当前位置:文档之家› 铁路通信传输的构成及实现方法

铁路通信传输的构成及实现方法

铁路通信传输的构成及实现方法
铁路通信传输的构成及实现方法

铁路通信传输的构成及实现方法

【摘要】随着目前我国的铁路列车向高速化方向的迈进,为了保证有效的人机控制和提高运输效率,就必须要求我们建立健全功能完善的,技术构成先进的铁路通信网,本文就通过对相邻线、既有线通信设备和线路条件的分析,结合铁路通信传输系统的设置,以通信业务的需求的角度出发,从通信业务的需求、主要通信系统和容量的选择、电话交换系统、通信调度系统、无线通信系统、站间行车电话及其他专用通信系统、应急通信系统等方面,全面的阐述铁路通信传输系统的构成和实现的方法。

【关键词】铁路通信;传输;构成;实现

铁路通信传输是为了满足在铁路生产运输和建设的过程中所采用的用来进行各种信息的传递和处理的设备和技术。其中运输生产是其主要内容和重点内容,目的是为了达到行车和机车车辆的统一调度和调控。铁路因为具有路线不集中、分支多、涉及的业务繁多的特点,所以要形成一个统一通信是比较困难的。在对列车的行驶做出安全指挥的时候,采用的是无线通信,所以无线通信和有线通信都是铁路通信不可缺少的,这也是铁路多种通信方式相结合的体现。铁路的发展越来越快,铁路通信的需求也越来越高,并且现代通信技术的发展非常的快,所以在建设铁路通信系统的时候不仅要考虑当前的情况还应该为未来的长期发展留有技术空间。

1、基于铁路通信网现状的调查与分析

在建设铁路通信设备或者对其进行翻新改建的时候,应该对周边的线路和当前的线路情况作出考察,它们除了能够提供现实依据和数据以外,还能体现其优缺点和投资情况,这些数据和资料能够为建设和改建本线路通行方式提供依据和保障。

2、通信网构成、主要通信设备类型和容量选择

接入系统、调度通信系统、电源及环境监控系统、电力、红外轴温系统和信号监测等所需的通道需求是铁路传输系统所负责的主要内容,目的是与相关传输系统达到互联互通的目的。对通信业务的需求上要做出分析,根据接入用户的不同需求做出不同的业务供给。

2.1主要通信系统和容量的选择

综合考虑铁路通信网组网及发展需求,传输系统按骨干传输网、接入网两层网进行建设。

(1)骨干传输网:以本文第一节周边条件接入和实现条件为例,骨干传输网可采用SDH 2.5G bit/s传输系统,可利用4芯光纤构成复用段(1+1)保护,并在部分中间站设SDH 2.5G bit/S REG设备。(2)接入网:接入网可采用SDH 622M bit/s传输系统,利用2芯光纤开通SDH 622M bit/s光传输及接入网:在沿线各车站信号楼通信机械室分别设置SDH 622M bit/s光传输设备(ADM)及接入设备(NU)为满足各车站站房、货运楼、综合维修工区、机务折返段等处的通道需求,可在其内部设置基于SDH 155M bit/s的一体化光接入网设备(ONU),构成站内保护环。(3)传输和接入网关:在通信站可根据需求设置SDH 2.5G bit/s 传输网网管、SDH 622M bit/s传输网管、接入网网管设备。

2.2电话及通信调度系统

借助光传输和接入网系统的帮助,各站自动电话能够找到地方程控交换机,

铁路系统基本组成单位

铁路系统基本组成单位(铁路知识扫盲,别一说铁路就只知道售票的、乘务的,那只是铁路很小的部分。。。) 铁路系统可以分为车务段、机务段、工务段、电务段、车辆段、供电段!不要一见到铁路上的就是卖票的什么的,我说我是搞信号的,然后你们就问是不是那种拿个旗子摇的那种!现在给亲们普及下铁路常识,希望你们看完后能对铁路多些理解与宽容,人活着,都不易。。。 电务段概况 电务段是铁路系统的一个重要机构,负责管理和维护列车在运行途中的地面信号与机车信号及道岔正常工作的一个单位,通俗点讲,就是负责那个“交通红绿灯”的单位。电务段的职责是维护信号设备使信号正常显示,维护转辙机及道岔使道岔搬动正常,确保列车正常运行。需要说明下,现在的铁通在2000年以前也是电务段的一个重要组成部分,也就是说早期的电务段是由通信和信号2部分组成的。 目前的信号分为八显示和十显示两种,即有八种信号含义或者十种信号含义。八种的信号为“绿灯,红灯,红黄灯,绿黄灯,双黄灯,黄2灯,黄灯,白灯”;十种的信号再加上“红黄闪,双黄闪”两种,调度所根据线路的状况,机车的类型,确定某一区段最高限速,并通过地面信号和机车信号来控制机车的安全运行,地面信号与机车信号的显示应该是一致的。 2008年4月起,原机务段“监控车间”人员及设备整体划归电务段管理,改称“车载设备车间”。 车务段 车务段是铁路行车系统的重要单位之一,负责列车运营,车务段管理车站货运等业务,管辖辖区内的各大小车站,货运和客运的计划和收入,列车的运行监控。保证客运、货运的正常运营,保证运营收入的正常回收。一般特等站和一等站是路局直属,与车务段平级;二等及二等以下由车务段管辖。车务段一般内设安全科、技术科、运输调度科、营销科、职工教育科、总务科、劳动人事科、

高速铁路移动通信系统关键技术发展分析

摘要:移动通信系统参与高速铁路的运营对提升运营效率和服务水平具有十分重要的意义。本文笔者结合移动通信系统在高速铁路中的发展现状,分析高铁中移动通信技术的关键技术要点,为移动通信系统更好地服务高速铁路提出一定的技术参考。 关键词:高速铁路;移动通信系统;关键技术;发展 一、高速铁路移动通信系统概述 高速铁路移动通信系统是以高速列车计算机系统为主要载体,通过无线设备以及有线的接入,从而形成列车内部信息有效接收与发送的网络。高速铁路移动通信系统本身既可以用于对列车的控制,又可以作为一种现代化的服务手段服务于大众。就实际应用来说,针对目前的高铁移动通信系统的运行现况,加强高铁移动通信是改善高铁通信系统的主要内容。 二、高速铁路移动通信系统技术发展国内外现状对比 1、国外高铁移动通信系统技术发展现状 相比国内高铁移动通信系统技术的发展,国际高速铁路移动通信系统技术发展相对较成熟。比如,国际高速铁路除了能实现移动通信系统控制列车运营之外,还具备了面向提供旅客的无线网络服务,实现列车内部无线网的全面覆盖。不少国家已经可以运用周围环境中的无线网络来支持运营与服务。在实际中,许多国家利用一些先进技术,降低列车运行环境对无线信号的磨损,完善列车的网络服务。当列车内部缺乏良好的网络支持环境时,往往还可以利用卫星技术达到网络覆盖,弥补列车网络运行的不足。当卫星技术可以协助无线网络覆盖之后,就可以充分地满足列车运行和旅客的需求,保证数据传递的全面性和完整性。还有一些在高铁行业发展较为先进的国家,例如日本,为了完善列车的网络服务,还使用了泄露电缆实现网络传递,可以使无线网络进行良好的覆盖,充分做到列车运营的交流工作。总的来看,国际高速铁路的移动通信系统技术的发展因为起步早,相关科技也较为先进,因此在高铁运行过程中实现了良好的网络服务,为旅客提供了更为优质的现代化服务。 2、国内高铁移动通信系统技术发展现状 新型的移动通信技术在国内高铁行业正处于不断研发的阶段。为了更好满足高铁旅客的现代化需求,提升高铁的整体服务水平,积极更新移动通信技术在高铁运营中的使用水平已经成为高铁行业未来发展的重要目标和趋势。 三、高铁专用移动通信系统的发展 为了满足高铁移动通信系统网络的需求,专业移动通信系统(简称gsm-r)程序应运而生。作为专业的应用程序,gsm-r系统可以有效地为高速铁路提供较为稳定的移动通信技术。gsm-r在经历了长期检验和试用之后,已经投入实际使用,有效地降低了高铁移动通信系统的成本投入,同时成功地提升了旅客服务水平以及工作人员的工作效率。 随着高铁移动通信技术要求越来越高,传统的网络服务已经难以满足高铁发展的要求,gsm-r已经落后于当下的发展环境。无线网络技术支持成为高铁移动通信系统技术发展的新理念。拓展无线网络技术支持,实现对现代科技的改革。这样才能够成功的解决历史遗留的数据狭隘问题,将原本低效率的数据传导工作升级,达成网络传递操作的目标。随着现代化生活人们对生活品质的追求越来越高,高速列车在运营过程中的业务也越来越多样化,传统的网络服务已经难以满足实际的需求,新型的网络移动通信服务,终将取代传统的gsm-r系统以供高速铁路长久使用。 当前为了满足越来越多的网络需求,为了使新的移动通信系统得到更好的应用,在实际中,需要加强对该系统技术的要点控制,主要技术要点包括: (1)完善无线网络支持平台。为了满足通信系统的需求,无线平台必须拥有良好的信息传递通道,能够有效地实现对环境的无差别传递和对待,降低环境对网络信号的影响。因为高速铁路可能经过的道路环境非常复杂,充斥着各种导致信号网络中断的因素,保证信号的

第二章传输和接入网系统

第二章传输和接入网系统 铁路传输网是铁路各种语音数据和图像等通信信息的基础承载平台,接入网主要承载于传输网的接入层上,通过铁路通信接入网,可以将用户信息接入到相应的通信业务网络节点,并在传输网的支撑下,实现铁路通信的相应功能。 本章主要介绍了传输和接入网系统结构即各部分功能、系统维护项目等内容,同时引入接入网设备实例进行系统讲解。 第一节传输系统 铁路传输网是铁路各种语音、数据和图像等通信信息的基础承载平台,应满足铁路运输组织、客货营销和经营管理等通信的需要。 一、传输网结构 铁路传输网可分为三层结构,即骨干层、中继层和接入层。 铁路传输网骨干层主要承载铁道部到铁路局和铁路局之间的通信信息,中继层主要承载铁路局内较大通信站点之间的通信信息,接入层主要承载各铁路车站以及区间等站点的通信信息。 传输网系统示意图如图2-1所示。 二、传输制式 (一)PDH和SDH 通信中使用的时分多路复用传输网系统主要有两类,即准同步数字系列PDH(Plesiochronous Digital hierarchy)和同步数字系列SDH(Synchronous Digital hierarchy )。 1.PDH的缺点 (1)PDH只有地区性的数字信号速率和帧结构标准,不存在世界性标准。目前国际上通行的有三种数字信号速率等级系列,即欧洲系列、北美系列和日本系列,造成国际互通的困难。北美和日本采用1.544Mbit/s作为第一级速率(即第一次群)的PCM24路数字系列;欧洲和中国则采用2.048Mbit/s作为第一级速率的PCM30/32路数字系列。 (2)PDH没有世界性的标准光结构规范,各厂家各自采用自行开发的线路码型,给组网、管理和网络互通带来很大困难。 (3)PDH系统的复用结构除了几个低速等级的信号同步复接外,其他多数登记的采用异步复接,难以从高速信号中识别低速支路信号。 (4)PDH准同步复用帧结构中没有安排很多用于网络操作、管理和维护(OAM)的比特,因而无法对传输网实现分层管理和对通道的传输性能实现端到端的监控。 2.SDH的优点 (1)SDH的优点SDH可对网络节点接口(NMI)进行统一的规范,使得SDH 能实现横向兼容。 (2)SDH信号的基本模块是速率155.5220Mbit/s的同步传送模块(STM-1), 更高速率的同步数字系列信号,如STM-4(622.080Mbit/s)、STM-16 (2488.320Mbit/s)、STM-64(9953.280Mbit/s)可通过简单地将STM-1信号进行字节间插入同步信号复接而成,大大简化了复接和分接,是SDH十分适合于高速大容量光纤通信系统,便于通信系统的扩容和升级换代。 (3)SDH信号的基本传送模块可以容纳现有的北美、日本和欧洲数字信号速率

铁路专用通信设备

铁路专用通信设备 1.GSM-R GSM-R机车综合无线通信设备 GSM-R是专门为铁路通信设计的综合专用数字移动通信系统,它基于GSM的基础设施及其提供的语音调度业务(ASCI),其中包含增强的多优先级预占和强拆(eMLPP)、语音组呼(VGCS)和语音广播(VBS),并提供铁路特有的调度业务,包括:功能寻址、功能号表示、接入矩阵和基于位置的寻址;并以此作为信息化平台,使铁路部门用户可以在此信息平台上开发各种铁路应用,GSM-R的业务模型可以概括为: GSM-R业务 = GSM业务 + 语音调度业务 + 铁路应用 HY-473库检电台 HY-473库检电台用于机车出入库时对机车综合无线通信设备(简称CIR)进行功能定性检测,以保证机车上线运行时CIR正常工作。机车综合无线通信库检设备可以工作在GPRS或450MHz工作模式,可对450MHz机车台、GSM-R功能、800MHz预警进行功能检测。系统由计算机、打印机、测试模块集、天馈线、测试控制软件组成。其中测试模块集可由GSM-R模块、录音单元、控制单元、450M模块、800M模块组成。 2.无线列调系统 调度总机 调度总机是列车无线调度通信系统中的地面固定设备,设置在调度所,通过四线制有线线路与车站台连接。 车站电台 B制式车站台是专门为铁路车站设计的通信设备。该设备采用了最新技术,操作简便,具有很多的专用功能。 便携式车站电台

便携式车站设备,主要用于与机车电台、车站电台及手持台进行通话。便携台可通过内置电池供电(电池容量为12安时),在无外接电源的情况下,可保证正常工作8小时以上,电池电量不足时有声光提示;便携台可用专用的外接充电电源对内置电池充电,电池充满后充电器有相应提示。此外,便携台还设有按键及指示灯,便于测试和使用。 通用机车台 本电台是通用式无线列调机车电台,它兼容B、C制式机车台的所有工作模式。安装在列车机车上,供司机使用。可用于机车与调度、车站、其它机车、车长之间通信联系。利用GPS全球卫星定位系统,按机车的运行位置,适时控制机车电台的通信方式的变更,使之改变到与地面通信设备一致的工作模式上,从而实现与地面通信设备正常通信的目的。当机车在GPS的弱场区(如山区或隧道内)运行时,不能通过GPS定位来进行工作模式的切换,该电台可以通过人工选择通信模式,保证机车可以与地面通信设备进行正常通信。 3.列调系统测试设备 调度命令出入库检测设备 调度命令出入库检测设备是用于铁路列车无线调度系统中对机车调度命令进行出/入库检测的装置。安装在机车入库点的附近,对机车的调度命令进行地面检测和车上检测,将检测的结果反馈给计算机在屏幕上显示出来,并存储该结果。管理人员可以按时间、机车号查询或统计数据,并可以打印、导出数据。 HY464-2型监测总机 该设备用于铁路无线列调系统,通过有线线路对调度区段内的车站台、中继器和调度总机进行监测,并将监测结果显示在CRT屏幕上或通过打印机进行打印。该设备可对四个区段内的车站台、中继器和调度总机进行监测,分为人工监测和自动监测两种方式。

铁路基本常识百题

铁路基本常识百题  1.现代化交通运输主要包括铁路、水路、公路、航空和管道五种运输方式。  2.运输业的产品是旅客和货物的空间位移,计量单位分别是人公里和吨公里;统计周转量时,1换算吨公里=1旅客人公里=1货物吨公里。  3.铁路线路包括路基、桥隧建筑物和轨道三大部分。  4.我国铁路线路分为三个等级:Ⅰ级铁路、Ⅱ级铁路和Ⅲ级铁路。  5.车站线路的种类:正线,站线(到发线、牵出线、调车线、货物线、机走线和机待线等),段管线,岔线和特别用途线(安全线和避难线)。  6.线路平面是由直线和曲线(包括圆曲线和缓和曲线)所组成。  7.线路纵断面是由平道和坡道所组成。  8.铁路基本限界有机车车辆限界和建筑接近铁路建筑限界两种。  9.最常见的两种路基形式是路堤和路堑。  10.桥隧建筑物主要包括桥梁、涵洞、明渠和隧道。  11.轨道的组成包括钢轨、轨枕、道床、联结零件、防爬设备及道岔六个主要部分。  12.钢轨的断面形状为工字形,有轨头、轨腰和轨底三部分。  13.钢轨的类型或强度以每米长度的大致质量(公斤数)表示的。我国现行的标准钢轨类型有75 kg/m 、。  60 kg/m 、50 kg/m 两种。  和25m 14.目前我国钢轨的标准长度有12.5m 15.轨枕按其制作材料的不同,主要有木枕和钢筋混凝土枕两种。  ~4.85m 多种规格。  ,岔枕及桥枕长度为2.6 16.我国铁路普通轨枕的长度为2.5m 根之间。  17.每公里线路铺设轨枕的数量一般在1520 ~1840 18.道岔的形式主要有:普通单开道岔、双开道岔、三开道岔及交分道岔。  范围内两股钢轨工作用边之间的最小距离。  19.轨距是两股钢轨轨头部顶踏面向下16mm 的标准轨距。与标准轨距相对应的还有宽轨距(如1520mm ) 20.我国和大多数国家一样主要采用1435mm )。  和窄轨距(如1000mm 21.铁路线路上的分界点有三种:车站、线路所和自动闭塞区段通过色灯信号机,其中车站是有配线的分界点。  22.车站和线路所把铁路线路划分成若干个长度不等的段落,这些段落就叫做区间。其中,车站与车站之间的区间叫做站间区间,车站与线路所之间的区间叫做所间区间;自动闭塞区段通过色灯信号机之间 的段落叫做把区间分成若干个闭塞分区。  23.车站按业务性质分为货运站、客运站和客货运站(为数最多);按技术作业性质分为中间站(为数最多)、区段站和编组站;按客货运量和技术作业量的大小分为特等站和一、二、三、四、五等站。  24.由于区段站和编组站拥有较多的技术设备,并主要办理货物列车和车辆的技术作业,故又统称为技术站铁路线以技术站划分为区段。两相邻技术站间的铁路线段,称为区段。  25.客运站的跨线设备包括天桥、地道和平过道。  26.客运站按其布置图形式分为通过式、尽头式和混合式客运站。  27.货运站按其办理的货物种类分为综合性货运站和专业性货运站。  28.车站的生产活动包括客运作业、货运作业和行车技术作业。  29.客运站的作业包括办理客票的发售,旅客的乘降,旅客的文化和生活服务,行李和包裹的承运、装卸、中转,保管与交付等。  30.货运站的作业包括办理货物承运、装车、卸车、保管与交付,零担货物和集装箱的中转,货运票据的编制与处理等。  31.行车车站的技术作业包括办理列车的接发作业,到达技术作业和出发技术作业,列车的解体和编组作业,车辆摘挂和取送作业等。接发列车作业(接车作业、发车作业、通过列车作业)、货物列车技术

铁路通信传输网优化的必要性

铁路通信传输网优化的必要性 发表时间:2019-05-10T11:30:32.823Z 来源:《防护工程》2019年第2期作者:路阳[导读] 铁路通信是为铁路运输服务的专用网,有其特有的服务性质和安全要求。 中国铁路沈阳局集团有限公司通辽电务段内蒙古通辽市 028000 摘要:铁路通信是为铁路运输服务的专用网,有其特有的服务性质和安全要求。现代化铁路发展,安全是重中之重,通信信息的畅通是保证铁路运输发展正常运行的重要环节,而传输网又是各种通信业务联系的基础。这就要求铁路传输网应具有更强的保障铁路安全运营的通信能力,以适应现代化铁路发展的需求。目前,铁路通信的传输已由原来的电缆,同轴缆时代转向光纤数字化传输,现代化的光传输系统可以支持 众多的信息服务,铁路系统的种种通信业务,也都依托于现在的光传输网。 关键词:铁路通信;传输网优化 以前我们的区域网和接入网的建设,都是根据当时通信业务的需求临时组网,可由于铁路各系统对通信业务的需求越来越大,刚刚开通没两年的设备有的都已满配,不具备开通新业务能力,更有的传输网由于当时工程设计等因素,使得一些站点设备交叉能力达不到目前需求,这就需要对目前网路改造优化。 一、网络传输优化 1.网络优化的目的、原则 网络优化可以提高资源的利用率,提高安全稳定性以及运行维护人员的维护效率。 网络优化原则包括:保证原有网络的投资;掌握并分析现有网络的情况和业务发展趋势;采用可量化的优化方案、采用多种措施保障网络优化工程的实施。 2.网络优化涉及的参数 电力通信传输网优化涉及的主要参数有网络容量、网元配置、网管配置。 3.网络优化的概要过程 网络优化的过程主要包括准备优化、评估网络、分析并提供网络优化方案、实施优化: 3.1准备优化需要做如下工作 确认网络优化的需求;初步规划网络优化的范围、对象和日期;确认参与网络优化的人员;收集网络的文档和网络的运行状况;准备网络优化工具。 3.2评估网络包括以下内容 确认网络优化的目标、范围、对象、时间;确认网络优化方案的评估方法及细则;进行现场数据采集和测试;进行数据分析、评分和问题分析;发布评估总结和优化建议。 3.3分析并提供网络优化方案包括以下内容 确定优化站点、对象等;提供各项目的优化方案,包括:运行环境优化方案;组网优化方案、业务优化方案、网络自愈与保护优化方案、网络时钟优化方案;光网络备件优化方案、网络安全管理优化方案、网络ECC通信优化方案、网络其他优化和建议方案;提供网络优化总体分析与方案;提供方案所需的验证和试验总结、确定网络优化方案;购买设备、材料、相关服务项目;确认到货的设备、材料等。 3.4实施优化包括以下内容: 确认网络优化的实施方案;确认网络优化的实施人员及工具、车辆、备件、应急方案;实施网络优化;检查、验证优化后的网络;通报网络优化的实施过程和结果;总结与跟踪网络优化项目。 二、传输网优化的具体手段 1.促进运行设备的优化 传输网通常情况下是由传输设备同光缆传输网构成,以传输设备为核心,其质量的好坏与整个传输网络的安全运行有着直接联系。所以,运行设备的优化当之无愧是传输网优化的重点。在软件系统方面,升级155/622H设备以及2500+设备的主控单板软件,采用一直的版本,防止发生不必要的警告与性能问题,进一步加强业务配置及数据配置的规范。在硬件系统方面增设中心机房2500+的TPS(支路保护功能),对于关键板位要促进主备板保护,要对各个设备的防雷及接地性能展开全面的检查。在传输设备的资源配置上要向市区、城区、以及乡镇政府所在地等传输节点靠拢,从而促使业务在板位、通道以及支路方面能够得以满足。最后,就传输设备本身来说,在可行的基础上对原有的PDH、微波与SDH替换,这一来便有利于日常的监管、维护和业务配置,充分发挥SDH的网络保护方面的长处,进而促进传输网络业务安全可靠性的提高。 2.促进光缆线路的优化 光纤作为永久性的宽带,一切高速率光传输系统都以其为依托,且通信竞争力的提高都是以光纤为基础。光缆线为所有的光网络、传输系统提供依托,尤其是在城市规范化建设,农村土地资源日益紧张的形式之一,要对光缆线路进行直埋与假设,将会面临着多重困难。在传输网的建设中应该以光缆传送网为前提。光缆线路的优化主要从以下两个方面着手:第一,根据传输系统的现状,并同激战业务的未来发展方向有效地联系起来,从而使传输系统的安全性能够有所保障,另外还要将传输网的拓展性考虑到其当中来,增强路由规划与建设的先见,从而防止造成不必要的投资浪费。 第二,与光缆传送网的自身特点相结合,在市区以及县城依托重要街道越环路,构建“米”型管道网络,从而促使光缆纤心在整个城区的提供、调度和调整优化。而在农村地区,则可以通过农村公路建设,延国、省、县、乡,甚至是重要的村级公路都应该规划与建设光缆传送网,进而促使数据业务以及农村基站能够进行就近引进。 三、传输网优化应该注意的问题 1.传输网设计应注重可持续发展

高速铁路通信系统技术浅谈

高速铁路通信系统技术浅谈 摘要:从高速铁路通信系统的各种需求出发,通过对系统的技术浅谈,全面了解高速铁路通信系统所采用的高新技术,掌握高速铁路专用通信系统的特点,对高铁路通信工程的施工起到理论指导作用。 关键词:高速铁路通信系统高新技术浅谈 随着中国铁路的跨越式发展,八纵八横的客运专线和高速铁路正在紧锣密鼓地建设之中,现代高速铁路专用通信系统的各种需求出发,通过对系统的技术分析,全面掌握高速铁路通信系统所采用的高新技术,了解高速铁路专用通信系统的特点,以指导高速铁路通信工程的施工。 一、高速铁路对通信系统的要求 1.1 信息管理要求 高速铁路要求与沿线行车、旅客服务相关的数据与信息,采用计算机网络相连的方式输送和交换,保证运营的高效,使高速铁路的运营纳入信息化管理。 1.2 调度控制要求 传统铁路的运营调度方式,是以下达话音指令为主实施行车指挥的。随着列车运行速度的提高,要求行车指挥采用计算机管理、传输指令数据为主的调度方式,在区间控制列车运行的系统也采用计算机和数据控制。 1.3 通信技术要求 高速铁路系统中,要求以数字网络技术对综合调度系统进行技术支撑;较大的站间距需要引入区间接入技术;列车运行控制系统的信息要通过光纤网络传输;车上和地面之间采用综合无线通信系统,且传递信息从运营调度指挥扩大到客运服务、动车组数据与信息;无线通信系统要适应300公里/小时的运营速度。 1.4 通信业务需求 高速铁路通信系统业务需求体系在:一是为高速铁路信号、综合调度、信息化系统等专业的业务应用系统提供安全、可靠、高效的通信网网络服务;二是为高速铁路运输提供高质量的调度通信、旅客服务信息、会议电视、移动通信业务。 二、高速铁路通信系统技术分析

铁路通信信号

一、单项选择题(只有一个选项正确,共5道小题) 1. 我国铁路使用的信号机最多的类型是 (A) 固定信号 (B) 机车信号 (C) 移动信号 (D) 手信号 正确答案:A 解答参考: 2. 在自动闭塞区段,闭塞分区分界处设置的信号机是 (A) 出站信号机 (B) 通过信号机 (C) 进路信号机 (D) 调车信号机 你选择的答案: B [正确] 正确答案:B 解答参考: 3. 我国铁路广泛使用的道岔转换设备是 (A) 电液转辙机 (B) 电空转辙机 (C) 电动转辙机 (D) 人工扳道 你选择的答案: C [正确] 正确答案:C 解答参考: 4. 调车信号机显示白灯,其意义是 (A) 禁止机车或车列越过该信号机 (B) 禁止列车或车列越过该信号机 (C) 允许机车或车列越过该信号机 (D) 允许列车或车列越过该信号机 你选择的答案: C [正确]

正确答案:C 解答参考: 5. 轨道电路极性交叉的目的是 (A) 检查列车占用 (B) 实现“故障—安全”原则 (C) 传送信息 (D) 控制列车 你选择的答案: B [正确] 正确答案:B 解答参考: 二、不定项选择题(有不定个选项正确,共8道小题) 6. 实现闭塞的方法有 [不选全或者选错,不算完成] (A) 人工闭塞 (B) 半自动闭塞 (C) 自动闭塞 (D) 轨道电路闭塞 (E) 列车运行间隔自动调整 正确答案:A B C E 解答参考: 7. 继电器的主要参数有 [不选全或者选错,不算完成] (A) 吸起值 (B) 释放值 (C) 安全值 (D) 工作值 (E) 转极值 你选择的答案: A B C D E [正确] 正确答案:A B C D E 解答参考: 8. 轨道电路的基本参数有 [不选全或者选错,不算完成]

铁路基础知识

1. 现代交通运输方式有铁路、公路、水运、航空和管道,其中管道暂不适用于 旅客运输。 2. 运输业的产品是旅客和货物的空间位移,计量单位分别是人公里和吨公里; 统计周转量时,1换算吨公里=1旅客人公里=1货物吨公里。 3. 铁路线路包括路基、桥隧建筑物和轨道三大部分。 4?我国铁路线路分为三个等级:1级铁路、U级铁路和川级铁路。 5.车站线路的种类:正线,站线(到发线、牵出线、调车线、货物线、机走线和机待线 等),段管线,岔线和特别用途线(安全线和避难线)。 6?线路平面是由直线和曲线(包括圆曲线和缓和曲线)所组成。 7?线路纵断面是由平道和坡道所组成。 8?铁路基本限界有机车车辆限界和建筑物接近限界两种。 9.最常见的两种路基形式是路堤和路堑。 10?桥隧建筑物主要包括桥梁、涵洞和隧道。 11. 轨道的组成包括钢轨、轨枕、道床、联结零件、防爬设备及道岔六个主要部 分。 12. 钢轨的断面形状为工字形,有轨头、轨腰和轨底三部分。 13. 钢轨类型是用其单位长度的重量来表示的。我国现行的标准钢轨类型有75 kg/m、60 kg/m、50 kg/m、43 kg/m和38kg/m等,后两种基本已经淘汰。 14. 目前我国钢轨的标准长度有12. 5m和25m两种。 15. 轨枕按其制作材料的不同,主要有木枕和钢筋混凝土枕两种。 16. 我国铁路普通轨枕的长度为2. 5m,岔枕及桥枕长度为2.6?4.85m多种规格。 17 .每公里线路铺设轨枕的数量一般在1440?1840根之间。 18. 道岔的形式主要有:普通单开道岔、对称道岔、三开道岔及交分道岔。 19. 轨距是两股钢轨轨头顶面向下16mm范围内两股钢轨作用边之间的最小距 离。 20?我国和大多数国家一样主要采用1435mm的标准轨距。与标准轨距相对应的

铁路通信传输与接入网工程设计规范

铁路通信传输及接入网工程设计规范

1总则 1.0.1 为统一铁路通信传输及接入网工程的设计标准,提高工程设计质量,制定本规范。 1.0.2 本规范适用于新建、改建的铁路传输及接入网系统工程建设。 1.0.3 铁路通信传输及接入网工程设计应贯彻国家和铁路基本建设方针、政策,符合铁路运输生产和提高现代化管理水平的需要。 1.0.4 铁路通信传输及接入网工程建设应遵循技术先进、经济适用、安全可靠和统一标准(制式)、符合运输、合理布局、互联互通、资源共享的原则。新建和改建的工程都应做好与既有铁路通信网的衔接,合理利用既有资源。 条文说明:铁路通信传输系统是一个全程全网的系统。任何新建的通信传输系统都不会是一个孤立的系统,它总是要与其他网络(包括传输网络)互联,信息要进行交换。因此,新建和改建的工程都应做好与既有铁路通信网的衔接,合理利用既有资源,这部分也是设计应重点关注和考虑的问题。 1.0.5 作为铁路通信各种业务的基础承载平台,铁路通信传输及接入网应结合通信技术发展的主流,向传输数字化、管理智能化、业务多样化发展。 1.0.6 铁路通信传输及接入网工程设计应与业务需求和发展规划相适应,以近期业务需求为主,兼顾远期业务发展。机房等不易改、扩建的基础设施宜按远期设计,电源等宜按近期设计,系统其他设备可按交付运营后五年设计。 条文说明:铁路通信传输及接入网工程以设备为主,而且投资相对较大,因此不宜按照初期考虑,应适当考虑延长设备的使用寿命,但也要结合产品的更新换代速度,因此综合以上因素考虑,设计年度按照近期为宜。通信机房、外电等不易扩容的基础设施宜按照远期考虑。 1.0.7 铁路通信传输及接入网工程设计除应符合本规范外,尚应符合《铁路运输通信设计规范》(TB 10006)和国家现行有关标准的相关规定。

铁路通信传输的构成及实现方法

铁路通信传输的构成及实现方法 【摘要】随着目前我国的铁路列车向高速化方向的迈进,为了保证有效的人机控制和提高运输效率,就必须要求我们建立健全功能完善的,技术构成先进的铁路通信网,本文就通过对相邻线、既有线通信设备和线路条件的分析,结合铁路通信传输系统的设置,以通信业务的需求的角度出发,从通信业务的需求、主要通信系统和容量的选择、电话交换系统、通信调度系统、无线通信系统、站间行车电话及其他专用通信系统、应急通信系统等方面,全面的阐述铁路通信传输系统的构成和实现的方法。 【关键词】铁路通信;传输;构成;实现 铁路通信传输是为了满足在铁路生产运输和建设的过程中所采用的用来进行各种信息的传递和处理的设备和技术。其中运输生产是其主要内容和重点内容,目的是为了达到行车和机车车辆的统一调度和调控。铁路因为具有路线不集中、分支多、涉及的业务繁多的特点,所以要形成一个统一通信是比较困难的。在对列车的行驶做出安全指挥的时候,采用的是无线通信,所以无线通信和有线通信都是铁路通信不可缺少的,这也是铁路多种通信方式相结合的体现。铁路的发展越来越快,铁路通信的需求也越来越高,并且现代通信技术的发展非常的快,所以在建设铁路通信系统的时候不仅要考虑当前的情况还应该为未来的长期发展留有技术空间。 1、基于铁路通信网现状的调查与分析 在建设铁路通信设备或者对其进行翻新改建的时候,应该对周边的线路和当前的线路情况作出考察,它们除了能够提供现实依据和数据以外,还能体现其优缺点和投资情况,这些数据和资料能够为建设和改建本线路通行方式提供依据和保障。 2、通信网构成、主要通信设备类型和容量选择 接入系统、调度通信系统、电源及环境监控系统、电力、红外轴温系统和信号监测等所需的通道需求是铁路传输系统所负责的主要内容,目的是与相关传输系统达到互联互通的目的。对通信业务的需求上要做出分析,根据接入用户的不同需求做出不同的业务供给。 2.1主要通信系统和容量的选择 综合考虑铁路通信网组网及发展需求,传输系统按骨干传输网、接入网两层网进行建设。 (1)骨干传输网:以本文第一节周边条件接入和实现条件为例,骨干传输网可采用SDH 2.5G bit/s传输系统,可利用4芯光纤构成复用段(1+1)保护,并在部分中间站设SDH 2.5G bit/S REG设备。(2)接入网:接入网可采用SDH 622M bit/s传输系统,利用2芯光纤开通SDH 622M bit/s光传输及接入网:在沿线各车站信号楼通信机械室分别设置SDH 622M bit/s光传输设备(ADM)及接入设备(NU)为满足各车站站房、货运楼、综合维修工区、机务折返段等处的通道需求,可在其内部设置基于SDH 155M bit/s的一体化光接入网设备(ONU),构成站内保护环。(3)传输和接入网关:在通信站可根据需求设置SDH 2.5G bit/s 传输网网管、SDH 622M bit/s传输网管、接入网网管设备。 2.2电话及通信调度系统 借助光传输和接入网系统的帮助,各站自动电话能够找到地方程控交换机,

铁路系统构成

铁路系统构成 铁总 18个铁路局(哈、沈阳、呼和、京、太原、济南、郑州、上 海、武汉、西安、乌、南昌、成都、南宁、 兰州、昆明、广州、青藏) 站段(机务段、车务段、工务段、电务段、车辆段) 房产生活段:铁路单位、铁路居民区房屋建筑,供暖、管道维修单位。管理铁路公寓及其他生活单位。铁路建筑施工及铁路房屋建筑物大维修及管理。居民区供水。 供电段:铁路单位民用照明电,电力机车动力电的输送和供应。 工务机械段:即以前的大修段,路轨、铁路线路的大型维护和维修,路轨铺设单位。 动车段:为适应铁路跨越式发展战略部署,在部分地区设有动车段,主要检修动车组列车。全国有北京动车段、上海动车段、武汉动车段、广州动车段、成都动车段、西安动车段、沈阳动车段、福州动车段、郑州动车段9个动车段。 1.电务段 概况 电务段是铁路系统的一个重要机构,负责管理和维护列

车在运行途中的地面信号与机车信号及道岔正常工作的一个单位,通俗点讲,就是负责那个“交通红绿灯”的单位。电务段的职责是维护信号设备使信号正常显示,维护转辙机及道岔使道岔搬动正常,确保列车正常运行。需要说明下,现在的铁通在2000年以前也是电务段的一个重要组成部分,也就是说早期的电务段是由通信和信号2部分组成的。 目前的信号分为八显示和十显示两种,即有八种信号含义或者十种信号含义。八种的信号为“绿灯,红灯,红黄灯,绿黄灯,双黄灯,黄2灯,黄灯,白灯”;十种的信号再加上“红黄闪,双黄闪”两种,调度所根据线路的状况,机车的类型,确定某一区段最高限速,并通过地面信号和机车信号来控制机车的安全运行,地面信号与机车信号的显示应该是一致的。 2008年4月起,原机务段“监控车间”人员及设备整体划归电务段管理,改称“车载设备车间”。 全路电务段概况 目前全路共有18个铁路局(集团公司)、下辖47个电务段 电务系统的单位 铁路工种:信号工 单位级别:分为铁道部运输局电务部、铁路局电务处、段、车间、工区四级。

移动通信在铁路通信系统中应用

移动通信在铁路通信系统中应用 铁路运输是国家的经济大动脉,铁路通信系统是直接保证铁路运输的重要工具,它的质量的好坏直接影响铁路运输的效率以及运输速度和安全。随着科技的进步和发展,各种高新技术被广泛地应用在铁路通信系统中,使得铁路通信系统得到逐步提高和完善,并提高了铁路运输的运输速度、效率以及安全可靠性,本文主要讨论移动通信在铁路通信系统中的相关应用。 一、通信的作用 通信,指人与人或人与自然之间通过某种行为或媒介进行的信息交流与传递。铁路通信就是指利用有线通信、无线通信、光纤通信等现代化技术和设备,将铁路运输生产和建设过程中的各种信息进行传输和处理交换。随着我国高速铁路的建设和运行,对铁路通信技术提出了更高的要求,只有不断地发展和完善铁路通信系统,才能为现代化铁路的建设与运行提供重要技术支持和安全保障。 二、集群通信系统 集群通信系统是一种功能强大的专用移动通信系统,是通信与微处理机技术、程控交换技术、计算机网络技术紧密结合的产物。由于它具有群呼、组呼、强插、强拆等功能,特别适合于调度指挥以及应急、抢险等场合,并较好地解决了通信频率合理分配的问题,因而倍受专业运营管理部门的青睐,被确定为现行铁路移动通信方式的首选类型。但是这一系统还具有一定的缺点,主要包括采用动态的频率分配,没有考虑与周围公用网的有效融合问题,没有先进的路由合理选择功能,并且在建立通路和自动过网时存在信息丢失现象,保密性不强,容易受干扰等,这些缺点对于话音通信的影响不大,但是会对列车与调度指挥中心之间的实时双向数据通信造成较大的误码。因而对于要求较高数据通信误码率的场合并不适合。 三、GSM-R技术

铁路通信传输网采用PTN技术的场景研究

铁路通信传输网采用PTN技术的场景研究 摘要:近年来,随着人们生活水平的不断提高,对通信质量要求越来越高,通 信技术的进步和发展也越来越快,从初始的PDH发展到速度更快的SDH,再加上IP数据传输,MSTP技术随即产生。 关键词:铁路通信传输;PTN技术;分析 一、PTN技术 随着通信业务量的不断增加,数据带宽不断加大,现有通信技术已经不能很 好地满足现今通信需求的发展速度,PTN技术应运而生。PTN是以分组为传送单位,承载电信级以太网业务为主,兼容TDM、ATM和IP等各种业务的综合传送 技术;基于分组架构继承了MSTP的运用维护理念,融合了MSTP和MPLS的双重优点,是下一代网络中分组业务主要的承载技术。 PTN继承了SDH/MSTP技术的所有优势,是一种大带宽技术,单端口可实现100GE和400GE,与MSTP的10G大带宽相比带宽大幅提升;PTN分组交换的统 计复用技术、层次化的QoS技术实现了分组软硬管道技术,可实现数据业务承载 统计复用的高效性,以及关键价值业务的刚性承载体验。PTN具有50ms保护功能,使通信系统具有很高的可靠性。PTN采用MPLS-TP,是面向连接的组网技术,端到端的组网方式更便于处理连接问题,同时也能组成其他较复杂的传输业务网络。PTN支持完善的时钟同步解决方案,例如同步以太网、1588V2时间同步技术,可很好地适配铁路行业GSM-R向LTE演进的要求,并在处理以太网业务时,与MSTP的EOS以太网传输技术相比,更具有传输时延低的优势。PTN容量大、分 组化、高可靠性的优势决定了其拥有广阔的发展和应用空间。 二、铁路通信传输网技术选择 1、传输网骨干层 铁路通信传输网骨干层主要承载铁总至路局、路局间的业务传送。由于骨干 网是跨铁路局性的全国网络,需要长距离传送、大颗粒承载、大容量及高可靠性 的网络技术,所以骨干层适于选择OTN技术完成长距离传送,通过OTN定义ODU容器实现业务接入,并实现子波长级别的业务调度。冗余保护可通过光复用段、OCH或ODUk等实现对所有波长、单一波长或子波长业务的保护。 2、传输网汇聚层 铁路通信传输网汇聚层主要承载局管内的各类业务流量,在路局内铁路沿线 大的站点完成业务汇聚。目前汇聚层主要采用OTN技术、MSTP技术,随着数据 业务的发展,建设大容量、长距离、分组化的局干传送网是发展趋势,未来汇聚 层适于引入PTN技术,采用环形、星型或链型组网,业务量很大时,可考虑采用OTN技术,完成对汇聚层业务的传送。 3、?传输网接入层 铁路通信传输网接入层传送系统承载的各类业务具有多样性、高可靠性、专 用性等特点,接入层传送系统需构建一个宽带的、综合的、高可靠性的承载平台,以满足铁路业务的要求。目前接入层主要采用MSTP技术,随着数据业务的发展,建设大容量、融合多业务的接入层传送系统是发展趋势,接入层未来引入PTN技术,采用环形、星型或链型组网,完成对接入层业务的承载。 因此,PTN技术主要用于传输网汇聚层和接入层。当铁路建设需要高精度时 间同步的业务网如LTE-R等时,不能仅仅依赖卫星空中传递时间信号,采用能地 面传送1588v2信号的传送系统如PTN、增强型MSTP等,将成为必然的选择。

浅谈铁路通信系统中移动通信技术的有效应用

浅谈铁路通信系统中移动通信技术的有效 应用 近些年来,移动通信系统快速发展,先后从2G、3G到现在的4G网络,给人们的生活带来了极大的便利,同时我们看到,这项技术在工业、农业、交通运输业等方面也得到了广泛的应用,例如在铁路上的应用,GSM移动通信应用在铁路,称作GSM-R网络。 1 GSM-R在铁路的主要应用 GSM-R目前在铁路主要应用有10个方面:机车同步操作控制系统信息传输、列车控制系统安全信息传输、调度通信、列车尾部风压信息传送、旅客列车移動信息综合接入、机车移动信息综合接入、编组站移动信息综合接入、CTCS 级/CTCS级移动信息传输、应急指挥通信话音和数据业务、区间移动信息接入及公务移动通信。下面我们主要通过调度系统方面的应用,来认识这项技术。 调度通信系统功能 无线有线一体化是调度通信系统功能实现的基础。调度通信系统的主要客户为行车调度员、车站值班员、司机、运转车长、助理值班员、机务段调度员、列车段值班员、机车调度员、电力牵引变电所值班员、救援列车主任等相关人员。调度员呼叫司机、运转车长等移动终端这种调度电话业务的

实现就是通过调度通信系统与GSM-R系统的有机结合。调度系统的语音通信需求主要有以下有4种。 智能呼叫:行车调度员通过车次功能号寻址方式对调度辖区内的机车司机进行呼叫并通话;机车司机通过位置寻址方式对本站/前方站/后方站的车站值班员进行呼叫并通话,此方法中的位置寻址是通过GSM-R小区信息实现的;车站值班员按车次号通过功能号寻址方式对机车司机进行呼叫并通话;行车调度员对调度管辖区内车站值班员进行呼叫并通话;机车司机按位置寻址方式对当前所在调度管辖区的行车调度员进行呼叫并通话;车站值班员用移动终端号码对行车调度员进行呼叫并通话;车站值班员以单键方式对相邻车站值班员进行呼叫并通话。 语音组呼:该话音通信方式可以使各被叫均可加入通话过程中,在通信的过程中所有参与者都可进行讲话,包括行车调度员对调度管辖区内的所有机车司机进行呼叫并通话;行车调度员对调度管辖区内的所有车站或某些车站值班员进行呼叫并通话;行车调度员对调度管辖区内指定车站的车站值班员、助理值班员以及该车站基站范围内的所有机车司机进行呼叫并通话;行车调度员对调度管联盟辖区内的列车段、机务段运转、电力牵引变电所值班员等进行呼叫并通话;行车调度员、车站值班员、救援列车主任、助理值班员之间通过组呼方式进行通话;车站基站范围内机车司机和运转车

铁路通信专业知识及技能

铁路通信专业知识及技能

专业知识及技能: 1.光缆盘留时盒内光纤的弯曲半径不小于40毫米,接续后的光纤收容余厂单端引入引出不小于(0.8M),两端引入引出不小于(1.2M)。 2.铁路通信维护工作应遵循(统一规划)统一领导、统一负责和科学管理的原则,实现铁道部铁路局、通信(电务)段三级管理以及段、车间、工区三级维护的模式。 3.通信线路包括光纤、电缆线路、(明线线路)。 4.铁路传输网可分为三层结构:骨干层、中继层、(接入层)。 5.铁路通信系统由干线调度、(区段调度)通信系统组成。 6,。铁路通信设备维护实行大修、中修、(维修)三个修程。 7,。通信设备维修方式包括日常维修、集中检修、(重点整治)。 8.数据网络包括网络设备和(配套设备). 9.传输网电路分为三级干线电路也叫一级电路,局限电路也叫二级电路,(本地电路)也叫三级电路. 10直流电缆正极红色,负极(蓝色)。

11.GSM-R系统调测和干扰调测包括天线方位角、俯视角、基站设备发射功率、中继设备发射功率、设备参数调整和(天馈线驻波比)。12.交流电缆A相黄色,B相绿色,C相红色,零线(天蓝)或黑色。 13.光缆弯曲半径不小于光缆外径的(15)倍。 14.光缆中继段S点间最小回波:STM-4 1310nm 波长小于(-20dB)。 15.光缆中继段S点间最小回波:STM-4 1550nm 波长小于(-24dB)。 16.光缆中继段S点间最小回波:STM-64 1310nm 波长小于(-14dB)。 17.光缆线路有长途、地区、战场线路、线路附属设备、(光纤检测)设备。 18.铁路通信会议系统包括电视会议系统、(音频会议系统)。 19.电缆敷设预留首先按照要求余留,没有特殊要求的按下面规定余留,电缆接续后余留0.5~1.5M;电缆通信站引入口外余留3~5M;中间机械室引入口外余留(2~3)M 20.长途对称电缆接续经常使用的方法包括套管套肩封焊接续和(接头和接续)。

EN50128 铁路应用——通信、信号和处理系统——铁路控制和防护系统软件

EN 50128 : 2001 铁路应用——通信、信号和处理系统——铁路 控制和防护系统软件 2007.6

序言 本欧洲标准是SC 9XA,即通信,信号传输和处理系统技术委员会(CENELEC TC 9X)制订,铁路电气和电子应用的标准。草案文本作为EN 50128正式提交投票并于2000-11-01获得CENELEC批准。 修改了下列日期 --欧盟各国必须通过认可或发布相同的国家标准来执行本欧洲标准的截止日期2001 -1 1-01 --与本欧洲标准冲突的国家标准必须被废止的截止日期2003-1 1-01 本欧洲标准必须与EN50126铁路应用——可靠性,可用性,可维护性和安全性(RAMS);EN50129铁路应用——信号领域的安全相关电子系统同时阅读。 附件中指定的“规范性的”是本项标准主体的一部分。 附件中指定的“参考性的”只用于获得的信息。 本项标准中,附件A是规范性的而附件B是参考性的。

目录 引言 1.范围 2.参考文献 3.定义 4.目标和符合 5.软件安全完整性等级 5.1目标 5.2需求 6.人员及职责 6.1目标 6.2需求 7.生命周期和文档 7.1目标 7.2需求 8.软件需求规格说明 8.1目标 8.2输入文档 8.3输出文档 8.4需求 9.软件体系结构 9.1目标 9.2输入文档 9.3输出文档 9.4需求 10.软件设计和实现 10.1目标 10.2输入文档

10.4需求 11.软件验证和测试11.1目标 11.2输入文档11.3输出文档11.4需求 12.软件/硬件集成12.1目标 12.2输入文档12.3输出文档12.4需求 13.软件确认 13.1目标 13.2输入文档 13.3输出文档 13.4需求 14.软件评估 14.1目标 14.2输入文档 14.3输出文档 14.4需求 15.软件质量保障 15.1目标 15.2输入文档 15.3输出文档 15.4需求 16.软件维护 16.1目标 16.2输入文档

相关主题
文本预览
相关文档 最新文档