天津大学2014-48学时工程力学材料力学第九章-压杆稳定
- 格式:pdf
- 大小:880.65 KB
- 文档页数:51
第九章 压杆稳定
一、什么是压杆稳定?
二、临界压力的计算方法?
三、压杆的稳定性条件?
四、一根两端铰支钢杆,所受最大压力KN P 8.47=。
其直径mm d 45=,长度mm l 703=。
钢材的E =210GPa ,p σ=280MPa ,2.432=λ。
计算临界压力的公式有:(a) 欧拉公式;(b) 直线公式cr σ=461-2.568λ(MPa)。
试:(1)判断此压杆的类型;(2)求此杆的临界压力。
解:(1) 1=μ 86
21==P E σπλ 5.624
===d l i
l μμλ 由于12λλλ<<,是中柔度杆。
(2)MPa cr 301568.2461=-=λσ
kN A P cr cr 478==σ
四、图示四根压杆的材料、截面均相同,它们在纸面内失稳的先后次序为?
六、图示托架各杆均以圆柱形铰链
联接和支承,BC 杆直径d =40mm ,
材料为A 3钢,压杆的大柔度限值
λ1=100,λ2=60。
试判定压杆BC 的类型和该杆临界应力的计算公式。
(14分)
解 惯性半径为 104
===d A I i z mm (4分)
柔度为 83.80==i
l μλ (4分) 属于中长杆,用经验公式计算临界应力,即 λσb a cr -= (6分)。
第九章 压杆稳定§9—1 概述短粗压杆——[]σσ≤=AF Nmax (保证具有足够的强度) 细长压杆——需考虑稳定性。
一、压杆稳定性的概念:在外力作用下,压杆保持原有直线平衡状态的能力。
二、压杆的稳定平衡与不稳定平衡:三、临界的平衡状态:给干扰力时,在干扰力给定的位置上平衡;无干扰力时,在原有的直线状态上平衡。
(它是稳定与不稳定的转折点)。
压杆的临界压力:Fcr ( 稳定平衡的极限荷载)四、判断压杆稳定的标志——F cr稳定的平衡状态——cr F F 临界的平衡状态——cr F F =不稳定的平衡状态(失稳)——cr F F§9—2 两端铰支细长压杆的临界力假定压力以达到临界值,杆已经处于微弯状态且服从虎克定律,如图,从挠曲线入手,求临界力。
①、弯矩:w F x M cr -=)(②、挠曲线近似微分方程:w F x M w EI cr -=='')( 即,0=+''w EIF w cr令 EIF k cr =202=+''w k w ③、微分方程的解:kx B kx A w cos sin += ④、确定微分方程常数:0)()0(==L w w )sin (.0sin 0,B kx w kL ===→πn Kl =(n=0、1、2、3……)EIF L n k cr==∴π222L EI n F cr π=→临界力 F c r 是微弯下的最小压力,故,只能取n=1 ;且杆将绕惯性矩最小的轴弯曲。
2min2cr F L EI π=∴§9—3 其它支承下细长压杆的临界力2min2)(l EI F cr μπ=——临界力的欧拉公式(μ——长度系数,L ——实际长度,μL ——相当长度) 公式的应用条件:1、理想压杆;2、线弹性范围内;【例】:试由挠曲线近似微分方程,导出下述细长压杆的临界力公式。
解:变形如图,其挠曲线近似微分方程为:0)(m w F x M w EI cr -==''EI F k cr =2:令 crF m k w k w EI 022=+'' kx d kx c w sin cos += 边界条件为:.0,;0,0='==='==w w L x w w x, 2,,00πn kL F m d c cr=-== 为求最小临界力, “ n ”应取除零以外的最小值,即取:π2=kL所以,临界力为:2222)2/(4L EIL EI F cr ππ== (μ=0.5)【例】:求下列细长压杆的临界力。