电工技术第二章
- 格式:ppt
- 大小:3.73 MB
- 文档页数:118
第二章 电阻电路的分析本章的主要任务是学习电阻电路的分析计算方法,并运用这些方法分析计算各种电阻电路中的电流、电压和功率。
本章基本要求1. 正确理解等效电路的概念,并利用等效变换化简电路。
2. 掌握电阻串、并联等效变换、电阻的Y 形连接与Δ形连接的等效变换、电源的等效变换。
3. 电阻电路的分压公式和分流公式的应用。
4. 运用支路电流法和结点电压法分析计算电路。
5.运用叠加定理分析计算电路。
6.熟练应用戴维宁定理和诺顿定理分析计算电路。
7.应用戴维宁定理或诺顿定理求解电路中负载电阻获得的最大功率。
8.学会含有受控源电路的分析计算。
9.了解非线性电阻电路的分析方法。
本章习题解析2-1 电路如图2-1所示,设电路中每个电阻均为9Ω。
试将电路分别变换为Y 形电路和△形电路。
图2-1解 将ADE 、DBF 、EFC 组成的△形电路等效变换成Y 形电路,如图2-1(a)所示,其中每个电阻为Ω==∆Y 331R R然后将图2-1(a)所示电路再进行等效变换,其变换过程如图2-1(b)和(c)所示。
由图2-1(c)即可得到原电路的Y 形电路和△形电路,分别如图2-1(d)和(e)所示。
E F A B CD图2-1(a)图2-1(b)2-2 在图2-2中,已知电压源U s =27V ,电阻 R 1=R 2=6Ω,R 3=R 4=R 5=2Ω,R 6=R 7=6Ω。
试求支路电流I 1、I 2和I 3。
3R 5R 4R 6R 2R + - 图2-2 U S 1R 7R 1I 2I 3I AB C 3Ω 3Ω 3Ω2Ω 2Ω 2Ω 图2-1(c) 图2-1(d) B 5Ω 5Ω 5ΩA C BAC3Ω3Ω3Ω 6Ω 6Ω6ΩA B C 3Ω3Ω 3Ω 3Ω 3Ω 3Ω3Ω 3Ω 3Ω 图2-1(e) ACB 15Ω15Ω 15Ω图2-2(a)3R 4R 6R 2R +- U S 1R 7R 1I 2I3I解 由电路可知,3R 、4R 、5R 、6R 和7R 组成电桥电路,且6473R R R R =,故它是平衡电桥,因此可将原电路等效变换为图2-2(a)所示电路。
第二章 电路分析方法【引言】①电路分析是指在已知电路结构和元件参数的条件下,确定各部分电压与电流之间的关系。
②电路按结构形式分③分析和计算电路原则上可以应用欧姆定律和基尔霍夫定律解决,但往往由于电路复杂,计算手续十分繁琐,还需用到一些其他方法,以简化计算。
本章介绍三种最常用的电路分析方法:支路电流法、叠加定理和戴维宁定理。
学习目的和要求1.掌握用支路电流法分析电路的方法。
2. 掌握用叠加定理分析电路的方法 3. 掌握用戴维南定理分析电路的方法。
2-1 支路电流法【讲授】计算复杂电路的各种方法中,最基本的方法是支路电流法。
一、内容:以支路电流为待求量,利用基尔霍夫两条定律,列出电路的方程式,从而解出支路电流。
【说明】因基尔霍夫定律适用于任何电路,故支路电流法是分析复杂电路的一种最基本方法,可以在不改变电路结构的情况下求解任何电路。
〔例2-1-1〕试用支路电流法求例1-2-3的两台直流发电机并联电路中的负载电流I 及每台发电机的输出电流I 1和I 2。
图2-1-1简单电路——单回路电路。
用欧姆定律即可解决。
复杂电路——不能用串并联的方法将多个回路化简为单回路的电路〔解〕(1)假定各支路电流的参考方向如图2-1-1所示。
根据基尔霍夫电流定律列出结点电流方程。
对于结点A 有 I 1+I 2-I =0 (1) 对于结点B 有 -I 1-I 2+I =0【说明】①这两个方程中只有一个是独立的。
另一个可由②一个独立的电流方程中至少应包含一个在其它方程中没有出现过的新支路电流。
一般情况下,如果电路有n个结点,则按基尔霍夫电流定律列出的独立方程数为n-1。
至于选那几个结点列方程,则是任意的。
③本例中选结点A的电流方程作为独立方程,把它记作式(1)。
(2)根据基尔霍夫电压定律,列出回路的电压方程。
对于回路Ⅰ有I1R1-I2R2+U S2-U S1=0 (2)对于回路Ⅱ有I2R2+IR-U S2=0 (3)本例中共有三条支路,也就是有三个待求电流I1、I2和I,因而有三个方程即可求解。