习最短路径问题◇教学目标◇【知识与技能】能利用轴对称解决简单的最短路径问题.【过程与方法】体会图形的变换在解决最值问题中的作用.【情感、态度与价值观】通过解决问题感悟转化思想,进一步获得数学活动的经验,增强数学的应用意识.◇教学重难点◇【教学重点】如何利用轴对称将最短路径问题转化为线段和最小问题.【教学难点】利用图形变换进行线段的转移.◇教学过程◇一、情境导入如图,从A地到B地有三条路可供选择,你会选择哪条路距离最短?说说你的理由.二、合作探究探究点1三角形周长最短的问题典例1如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.第 1 页共 3 页[解析]如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA 于点P1,交OB于点P2,连接PP1,PP2,△PP1P2即为所求.理由:∵P1P=P1E,P2P=P2F,∴△PP1P2的周长=PP1+P1P2+PP2=EP1+P1P2+P2F=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.探究点2坐标系中的将军饮马问题典例2如图,A,B两个村庄的坐标分别为(2,2),(7,4),一辆汽车从原点O出发在x 轴上行驶.(1)汽车行驶到什么位置时离A村最近?写出这点的坐标.(2)汽车行驶到什么位置时离B村最近?写出这点的坐标.(3)汽车行驶到什么位置时,到两村距离和最短?请在图中画出这个位置.[解析](1)由垂线段最短可知当汽车位于点(2,0)处时,汽车距离A点最近.(2)由垂线段最短可知当汽车位于点(7,0)处时,汽车距离B点最近.第 2 页共 3 页(3)如图所示,过点A作关于x轴的对称点A',连接A'B,A'B与x轴的交点即为所求.三、板书设计最短路径问题最短路径问题◇教学反思◇本节的内容是最短路径问题,知识点应安排逐步的生成过程,环环相扣,一步步上,要将问题分解,化大为小,化难为易,降低难度.要认真分析预备知识,把新知识放在旧知识的基础上,通过复习慢慢引出新的内容,这样学生更容易掌握,更容易接受,不会产生畏难情绪,反而觉得轻松自如.第 3 页共 3 页。
课题学习最短路径问题——轴对称在解决“最短路径问题”的应用一、新课导入1.导入课题:屏幕展示教材第85页问题1的文字和图标.2.学习目标:(1)能利用轴对称变换解决实际问题.(2)能利用作图解决生活中的轴对称问题.(作图建模)3.学习重、难点:重点:路径极值问题的转换方法.难点:路径极值问题的说理证明.二、分层学习1.自学指导:(1)自学内容:教材第85页的问题1.(2)自学时间:8分钟.(3)自学方法:经历“作图——探究——归纳——总结”过程,体验用轴对称的性质解决生活中的求最短距离问题的实质.(4)自学参考提纲:①轴对称具有什么性质?如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.②思考:问题1中的情境问题可以转化怎样的几何问题?试作出几何图形来表示.③马从A到河边再到B的路径是一个折线,求折线的最小值,可联想到两点之间的距离,所以可将三个点转化到同一直线上.④如图,AC如何转化使A、C、B在同一直线上呢?作B点关于l的对称点B′,连接AB′,交l于点C,则A、C、B′在同一直线上.⑤按“两点之间线段最短”,A通过怎样的变换确定的C点保证变换后的A′C=AC,且A′、C、B在同一直线上呢?作A点关于l的对称点A′,则A′C=AC,且A′、C、B在同一直线上.2.自学:认真阅读教材第85页内容,参照自学参考提纲试着找出解决问题的办法.3.助学:(1)师助生:①明了学情:最短路径问题是轴对称知识在生活中的运用,寻找解题思路是个难点.②差异指导:先引导学生回忆“两点之间,线段最短”的结论,完成②,然后在②的基础上寻找解决③的办法及依据.(2)生助生:学生之间相互交流帮助.4.强化:(1)指名学生说明这样作图的依据,重点让学生明白此类题的作图方法.(2)练习:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点(保留作图痕迹).解:如图:P点即为该点.1.自学指导:(1)自学内容:教材第86页的问题2.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,边看文字,对照图形,边体会教材上作图的方法和依据.(4)自学参考提纲:①回忆问题1是用什么办法解决最短路线问题的?作对称点.②问题2中点A、点B在河的两侧,而河岸存在两条直线,这个问题怎么解决?通过图形变化,转化为求一条直线两侧的点的最短距离.③由于河宽一定,要求AM+MN+NB最小,实际上就是要求AM+NB最小?④如何在直线b上确定一点N,使A′N=AM?将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则A′N=AM.2.自学:学生结合自学参考提纲研学课文内容.3.助学:(1)师助生:①明了学情:问题2较问题1更复杂,本质上是一回事,注意了解学生的思维障碍.②差异指导:a.先引导学生回忆“两点之间,线段最短”的结论,然后引导学生思考如何将AM、NB转化到同一直线上.(2)生助生:学生之间相互交流帮助.4.强化:(1)指名学生说明这样作图的依据,重点让学生说明作图的思路、依据及方法.(2)完成教材第93页15题.解:过A作关于MN的对称点A′,过B作关于l的对称点B′,连接A′B′交MN于P,交l于Q点,连接AP、BQ.则A→P→Q→B就是所示的最短路径.(3)教材第87页“归纳”.三、评价1.学生的自我评价(围绕三维目标):学生相互交谈自己的学习收获有哪些?困惑在哪里?2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.一、基础巩固(每题20分,共60分)1.作图在直线l上找一点C,使AC+BC最小.解:2.要在燃气管道l上修建一个泵站,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?试作图确定泵站并加以说明.解:如图,P处即为泵站的位置.3.如图,已知牧马营地在P处,每天牧马人要赶着马群先到河边饮水,再带到草地吃草,然后回到营地,请你替牧马人设计出最短的放牧路线.解:如图AP+AB即为最短的放牧路线.二、综合应用(20分)4.如图,M、N分别是△ABC的边AB、AC上的点,在边BC上求作一点P,使△PMN的周长最小.解:如图:作点M关于BC的对称点M′,连接M′N,交BC于点P,则△PMN的周长最小.三、拓展延伸(20分)5.如图,已知直线MN与MN异侧两点A、B,在MN上求作一点P,使PA-PB最大,请说明理由.解:如图,作B点关于MN的对称点B′,连接AB′并延长,交MN于点P,点P即为所求.理由:点A,B′,P在同一条直线上时,PA-PB′最大,即PA-PB最大.。
13.4.课题学习《最短路径》教学设计
一、教材分析
1、地位作用:随着课改的深入,数学更贴近生活,更着眼于解决生产、经营中的问题,于是就出现了为省时、省财力、省物力而希望寻求最短路径的数学问题。
这类问题的解答依据是“两点之间,线段最短”或“垂线段最短”,由于所给的条件的不同,解决方法和策略上又有所差别。
初中数学中路径最短问题,体现了数学来源于生活,并用数学解决现实生活问题的数学应用性。
2、目标和目标解析:
(1)目标:能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.
(2)目标解析:达成目标的标志是:学生能讲实际问题中的“地点”“河”抽象为数学中的线段和最小问题,能利用轴对称将线段和最小问题转化为“连点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最算路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.
3、教学重、难点
教学重点:利用轴对称将最短路径问题转化为“连点之间,线段最短”问题
教学难点:如何利用轴对称将最短路径问题转化为线段和最小问题
突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决.
二、教学准备:多媒体课件、导学案
三、教学过程
l
方法提炼:
将最短路径问题抽象为“线段和最小问题”.
问题4 练习 如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.
基本思路:由于两点之间线段最短,所以首先可连接PQ ,线段PQ 为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC ,这样
问题就转化为“点P ,Q 在直线BC 的同侧,如何在BC 上找到一点R ,使PR 与QR 的和最小”. 问题5 造桥选址问题 如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN.乔早在何处才能使从A 到B 的路径AMNB 最短?(假定河的两岸是平行的
直线,桥要与河垂直)
思维分析:1、如图假定任选位置造桥MN,连接AM和BN,从A 到B 的路径是AM+MN+BN ,那么怎样确定什么情况下最短呢?
互相交流
解题经验
独立完成,交流经验
观察思
考,动手
画图,用轴对称知
识进行解
决
力.
提炼思想方法:轴对称,线段和最短
体会转化思想,
体验轴对称知识的应用
A
A B C P Q 山
河岸
大桥
B
l
A
B ′
C
C ′
体验转化思想
教学内容与教师活动学生活
动
设计意图
三、巩固训练
(一)基础训练:1、最短路径问题
(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.
如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.
(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.
如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.
2.如图,A和B两地之间有两条河,现要在两条河上各造一座桥MN和PQ.桥分别建在何处才能使从A到B的路径最短?(假定河的两岸是平行的直线,桥要与河岸垂直)
如图,问题中所走总路径是AM+MN+NP+PQ+QB.桥MN和PQ在中间,且方向不能改变,仍无法直接利用“两点之间,线段最短”解决问题,只有利用平移变换转移到两侧或同一侧先走桥长.平移的方法有三种:两个桥长都平移到A点处、都平移到B点处、MN平移到A点处,PQ平移到B点处学生独
立思考
解决问
题
独立思
考,合作
交流.
巩固所学知
识,增强学生
应用知识的
能力,渗透转
化思想.
提炼方法,为
课本例题奠
定基础.
A
B
B
B村的距离相等,则应选择在哪建厂?
B两村的水管最短,应建在什么地方?
班举行文艺晚会,桌子摆成如图
桌面上摆满了橘子,
处的学生小明先拿橘子再拿糖果,然后到
图a 图b
布置作业
)本节课研究问题的基本过程是什么?
)轴对称在所研究问题中起什么作用?
解决问题中,我们应用了哪些数学思想方法?。