溢洪道设计规范
- 格式:doc
- 大小:995.00 KB
- 文档页数:65
溢洪道布置一般规定溢洪道是]水库等水利建筑物的防洪设备,多筑在水坝的一侧,像一个大槽,当水库里水位超过安全限度时,水就从溢洪道向下游流出,防止水坝被毁坏。
包括:进水渠控制段泄槽出水渠。
简介用于宣泄规划库容所不能容纳的洪水,保证坝体安全的开敞式或带有胸墙进水口的溢流泄水建筑物。
溢洪道一般不经常工作,但却是水库枢纽中的重要建筑物。
溢洪道按泄洪标准和运用情况,分为正常溢洪道和非常溢洪道。
前者用以宣泄设计洪水,后者用于宣泄非常洪水。
按其所在位置,分为河床式溢洪道和岸边溢洪道。
分类溢洪道按泄洪标准和运用情况,分为正常溢洪道和非常溢洪道。
前者用以宣泄设计洪水,后者用于宣泄非常洪水。
按其所在位置,分为河床式溢洪道和岸边溢洪道。
河床式溢洪道经由坝身溢洪。
岸边溢洪道按结构形式可分为:①正槽溢洪道。
泄槽与溢流堰正交,过堰水流与泄槽轴线方向一致。
②侧槽溢洪道。
溢流堰大致沿等高线布置,水流从溢流堰泄入与堰轴线大致平行的侧槽后,流向作近90°转弯,再经泄槽或隧洞流向下游。
③井式溢洪道。
洪水流过环形溢流堰,经竖井和隧洞泄入下游。
④虹吸溢洪道。
利用虹吸作用泄水,水流出虹吸管后,经泄槽流向下游,可建在岸边,也可建在坝内。
岸边溢洪道通常由进水渠、控制段、泄水段、消能段组成。
进水渠起进水与调整水流的作用。
控制段常用实用堰或宽顶堰,堰顶可设或不设闸门。
泄水段有泄槽和隧洞两种形式。
为保护泄槽免遭冲刷和岩石不被风化,一般都用混凝土衬砌。
消能段多用挑流消能或水跃消能。
当下泄水流不能直接归入原河道时,还需另设尾水渠,以便与下游河道妥善衔接。
溢洪道的选型和布置,应根据坝址地形、地质、枢纽布置及施工条件等,通过技术经济比较后确定。
说明第一章总则第二章溢洪道布置第三章水力设计第四章建筑物结构设计第五章地基震边坡处理第六章观测设计附录一水力设计计算公式附录二高速水流区的防空蚀设计附录三载荷计算附录四常用参数表附录五水力观测设计打印刷新溢洪道设计规范说明本规范在我国系首次制订,在编制过程中进行了广泛地调查研究,认真总结了我国溢洪道工程的实践经验、试验研究和原型观测成果,同时也借鉴了国外已有的研究成果和实践经验。
本规范编制组由中南勘测设计院、北京勘测设计院和陕西省水利水电勘测设计院等三个单位组成,中南勘测设计院为主编单位。
参加本规范编写的主要人员有:中南勘测设计院——陈其煊、李诚、邓正湖、席与光北京勘测设计院——吴季宏陕西省水利水电勘测设计院——曹国兰第一章总则第1.0.1条本规范使用范围以河岸式溢洪道的设计为主,兼顾厂顶溢流、厂前挑流及泄洪隧洞出口的水力设计。
第1.0.2条本规范适用于大、中型水利水电工程中岩基上的1、2、3级溢洪道的设计,4、5级溢洪道的设计可参照使用。
对于特殊重要的工程,应进行专门研究,制定补充条例。
第1.0.3条设计河岸式溢洪道时、应符合《水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分)》(SDJ12—78)及其它标准和规范的有关规定。
厂顶溢流、厂前挑流及泄洪隧洞出口的水力设计,还应符合《水电站厂房设计规范》(SD335—89)、《水工隧洞设计规范》(SD134—84)的有关规定。
第1.0.4条泄洪建筑物的洪水标准:一、泄洪的设计及校核洪水标准应根据枢纽的等级,按照《水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分)》(SDJ12—78)及其补充规定的有关条文执行。
二、消能防冲的设计洪水标准:一级建筑物按百年一遇洪水设计;二级建筑物按50年一遇洪水设计;三级建筑物按30年一遇洪水设计。
同时,还应考虑低于消能防冲设计洪水标准时可能出现的不利情况,保证工程安全和正常运行。
应视需要采用超过消能防冲设计标准的洪水进行校核,此时消能防冲建筑物允许出现局部破坏,但不得危及大坝及其它主要建筑物的安全或长期影响枢纽运行,并易于修复。
溢洪道设计规范1、溢洪道的设计应满足下列要求:(1)溢洪道宜选在上游构造物洪水位以上,洪峰流量确定后,洪水位不应超过溢洪道设计高程;(2)溢洪道应能充分消能洪水能量,使洪水进入下游渠道后不再对下游构筑物产生破坏性冲击;(3)溢洪道应有足够的流量能力,以保证在设计洪水位上溢洪的洪水不发生过流;(4)溢洪道应考虑排洪能力与供水功能的统一,确保在供水时期能够正常运行;(5)溢洪道的结构和设备应具有良好的耐久性和可靠性,能够适应长期使用和频繁开关;(6)溢洪道的运行管理应简便可行,方便操作和维护。
2、溢洪道的设计参数:(1)设计洪水位:根据流域洪水特征和设计标准,确定设计洪水位,作为溢洪道设计的基础。
(2)设计洪水流量:根据流域的降雨条件和水量特征,采用适当的统计方法,计算出不同重现期的设计洪水流量。
(3)溢洪道设计高程:根据设计洪水位确定溢洪道的设计高程,要使设计洪水能够顺利排出,并避免洪水对下游构筑物的冲击。
(4)溢洪道槽底坡度:为了保证洪水流速能够控制在一定范围内,溢洪道槽底坡度应适中,通常取0.001~0.02。
(5)溢洪道截面形式:溢洪道截面形式应根据洪水流量和槽底坡度确定,要保证溢洪道的流量能力,避免洪水堆积。
(6)溢洪道长宽比:溢洪道宽度的选择,一般应满足横坡条件下的解土能力,使洪水能够顺利通过。
3、溢洪道的结构形式:(1)直线溢洪道:适用于流量较小的情况,对洪水能量消能要求不高时使用。
(2)曲线溢洪道:适用于流量较大的情况,能够有效消能,并减少洪水冲击力。
(3)台阶式溢洪道:通过设置多层台阶,增加溢洪道的长度,减小洪水流速,消能效果好。
(4)消力池式溢洪道:在溢洪道末端设置消力池,通过洪水的冲刷和混合来减小洪水冲击力。
4、溢洪道的运行管理:(1)定期检查:定期检查溢洪道的结构和设备,发现问题及时修复和更换。
(2)清理疏浚:定期清理溢洪道的淤泥和杂物,保持通畅。
(3)维护管理:对溢洪道的闸门、过闸设备等进行日常维护和保养,确保其正常运行。
溢洪道设计规范篇一:水利工程设计水利工程设计(下)安徽省设计院总工程师骆克斌4.2 输水、泄水建筑物《强制性条文》共引入《溢洪道设计规范》SL253-2000共5条,其中有关布置方面1条,水力学2条,边坡稳定1条,基础防渗1条。
4.2.1 溢洪道1 溢洪道布置2 水力学问题3 边坡稳定问题4 基础防渗处理1 溢洪道布置SL253-2000第2.1.10条规定,当溢洪道靠近坝肩布置时,其布置及泄流不得影响坝肩及岸坡的稳定。
在土石坝枢纽中,当溢洪道靠近坝肩时,与大坝连接的接头、导墙、泄槽边墙等必须安全可靠。
2 水力学问题1)堰面压力设计标准针对溢洪道中特殊的水力学问题,规范第3.3.5条对实用堰堰顶附近堰面压力提出应满足下列规定:(1)对于常遇洪水闸门全开情况,堰面不应出现负压;(2)对于设计洪水闸门全开情况,堰顶附近负压值不得大于0.03Mpa;(3)对于校核洪水闸门全开情况,堰顶附近负压值不得大于0.06Mpa。
2 水力学问题2)水流空化数SL253-2000第3.7.2条规定,溢洪道各部位的水流空化数σ应大于该处体形的初生空化数σ1。
3 边坡稳定问题《强制性条文》引入该规范中第5.1.4条规定,溢洪道的边坡必须保持稳定,对可能失稳的边坡应采取适当的处理措施。
对地质条件复杂的高边坡尚应进行专门的研究及边坡监测设计。
对易风化掉块,易软化或抗冲能力低的稳定边坡也应进行相应的防护。
4 基础防渗处理《强制性条文》引入该规范第5.4.2条规定,防渗和排水设施的布设应满足下列要求:1)具有可靠的连续性和足够的耐久性。
2)防渗帷幕不得设置在建筑物底面的拉力区。
4.2.2 水工隧洞1 综述2 隧洞布置3 洞内水流流态的要求4 水工模型试验问题5 高流速水工隧洞的空化6 水工隧洞衬砌与裂缝控制7 不衬砌和采用喷锚衬护的水工隧洞8 灌浆和防渗1 综述水工隧洞包括发电引水隧洞、尾水隧洞、灌溉和供水隧洞、泄洪隧洞、排水隧洞、施工导流隧洞等。
前言本规范是根据水利部水利水电规划设计管理局水规局技[1997]7号文《关于印发水利水电勘测设计技术标准修订工作会议有关文件的通知》,对SDJ341-89《溢洪道设计规范》(以下简称原《规范》)修订而成. 本规范保留了原《规范》的章节结构,共分为总则,溢洪道布置,水力设计,建筑物结构设计,地基及边坡处理设计,安全监测设计等六章,并有五个附录. 本规范对原《规范》主要作了如下修改:(1)明确本规范使用范围为大中型水利水电工程中岩基上的1,2,3级河岸式溢洪道,删去了原《规范》中兼顾厂顶溢流,厂前挑流及泄洪隧洞出口的水力设计的内容. (2)充实了关于侧槽溢洪道的内容,并增加了关于面流戽流消能布置的内容.对进水渠直线段长度,首末端底宽比,泄槽弯道半径等规定了具体数值.(3)水力设计方面,在实用堰堰顶负压,WES堰,宽顶堰泄流能力,侧槽内横向水面差,边墙脉动压力,挑流鼻坎流速,泄槽收缩段,弯道及消力池等计算中,增加了若干系数的取值规定,补充了若干计算公式,图表.在防空蚀设计中,综合国内外近期研究成果,给出了若干常见体型的初生空化数,供不具备进行减压箱试验时判别能否发生空蚀.(4)在建筑物结构设计一章中,混凝土的强度指标改用了强度等级体系;按照GB50287-99《水利水电工程地质勘察规范》改写了混凝土与基岩接触面以及软弱夹层的抗剪断强度指标表;删去了堰(闸)基抗剪(纯摩)计算公式;在控制段荷载组合中,增加了完建和施工两种工况;增加了闸后段边墙的荷载组合表;增加了边墙抗倾及抗滑稳定的计算公式.(5)在地基及边坡处理一章中,增写了在确定建基面时不宜只通过开挖手段,还应考虑采取加固措施改善地基条件的内容.在边坡稳定分析中,采用了在传统基岩分类基础上,考虑岩层结构与边坡的几何关系的分类法,并将各类岩体可能失稳方式和常见处理措施一并列于附录D中.(6)将观测设计更名为安全监测设计,且将巡视检查列入监测内容,将仪器监测分为必设和选设两类,不再沿用《原规范》中一般性,专门性观测的分类. 本规范的归口管理单位和解释单位:水利部水利水电规划设计总院本规范修订的主编单位:水利部天津水利水电勘测设计研究院本规范的主要起草人:李启业郭竟章夏毓常牟广丞倪世生目次1总则2溢洪道布置2.1一般规定2.2进水渠2.3控制段2.4泄槽2.5消能防冲设施2.6出水渠3水力设计3.1一般规定3.2进水渠3.3控制段3.4泄槽3.5消能防冲3.6出水渠3.7防空蚀设计4建筑物结构设计4.1一般规定4.2进水渠衬护4.3控制段4.4泄槽底板4.5挑流鼻坎4.6消力池护坦4.7边墙4.8下游防冲5地基及边坡处理设计5.1一般规定5.2地基开挖5.3固结灌浆5.4地基防渗和排水5.5断层,软弱夹层及岩溶处理5.6边坡开挖及处理6安全监测设计6.1一般规定6.2监测项目附录A水力设计计算公式附录B控制堰(闸)基础,堰体抗滑稳定抗剪断参数附录C荷载计算公式附录D边坡岩体稳定性分类及处理措施附录E水力监测设计要求本规范用词,用语的说明1总则1.0.1为了在溢洪道设计中贯彻执行国家的技术经济政策,做到安全适用,经济合理,技术先进,制定本规范.1.0.2本规范适用于大,中型水利水电工程中岩基上的1,2,3级河岸式溢洪道的设计,4,5级溢洪道设计可参照使用.1.0.3溢洪道洪水标准应根据溢洪道的级别,按照SL 252-2000的规定确定.1.0.4设计溢洪道时,应充分掌握和认真分析气象,水文,泥沙,地形,地质,地震,建筑材料,生态与环境及坝址上下游河流规划要求等基本资料,特别是工程地质和水文地质资料.并应认真考虑施工和运用条件.1.0.5大型工程或水力条件较复杂的中型工程的溢洪道,应进行水工模型试验,论证其布置及水力设计的合理性;并根据防洪规划要求,确定溢洪道运行和闸门启闭方式.1.0.6溢洪道的设计除应符合本规范外,尚应符合国家现行有关标准的规定. 2溢洪道布置2.1一般规定2.1.1河岸式溢洪道布置可包括进水渠,控制段,泄槽,消能防冲设施及出水渠.。
溢洪道设计规范溢洪道是一种用于控制水体泄流的重要设施,其设计规范直接关系到水利工程的安全和效益。
本文将介绍溢洪道设计的一般规范和准则,以确保其在设计和建设过程中能够满足安全可靠的要求。
一、设计原则溢洪道设计应遵循以下原则:1. 安全性原则:溢洪道的设计安全系数应满足工程所处地区的防洪标准,以确保在洪水来袭时能够正常运行,保护下游区域的人民和财产安全。
2. 泄流能力原则:溢洪道的设计应充分考虑不同设计年限下的洪峰流量和洪水量,保证其具备足够的泄流能力,避免过流溢出,造成洪水灾害。
3. 稳定性原则:溢洪道的设计应考虑洪水冲刷、泥沙淤积等因素对溢洪道的影响,确保其在洪水冲刷和泥沙淤积情况下依然能够稳定运行。
4. 经济性原则:溢洪道的设计应在满足安全要求的前提下,尽可能减少工程造价,提高资源利用效率,实现经济可行性。
二、设计要求溢洪道的设计应满足以下要求:1. 泄流能力要求:根据设计条件和防洪标准确定溢洪道的最大泄流能力,并考虑溢洪能力与下游河道水位的匹配性。
2. 结构设计要求:溢洪道的结构设计应综合考虑坝体的稳定性、泄流洪水的冲击力和冲刷力,保证渠道的结构安全和持久性。
3. 引流能力要求:在设计中需要明确溢洪道的各个部位的引流能力,保证溢洪道的泄流通畅,避免过流溢出。
4. 防冲刷要求:针对可能出现的冲刷问题,需要采取相应的防冲刷工程措施,保证溢洪道在长期运行中的稳定性和安全性。
5. 耐久性要求:根据工程使用寿命确定溢洪道结构材料的选择和涂覆材料的防水防腐要求,保证溢洪道在使用过程中的耐久性和可靠性。
三、设计计算1. 泄流计算:根据所处流域的洪水特征、设计洪水的频率和历时,结合土地利用状况和流域地貌,计算出溢洪道的设计洪水流量。
2. 引流计算:根据给定水位,在泄流能力计算的基础上,确定溢洪道的引流能力需求,确保溢洪道的泄流通畅性。
3. 结构稳定计算:根据工程地质和地形条件,进行溢洪道的结构稳定性计算,包括坝体的稳定和冲刷计算,保证溢洪道在洪水冲刷情况下不发生破坏。
中华人民共和国行业标准溢洪道设计规范发布实施中华人民共和国水利部发布中华人民共和国行业标准溢洪道设计规范主编单位水利部天津水利水电勘测设计研究院批准部门中华人民共和国水利部施行日期年月日中华人民共和国水利部的通知号标准的名称和编号为本标准自年月在实施过程中请各单位二年七月十三日前言本规范是根据水利部水利水电规划设计管理局水规局技明确本规范使用范围为大中型水利水电工程中岩基上的级河岸式溢洪道水力设计方面供不具备进行减压箱试验建筑物结构设计强度等级体系按照删去了堰增加了完建和施工两种工况增加了闸后段边墙的荷载组合表增加在地基及边坡处理一章中增写了在确定建基面时不宜与边坡的几何关系的分类法并将各类岩体可能失稳方式和常见处理措施一并列于附录测内容本规范的归口管理单位和解释单位水利部水利水电规划设计总院本规范修订的主编单位水利部天津水利水电勘测设计研究院本规范的主要起草人李启业郭竟章夏毓常牟广丞倪世生目次总则溢洪道布置一般规定进水渠控制段泄槽消能防冲设施出水渠水力设计一般规定进水渠控制段泄槽消能防冲出水渠防空蚀设计一般规定进水渠衬护控制段泄槽底板挑流鼻坎消力池护坦边墙下游防冲一般规定地基开挖固结灌浆地基防渗和排水边坡开挖及处理安全监测设计一般规定监测项目附录水力设计计算公式附录附录荷载计算公式附录边坡岩体稳定性分类及处理措施附录水力监测设计要求总则级并应认真考虑并根据防洪规划要求溢洪道的设计除应符合本规范外尚应符合国家现行有关溢洪道布置一般规定如采用集中布置需应根据下列因素通过技术经济比较选定非常溢洪道宣泄超过正常溢溢洪道启用时溢洪道的位置应选择有利的地形和地质条件布置在岸边或垭口当两岸坝肩山势陡峻而布置上又需要较大的溢流前缘宽度溢洪道应布置在稳定的地基上并应充分注意建库后水文如需转弯时宜在进水渠或出水渠段当溢洪道靠近坝肩布置时其布置及泄流不得影响坝肩电源进水渠进水渠的布置应遵循下列原则进水渠较长时当进口布置在垭口面临水库时宜布置成对称或基本对称的宜在底板宜当水头损失较大或不满当岩性差时进水渠的直立式导墙的平面弧线曲率半径不宜小于倍导墙顺水流方向的长度宜大于堰前水深的距控制段倍堰前水深长度以远的导墙控制段应满足下列要求堰型可选用开敞式或带胸墙孔开敞式溢流堰有较大的超泄能力侧靠山一侧边坡可根据基岩特性确表安全超高下限值洪水时不应低于校核洪水位加安全超高值挡水时应不低于设计洪水位或正常蓄水位加波波浪的计算高度取平均波高公式计按附录泄槽当必须设置弯道时弯矩形断面弯道的弯道半径宜采用当结合岩石开挖采用梯形泄槽沿轴线宜为等宽当需要变化泄槽宽度时变化角度可按附录消能防冲设施河岸式溢洪道可采用挑流消能或底流消能溢洪道消能防冲建筑物的设计洪水标准级建筑物按级建筑物按级建筑物按消能防冲建筑物的校核洪水标准可低于溢洪道的校核洪水标但选定的消能设施应符合消能防冲设计洪水流量及以下各级流量尤其是在宣泄常遇洪水时消能效果良好结构可靠溢洪道挑流挑流鼻坎可河流的泥雾对枢纽其它建筑物及岸理地基中存在延伸至下游的缓倾角软弱结构面及断层破碎岸坡有可能被冲塌下游涌浪及回流危及大坝与其他建筑物的安全和正常运底流消能可用于各种地基出水渠当溢洪道下泄水流经消能后不能直接泄入河道而造成危害时水力设计一般规定溢洪道水力设计宜包括如下内容溢洪道的水力设计应满足下列要求和校核洪水标准按消能防冲设计的洪水标准按下泄水流流态及水流对河床的冲淤满足溢洪道沿程水头损失计算中的糙率系数可按附录查局部水头损失计算中的局部阻力系数可根据有关资料分析进水渠冲流速渠道设计流速宜采用渠道水面线可由引水渠首部到位于堰前倍堰上水头控制段堰顶下游堰面宜优先采堰面曲线可按附录计算当选择低实用堰时宜取上游堰高堰面曲线下接直线当堰顶以上最大水头与孔口高度的比值可按附录堰高小于驼峰堰堰面曲线参数可按附录实用堰堰顶附近堰面压力应符合下列规定堰顶附近的堰面负压值可按附表可根据不同堰型选用本规范附录闸墩墩头型式门槽型式可按实用堰末端与泄槽连接的反弧半径倍反弧最泄槽计掺气水深可按附录当泄槽段内布置收缩段时应进行急流冲击波验算计算公式对于收缩角小于计算公式见附录侧槽溢洪道中侧槽段水力设计应满足下列要求侧槽底坡且小于按侧槽末端断面临界水深计算出的临界底坡侧槽首端断面水深超过堰顶的高度的一半可采用调整段长度底坡尾部升坎高度可采用倍泄槽首端断面临界水深高宜取平均水深的必要时应经水工模型试验侧槽段水力计算公式见附录可采用抛物线连接抛物线方程可按附录圆弧半径可采用倍变坡处的断面水深再加上比较复杂的部位消能防冲挑流水冲刷坑上游坡度应根据地质情况确定宜在同时挑流鼻坎段反弧半径可采用反弧最低点最大水深的当采用差动式鼻坎时挑流鼻坎高程应通过比较选定在保证能形成自由挑流情况下当跃前断面平均流速超过时确定池底消力池两侧边墙高度可根据跃后水深附录出水渠防空蚀设计应重视溢洪道下列部位和区域的防空蚀设计溢洪道各部位的水流空化数应大于该处体型的若干体型的初生空化数及空蚀发生与否的判别标准见附录录施控制水流边界壁面的局部不平整度包括混凝土施工中留其标准可按附录当流速超过当采用掺气减蚀设施时建筑物结构设计一般规定前提下大体积混凝土的抗压强度可采用按表规定取值其余部位混凝土抗压强度可采用天龄期抗压强度值按表经论证亦可采用天龄期的抗压强度强度增长系数对于普通硅酸盐水泥取于矿渣硅酸盐水泥取混凝土泊松比取表表弱夹层层面的抗剪断强度的取值表钢筋强度和弹性模量注轴心受拉和小偏心受拉构件的钢筋抗拉强度值大于仍应按其他构件的钢筋抗拉强度值大于时取用对于直径大于级钢筋得利用冷拉后的强度级冷轧带肋钢筋经机械调直后抗拉及抗压强度值应降低每种钢筋根据其受力情况应采用各自的选用可行性研究报告以后各及附录验确定进水渠衬护底板衬护厚度可按构造要求确定混凝土衬砌厚度可取为混凝土衬砌的分块尺寸可按控制段控制段的结构设计应包括特别是混凝分离式适分离式底板必要时应设置垂直水流向的纵缝缝的位置控制段范围内的结构缝闸室基底应力及实用堰堰体应力分析可采用材料力学法重要工程或受宽顶堰及驼峰堰闸底板应力分析可采用对设置大型弧形基本荷载正常蓄水位或设计洪水位时的静水压力特殊荷载根据各种荷载实际同时出现的可能性按表荷载组合表注正常蓄水位情况考虑排水失效可按特殊组合计算作用在控制段上的荷载应按附录式计算式中按抗剪断强度计算的抗滑稳定安全系数体混凝土与基岩接触面的抗剪断摩擦堰堰算其最不利荷载组合方向的抗滑稳定性规定值表抗滑稳定安全系数注面上的最大垂直正应力时分别计入扬压力和不计入扬最小垂直正应力地震情况下可允许出现不大于双向受力并计入地震荷载时基底面可容许出现不大于应力于当结构和当结构不对称或受下列情况的稳定和应力分析闸墩一侧工作闸门关闭闸墩一侧工作闸门关闭对闸室的上部结构对于大型和受力条件复杂的中型工程的控制段的结构设必要时宜进行结泄槽底板挟沙情况等因素泄槽底板的厚度不应小于泄槽底板在消力池最高水位以下的部分应按消力池护坦设泄槽底板应设置结构缝分条件当地基不均匀性明显时也可在板挑流鼻坎挑流鼻坎在泄洪时所受的动水压力按附录的公式计挑流鼻坎顺水流向纵缝的间距可按消力池护坦尚应根据具体条件分析闸门启闭的不利情况取校核情况下式中护坦自重按混凝土重度计算护坦顶面上的时均压力的公式计算当采用锚固措施时护坦顶面上的脉动压力的公式计算护坦底面上的扬压力缝中宜设止边墙各项荷载均按附录泄槽反弧段边墙设计应考虑水流离心力进水渠及控制段边墙的荷载组合与控制段相同控制段以下各段边墙的荷载组合见表表溢洪道下游段边墙荷载组合表式中作用于边墙上的全部荷载对计算滑动面的切向分当墙基内存在不利软弱结构面时当按式计算边墙抗滑稳定安全系数不小于表规定值系数值应不小于表表边墙抗滑稳定安全系数值注在特殊组合情况下可允许出现不大于式中对于计入地震的特殊荷载组合边墙结构缝间距可取重力式边墙顶宽应不小于可利用渠槽底板的一进水渠边坡设置贴坡式边墙或护坡时可根据水流及地凝土衬砌等型式消力池贴坡式边墙的厚度宜按计算并结合工程经验类比确下游防冲地基及边坡处理设计一般规定溢洪道的地基处理设计应结合建筑物的结构和运用特运用特点等因素对地质条件复杂的高边坡尚应进行专门的研究及设计排水设施应因地制宜合理布设便于检修地基开挖结合地质条件对于岩层较差的地基不宜只采用开挖满足建筑物对地基的要求建筑物的基坑形状求确定控制段的基坑宜略向上游倾斜若受可开挖成带钝角固结灌浆溢洪道地基固结灌浆的范围和深度应根据岩石的破碎程宜在控制段及消能灌浆孔方向应尽孔深宜取距及固结灌浆宜在混凝土浇筑后进行灌浆压力当有混凝土盖重时可采用软弱岩体地基地基防渗和排水条件靠近坝肩的溢洪道防渗和排水设施的布设应满足下列要求宜采用水泥灌浆帷幕也控制段防渗帷幕的范围及深度该隔水层内相对隔水层透水率的控制标准为小于当地基的相对隔水层埋藏较深或分布无规律时帷幕深度除应满足遇透水性强的破碎带靠近坝肩的溢洪道其帷幕应与大坝帷幕衔接形成整体防渗帷幕体透水性控制标准应与相对隔水层透水性控制帷幕灌浆孔宜设一排育或可能发生渗透变形地段帷幕灌浆的孔距可取为有条件时帷幕钻孔方向宜采用铅直或略向上游倾斜应使钻孔尽量穿帷幕灌浆必须在有一定厚度混凝土盖重及固结灌浆后进行灌浆压力可通过试验确定帷幕孔表层段不宜小于的要求当必须降低地基内承压水的作用时应选择适宜的位置设应布设在防渗帷幕下游的与帷幕灌浆孔的间距在基底面不宜小于主排水孔的孔距宜为辅助排水孔孔距宜为连续的排水垫层但不宜骑对于规模较大的溢洪道宜优先选用在边墙地基或泄槽底底板下的排水系统相应布设护坦下的纵横排水系统的出口宜设在两侧边墙收缩水深处水面以下应符合以下规定在适当位置设置低于排水系统的集水井和可靠的自动抽对有防渗要求的边墙水面线以下部稳定不大时研究并根据类似工程经验采用加铺地基存在缓倾角断层破碎带或软弱夹层时应根据其埋藏深度及对建筑物的影响选择处理措施溢洪道地基的岩溶处理应与大坝及其他建筑物岩溶处理不同方式土或水泥砂浆边坡开挖及处理溢洪道开挖边坡坡度对边坡岩体应根据岩体结构特征进行分类判断边坡可能发生破坏的型式式及常用处理措施见附录还应考虑地质条件复高边坡或地质条件复边坡马道分级高度可选用马道宽度宜沿边坡走向结合马道位视需要可在边坡内布置排水隧洞安全监测设计一般规定条件设置必要的监测项目及相应设施仪器监测布设应满足下列要求位于坝肩的溢洪道的观测断面测点应与大坝统筹安排布设测站布设应统筹规划通条件监测设计中应要求施工单位负责保证施工期间各项监测记录整理分析后监测项目巡视检查和仪器监测的项目可按所列内容确表溢洪道安全监测项目表应根据地质条件需要及加各监测项目在不同时期的测次按水力学监测的设计要求见附录求按附录水力设计计算公式堰面曲线开敞式堰面堰顶下游堰面采用算式中堰面曲线定型设计于原点下游堰面曲线横与上游堰坡有关的指数表堰面曲线参数开敞式堰面堰顶上游堰头曲线可采用下列三种曲线等参数取值见表所示图堰顶上游堰头为双圆弧图堰顶上游堰头为三圆弧式中椭园曲线长半轴和短半轴时与上游堰面采用倒悬时应满足条件如图上游堰面倒悬堰头堰顶附近的最小相对压力与相对水头及带胸墙孔口式实用堰堰面曲线采用抛物线时如图式中图堰顶孔口式堰面曲线实用堰堰顶附近最小相对压力取表驼峰堰体型参数驼峰堰剖面示意图泄流能力计算公式型实用堰的泄流能力按下列公式计算上式适用于当时仍取值式中溢流堰总净宽表值表上游堰面坡度影响修正系数表中墩形状系数二维水流查得上游堰坡影响系数值由表闸墩侧收缩系数与闸墩头伸出上游堰面距离及淹没度有关中墩形状示意图边墩形状示意图。
溢洪道设计规范溢洪道是一种用于排除地面或水库中多余水流的重要设施,其设计规范十分重要。
下面是关于溢洪道设计规范的一些内容。
1. 设计目的:溢洪道的设计目的是为了安全排除水库或地面积水的多余水流,防止洪水造成的危害。
溢洪道的设计应符合安全、经济、实用的原则。
2. 选择溢洪道类型:根据地形条件、水库规模及功能要求,选择适当的溢洪道类型。
常见的溢洪道类型有自由溢流式、控制溢流式和节制、旁通溢流式等。
3. 设计洪水标准:根据当地的洪水特点和历史数据,确定合适的洪水标准。
一般有50年、100年、500年洪水标准等。
4. 流量计算:根据洪水标准和水库的设计容量,计算溢洪道的合理流量。
流量计算可以采用经验公式或数值模拟等方法。
5. 设计水位:根据水库的规模和功能要求,确定溢洪道的设计水位。
设计水位应在安全水位以上,能够有效控制水库的水位。
6. 溢洪道尺寸:溢洪道的尺寸设计应考虑洪水流量、速度、冲刷力等因素。
溢洪道断面的宽度、高度、坡度等应满足水力条件和安全要求。
7. 坝体和溢洪道的连结:坝体和溢洪道的连结应采用坚固可靠的方式,确保坝体和溢洪道之间的密闭性和稳定性。
8. 溢洪道的防渗措施:为防止溢洪道发生渗漏问题,应采取有效的防渗措施,如设置渗漏屏、防渗帷幕等。
9. 溢洪道的排水能力:为确保溢洪道的畅通,应设计合理的排水系统,包括溢洪道底部的排砂孔、排水管道等设施。
10. 溢洪道的监测和维护:完成溢洪道的建设后,应定期进行监测和维护工作,确保溢洪道的正常运行和安全性。
以上是关于溢洪道设计规范的一些内容,溢洪道的设计是保障水库安全的关键环节,需要严格按照规范进行设计和施工。
2中华人民共和国行业标准溢洪道设计规范条文说明目次总则溢洪道布置一般规定进水渠控制段泄槽消能防冲设施出水渠水力设计一般规定进水渠控制段消能防冲出水渠防空蚀设计一般规定进水渠衬护控制段泄槽底板挑流鼻坎消力池护坦下游防冲一般规定地基开挖固结灌浆地基防渗和排水边坡开挖及处理安全监测设计一般规定观测项目附加说明总则年月在规范修订大纲讨论会上确定本规设计由于这三部分内容分别纳入目前正在修订的级溢洪道级溢洪道设计非岩基上的在溢洪道的设计洪水和校核洪水根据我国介于年记载的对上述个工程洪水重现期的站年年的年最大洪峰流量的记录则认为该工程有个站年应出现的机率小于根据目前收集到的资料大于年一黄河陕县站自年以来多年记载的年最大流量的年年和由此可见对我国已建个大型工程已发生的最大泄量与设计泄量的之间的工程只有对山东省个大中型工程统计的个实际年最大洪量中重现期小于年的有年一遇的洪水流量将年一遇的洪水作为罕遇洪水的实用极限频如果最大可能洪水相当于水相当于对混凝土坝的设计洪水流量按下述三种流量填筑坝的设计洪水流量按混凝土坝算得的洪水流量增加该规范同时指出年一遇的洪水流量常常作为计算超高水位和设计溢洪道的设南非沿用的设计洪水标准混凝土坝为土石坝为强调设计溢洪道时应认真分析研究各项基本资对大型或水力学条件较复杂的中型工程的溢洪道强调其布溢洪道布置一般规定进水渠的主要功能是进水控制段主要是控制泄量消能设施是用以耗散水流能连接上下游水流在水流不能直接泄入原河道而造成危害进水渠和出水渠是根据地形条件来布置的本条规定根据地形地质等因素在枢纽设计中综合考虑溢不仅是一个技术经济问题若甚至危及大坝及本条强调采用非常溢洪道的布置质条件上述两点量很大而罕遇时尤其是对当地材料坝修建非常溢洪道来分担稀非常溢洪道的类型主要包括开敞澳大利亚维多利亚地区三座坝的洪峰流量及所设计的溢洪道最大流量如表年设计溢洪这充分说明了配置一个以上且标准不同的溢洪道的合理根据澳大利亚五座大坝的经济比较资料采用用主溢洪道加辅助溢洪道比采用单一溢洪道的造价可降低表及洪水及溢洪道流量据河北省资平均占总投资的泄水建筑物约占而据辽宁省修主坝为粘土心墙砂壳坝高孔弧形门尺寸漫顶式第一非常溢洪道位于右岸主溢洪道右侧最大泄量引冲式第二自溃非常溢洪年一遇洪水启巴基斯坦塔贝拉工程土石坝最大坝高正常溢洪道宣泄常遇洪孔有时为充分利用泄槽及消能设施亦可集中布置或对原苏联克拉皮文水利枢纽溢洪道采用浙江省南山水库自溃坝式非常溢洪道用宽的混凝土隔除枢纽总体设计要着重考虑泄洪建筑物布置的影响对下泄水流对河床和岸坡造成严重冲刷以及河道淤积保证其它建将不同的计算情况按最大泄量与相应来量表设计情况共个表校核情况共个从表可以看出即绝大多数在以上为增加占时的校核情况比设计情况的从以上的成果可以认为较为合适当采用多种泄洪建筑物组成的联合泄洪方式时当有条件设置非常溢洪道时前苏联的设计趋势主泄水建筑物按年一遇的洪水设计澳大利亚维多利亚州规定正常溢洪道按年一遇洪年一遇洪非常溢洪道的启用标准应根据工程诸方面条件综合考虑确将造成下游地区的较大损失时水位影响不大可采用较高的启溃标准且经功能关系如下主溢洪道宣泄常遇洪水副溢洪道按设计泄量与非常溢洪道辅助溢洪道本规范认为主溢洪道设计的常遇洪水标准可在会很少根据又无需设置消能美国陆军工程兵团的条对此有明确的如西班牙阿尔坎塔拉工程大坝为河床只能布置电站和孔泄槽有些工程受地形限制如东江拱坝枢大坝为连拱土石坝枢纽利用垭口修建溢洪道的工程实例就更多了而且土石坝的坝顶高程往往受到垭口溢洪道的地利用河道转弯凸岸适宜的山脊和台地布置溢洪道也为各种如伊泰普工程主坝为双支墩大头型试验确定最大洪峰流量溢洪道最大泄量刘家峡电站大坝为高孔进水其最大泄量为泄槽溢洪道国外采用侧槽式溢洪道的有墨西哥的密格表国内中型水库侧槽式溢洪道实例尔哈达尔哥堆石坝坝高设计泄量希腊的莫诺斯坝高设计泄量设计泄量如江西柘林第一溢洪道设在右岸横切山体的大断层上盘的垭倾角且内含丰富的承压水因此溢洪道山体稳定性较差溢洪道轴线选择时尽量使如采用挑流消能上盘渗影响渗透稳定估计有近万的断层破碎影响下游航道及抬高电站尾水故采上盘山体除下游压坡以提高山体下游视此外从水力条件考有时由也应尽量布置在进水渠或出水如因地形条件限制或者利用斜切鼻坎或其它异型鼻坎使水流转向以减少工程量如我国碧此时其转弯半径等参数须满岸坡的稳定和防止泄洪对岸坡的冲刷是水利水电工程中消能后的水流一般拱坝枢纽的河岸式溢洪道在地形条件允许的情况下宜布置离拱座较远如龙羊峡河岸式溢洪道设在右岸重力墩以右当开敞式溢的重力墩对于溢洪道的纵坡布置也宜尽量少挖基岩以免减少保持坝坝肩溢洪道与大坝相连接挡墙与因而都要求河岸式溢洪道与土石坝在布置上要有相当的距离以我国年代的土石坝设计规范就明确提到了进水渠因此前缘不得有阻碍进流的山头或建筑物愈大表所列国内外几个工程的进水渠转弯半径与进水渠宽之比值一般约为弯道至控制段一般应有进水渠一般为梯型断面而控制段进口是矩形断面表渠宽与转弯半径关系表进水渠进口为适应不同的地形应采用不同的体型以改善左导墙计值见表表由表中值范围本条规定宜为进水渠设置导墙时常用的结构型式为弧形直立墙和自上游起斜卧渐变为直立的扭曲半径不小于渠道底宽的四倍流造成溢流堰前缘水流紊乱导墙顺水流方向的长度其墙顶高程超出导墙用以隔断接近溢流堰的横向流以及明表所列为国内几个工程导墙长度与渠内水深表国内几个工程导墙长度与渠内水深的关系控制段本条提出其轴线选择按以往在工程建设中虽对这个问题比较慎如湖北省钟祥县温峡口水库原溢洪道建在闸室有产生滑动的可能年曾对闸基于交通及两岸连接布置并可使坝的防渗设施和控制段的防渗设使防渗系统的布置危基础我们调查的控制堰为实用堰的占但宽顶堰流量系数对泄流量比较大的溢洪道堰顶高程较开敞式的要低在库水位较低时因而有利于提高水库的汛期限制水位因有胸超泄能力不如开敞式溢流堰往往要用闸墩将闸墩的主要作用是间闸墩头部主要影响侧向收缩尾部主要凡下列情况可考虑将闸墩延长至泄槽内泄洪孔数较多将整个泄槽分成几巴拉圭的伊泰普溢洪道孔弧门尺寸下接等宽矩形断面中间有两道宽即两隔三区布左区槽宽我国鲁布革水电站左岸开孔弧门尺寸由渐变缩窄为溢洪道最大泄量为我国刘家峡水电站溢洪道共有最大泄量年在行当单孔开启甚至左右两孔对称开启时出闸水流迅速扩散并在泄槽内引起剧烈的折冲现象和冲击波水流冲击甚至翻越边墙因此对于运用频繁的布置闸墩时应注意处理好运用条件下出闸水流的流并应工作桥泄槽用泄槽作为其泄水部分泄槽的特点是流速高近年来为了适应地形条件这些溢洪道设计单宽流量为量为项工程的表有关工程泄槽弯道实例根据调整流态的需要也应逐渐横向倾斜中型溢洪道多采用第阿因为这种型式基本上能满足水力条件的要求第第种体型比较复杂只有在对冲击第种弯道一般用于泄槽宽度较宽而有单孔运用要求的工程较合适如鲁布革溢洪道第但对水流将产生新的扰动南谷洞等溢洪道泄槽采用了此种如缓冲塘式日本坝工规范中对溢洪道泄槽轴线转弯的提法是原则上应取且选用足够大的转弯半径同时提出应与底坡有变化在地质条件许可的情况下同时纵坡还要考虑当受地形条件限制或为了节省工程量而需变坡度时也宜先缓后陡因为水流经当变如采用先陡后缓的变坡方式于体型变化和离心力的作用流态复杂上游斜坡段坡度越陡竖向大小总之此种变沿程压力变化就比较平缓径外件简单或岳城水库溢洪道为了泄槽的平面型式应根据国内外部分变宽度泄槽工程实例如表表国内外部分变宽度泄槽工程实例其流态较好特别是采用底流消能工能保证比较好的消能效果考虑结合则易形成水流分布不均水面波及采用两级消力鉴于消力池边墙高达采用一般的竖所以采用了而泄槽边墙为了适应此情况也为并采取一些复杂的工程措施故泄槽边墙一般国内统计个溢洪道斜边墙坡比为消能防冲设施基本对于泄洪建筑物的消能防冲设施因稀遇洪水出现的机率很少筑物的挡水标准和枢纽的泄流能力与泄洪建筑物的消能防冲设前者涉及大坝及整个工程的安全要求有较河床泄洪建筑物西津水电站设计洪水年一遇年一遇自年月运行年中年发生一次较大洪水最大泄量其试验资料和下游岸坡波浪爬高当下泄流量在以下及以上时水势与波浪的作用都要比泄流量为同时对河床的冲刷当流量为和处最大底部流速高达和当流量为和时坝址底部最大横向流速高达和流量的广东省大隆洞水库溢洪道按年一我国个典型工程的平均最大泄量或的比值统计如下根据国内蓄后年及量将分别为和个工程由此增加对下游的冲刷破坏但尚未见到出现危及大坝及其为原设计流量的前述因开启少数闸孔集中泄并且年寿命作基础则年一遇洪水的风险率为级级建筑物按年一遇洪水设级建筑物按级建筑物按年一遇洪完善及大坝及其它主要建筑物安全或长期影响枢纽运行可根据消能防冲建筑物坏危及大坝及其它挡水故选定的消能工应满足一尤其二三在挑射的过程因为坚硬岩石具有较强的抗冲蚀性其余其余其特点是水流从坎上整片射出湖南省年修建的座主要挑流消能工程挑距比差动式远且鼻坎形状平滑简单它的不足之处是水舌比较集中弧半径与挑射角据美国对安差动式鼻坎又分矩形差动坎与梯形差动我国大差动式挑坎坡面反弧它是泄水建筑物经常采用的一种使流态突然转变对不宜采用消力池型水力条件进行技术经济综合比较大都在护坦上设置一些辅助迫使急流形成强迫水当下游尾水深度不足时降低池底高下挖式消力池池底高程的降低要满足产生水跃所必需的最小尾水深度否则当然如果消力池过短也会出现同样的结建尾坎或二道坝型消力池试验表明定水跃比一般自由水跃可缩短河岸式溢洪道采用冲击型消能工的实例很多阿尔康塔运行经验表明于河岸式溢洪道的特殊地形条件所决定的其次是斜坡消力池内的水跃比平底消力池的水跃为了控制斜坡消力池水跃位置如我国花山和大隆洞等工程的溢洪道扩散式消力池的最显著特征是在流态过渡区域内消力池横向扩大河岸式溢洪道陡槽末端采用扩散式消力池还是不少的其主要原因是这种池型面流及戽流消能型式在河床溢流坝使用较多其面流消表溢洪道出口采用面流消能实例国内外的河岸式溢洪道的出口消能采库溢洪道采用了面流消能型式浙江高溪水库及广东龙潭水库等个工程的溢洪道出口也采用了面流式消能溢洪道出口采用戽流型式消能目前出水渠出水渠工程是泄洪消能后的水流不能直接泄入下出水渠的作用是保证下泄洪水平稳水力设计一般规定由溢洪道的功能决定了在溢洪道设计中必须对水力设计给予本条规定水力设计应包括本规范附录鉴于当前水力学计算方法尚不本条强调溢洪道泄洪能力必须满足设计及校核工况下泄对于土石坝枢纽的溢洪道水头损失计算的精确度取决于正确选用糙率系数值及附录中列出常见材料的当计算取大值进水渠如西排子河水库溢洪道进水渠设计流速仅由个工程资料统计分析设计流速低于的共占的共设计流速在之间的共流速小于对于山坡较进水渠属沿程降落曲线当进水渠流速不控制段问题说明如下关于实用堰堰面曲线选择不同的堰型如表所列型幂曲线实用堰的流量系数最大故本规范规定宜优先采用表不同堰型不同堰高的流量系数比较关于幂曲线的几个参数幂曲线计算公式为关于上式中的确定高堰低堰的倍情况下堰面负压也不会超过关于上式中的当当时关于上式中的值值与堰的上游面坡度有关参见表表值表关于堰顶上游段堰头曲线型式堰顶上游段堰头曲线型式计有现有的试验研究表明三者在泄流能力和压力分布上游堰高限堰高高度因此本规范规定上游堰高一般应大于下游堰高对流量系数也有影响随对流量系数江西省水利科学研究所关于下游堰面坡度对泄流能力的试验度为在相同的相对堰上水头下面最低负压值高堰在附录中引进了山东省水利科学研究所关附录附录值适用于美国水道实验站试验资值录中表荐的较为简便的计算公式详对堰高及堰顶相对淹没水深对淹没系数的影响带胸墙孔口式溢流堰带胸墙的孔口实用堰根据国内数如表孔口高度范围为表孔口实用堰流量系数表值大体上随其平均值当安沙河及横山等溢洪道均采用带胸墙的孔口式平本规范推荐取宽顶堰驼峰堰鉴于驼峰堰迄今尚无定型剖面通常需通过水工模型试验确定其流量系数从年代后齐头型墩尾对提高墩尾下游堰面压力增加下泄水流掺气等方面收到泄槽段内较大的冲击波溢流堰与泄槽底板之间由国内为反弧断面平均流速用泄槽判断水面线类型一般而言泄槽底坡大于临界底坡水面线属型降水曲线中分别给出计算方原型观测资料表明国内外关于掺气水深计算的公式甚多采用各家公式计算掺气水深当收缩角较大时因此国内外部份溢洪道泄槽中共列入项工程溢洪道沿程收扩散角为附录中给出了计算泄槽急流弯道内外侧横向水位必要时宜通过模槽中横向水深也很不均匀当侧槽内为缓流时水流侧槽底坡流是很难做到的但必须保证在泄放设计流量下当不可避免时如日本葛丸水库侧槽后紧接转角为调整升坎可在泄槽首端断面产生临界水深使但根据国内外个工程的统计采用实用堰的占为保在表明当当末端断面底宽比侧槽内靠山一侧水面壅高流公式计算黄龙滩溢流坝因胸墙后工作门槽的沙坪溢流坝则是由于边墙靠大坝消能防冲其中忽略同时也忽略了挑流水舌表面该式中的流速为鼻坎出口断面平均流关于鼻坎出口断面平均流速算沿程水头损失水头为单宽流量为溢洪道泄槽总长即流速系数算得流速系数值为甚为接近本规范规定附录冲刷系数类给出地质条件不同将分为根据国内外个工程的统计资料冲刷坑上游边坡一般为因此本条规定冲坑上游坡度为收集到国内几项工程溢洪道挑流鼻坎相对反弧半径云第二溢洪道级值在对于河岸式溢洪道鼻坎反弧半径的取值大小就工程量而主要由挑距及冲刷深度二者共同冲刷岸坡则水舌入水角相应加大水流对河床冲刷此外反弧段内可冲刷鼻坎基脚而影挑角的选择要根据工程实际情况权衡统计国内其中小于个占大于个占因此本条提出鼻坎挑角一般可在对低鼻坎扩散及掺气作用矩形差动鼻坎主要尺寸选择坎的宽度比为为坎上扩散梯形差动鼻坎主要尺寸选择低坎挑角一般为当扩散角宽度比为当当水流流速大于圆化必要时可设置通气挑流鼻坎坎顶高程愈低坎顶高程一成自由挑流情况如乌江渡水电站泄洪时目测坎下水位比射流入水处的下底流消能工的水力设计最主要的是要保证在各级流量若需采用跃前断面平均流速过大消力池内的辅助消能工甚易发生空蚀破坏如陆水消力池下泄单宽流量为均流速为趾墩下部护坦表面产生空蚀破坏柘林消力池内消力墩处最大流速为运行后也发现墩下游底板被剥蚀破坏前苏联古比雪夫溢流坝消力池于年度汛泄洪下游水头差为年继续过水池首断面流速为汛后检查发现个消力墩中有因此本条规定当消力池跃前断面平均流速大于不宜在池中设当设计水跃消能工时跃前断面的收缩水深及相应流速是对于溢洪道泄槽直接进入消力池的情况布腊德累和皮特卡建议尾水深度的安全系数应不小于当消力池两侧岩基较差且布置有建筑物时为确保消力池本另加超高以避免水流当消力池两侧岩石完整多级消力池的水力计算曲如刘家峡溢洪道的单侧扩散溢洪道扭曲鼻坎后在消力池前渥出水渠计算过程中还要考虑到出水渠可能被冲刷的情况防空蚀设计都在流速大于接近消力墩和挑流鼻坎对于流速大于过去曾以过流边壁上的负近来多用水流空化数大于或小于该体型的初生空因应特关于各种过流体型的初生空化数国内外虽有不少研究但由因此本规范附录中规定平整度的对于流线型亦可通过常规水工模型试可用其绝对值近似代替初生空化本规范附录施工后混凝土表面残留的不平整突体比较典型的型式有国内在分析国内外有关资料基础上本规范采用前苏联提出的根据溢流落差控制不平整度的标准原中溢流落差适用范围为展到一根制不平整度标准如附录图录附录关于空腔长度可用刚体抛射公式或用尺度分析方法的经验公式或用有限元方法计算空关于空腔压力空腔压力不宜过低空由乌江关于保护过流边壁的临界掺气浓度满等个泄洪建筑物原型观测资料详细分析了个各型突体的掺气浓度与空蚀的关系提出近底临界掺气浓度不宜低于相应于国内若干工程原型实测最大单宽通气量如下乌江渡左洞乌江渡右滑下槽乌江渡左滑下槽巴西福兹杜阿里亚溢洪道第道通气槽冯家山溢洪洞下通气槽乌江渡号溢流坝通气槽冯家山溢洪道上通气槽乌江渡左滑上槽本规范附录中规定最大单宽通气量为关于通气管允许风速根据乌江渡工程原型观测通气管最大风速为型观测过程中但是我们分析了国内外个工程的资弧段的保护长度约对于直线段的保护长度约关于设置掺气减蚀设施与否的界限流速左右时也可能不发生空的部位均产生了空蚀破坏我国本条规定当流速超过建筑物结构设计一般规定针对一些已建岸边式溢洪道各部位混凝土设计指标不全的情况本条强调应满足强度和各项的强度弹性模量指标分别按后者规定用为了充分利用混凝土的后期抗压强值的确定并类比已建工程选附录转引自部分已建溢洪道采用的值列于表表我国已建溢洪道工程设计中和列几方面采取措施选择合适的浇筑施工期进水渠衬护控制段分离式底板与闸墩之间的接缝型式取决于结构受力条件已建工程中多数采用垂控制段设计时应计入的荷载及其组合内容与原荷载的计算公式采用了公式集中列于附录下其分布图形引用了但考甚至更护坦上扬压力保留了原根据收集到的有限资料在急流区脉动压力沿墙高分布在淹没水跃区脉动压力随水深而增大沿墙高呈梯形分布由于资料不充附录规定溢洪道边墙上的脉动压力按矩现行其他建筑物设计规范大多规定故本规依照前者有理论较严密但需知道填土的泊松比应注意的是冰层厚度内的冰压力与水压力不同时作用于建筑物冻土设计中应取其使闸门与冰层隔这是。
溢洪道设计规范SDJ341—89编制说明前言溢洪道设计规范SDJ341-89系根据原水利电力部水利水电规划设计院(83)水规设字第23号文通知进行编制的。
本规范组织编写者:水利水电规划设计院本规范主编单位:原水利电力部中南勘测设计院本规范参编单位:原水利电力部北京勘测设计院陕西省水利水电勘测设计院参加本规范专题研究单位:水利水电科学研究院、南京水利科学研究院、陕西省水科所、武汉水利电力学院、河海大学、北京水利电力经济管理学院、天津大学、长江水利委员会、西北勘测设计院、天津勘测设计院及湖北省水利勘测设计院。
规范的编制工作自1984年7月召开分工协调会到1989年元月完成规范报批稿,历时四年半。
编制工作大体分三个阶段,兹分述如下:第一阶段准备工作1984年7月5日至9日,由原水利电力部水利水电规划设计院和中南勘测设计院共同主持召开分工协调会,讨论通过《规范》编制提纲;协商各单位分工、工作计划和成果提交时间。
第二阶段调研及编写专题报告1984年8月~1985年9月,各规范和专题编制单位组织力量进行调研工作。
1985年11月5日至11日,由原水利电力部水利水电规划设计院和中南勘测设计院共同主持召开专题讨论会,专题内容涉及到溢洪道设计的各个方面,所附资料充实。
各专题报告基本总结了新中国成立以来大、中型溢洪道工程设计的经验,并吸取了国外有关工程的经验。
第三阶段规范编制1985年12月至1987年元月编制规范初稿。
1987年2月17日至23日由原水利电力部水利水电规划设计院和中南勘测设计院共同主持召开《溢洪道设计规范》(初稿)审查会,对各章中的主要问题进行了充分讨论,对条文修改提出了具体意见;并认为《规范》的编制工作比较认真,为提出(送审稿)创造了有利条件。
1987年3月至12月编制送审稿。
1988年10月6日至12日由原水利电力部水利水电规划设计院主持召开《溢洪道设计规范》(送审稿)审查会,对规范进行逐条修改,在讨论时认真考虑和研究了历次会议对规范的修改意见。