碱金属元素的原子结构
- 格式:ppt
- 大小:234.00 KB
- 文档页数:14
碱金属元素知识点总结碱金属元素是指周期表中第一族元素,包括锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)和钫(Fr)。
这些元素具有相似的化学性质,如低密度、低熔点、高电导率等特点。
以下是对碱金属元素的一些重要知识点进行总结。
1. 物理性质:碱金属元素在室温下大多为银白色金属,具有低密度和低熔点。
它们是非常活泼的金属,可以用刀片切割,并且能够导电和导热。
2. 原子结构:碱金属元素的原子结构特点是外层电子数为1,在元素周期表中处于第1A族。
这使得碱金属元素容易失去外层电子,形成带正电荷的离子。
3. 化学反应:碱金属元素与非金属元素反应时,倾向于失去一个电子形成带正电荷的离子。
与水反应时,会产生氢气并生成碱性溶液。
例如钠与水反应的化学方程式为2Na + 2H2O → 2NaOH + H2。
4. 反应性:碱金属元素的反应性逐渐增加,从锂到钫依次增强。
这是由于原子半径的增加和电子层的扩展导致外层电子离子化能的降低。
5. 合金:碱金属元素可以与其他金属形成合金。
合金通常具有更好的机械性能和导电性能。
例如,钠钾合金(NaK)被广泛用作热传导介质和储热材料。
6. 应用:碱金属元素在许多领域有广泛的应用。
锂广泛用于电池、合金和药物制剂;钠用于制备肥皂、玻璃和金属处理;钾广泛用于农业肥料和肥皂;铷和铯用于原子钟和激光技术;钫由于其放射性特性,目前尚无实际应用。
7. 危险性:碱金属元素具有一定的危险性。
由于其与水反应放出氢气,可能引发爆炸。
此外,碱金属元素的化合物有毒,对人体和环境有一定危害。
8. 用途举例:锂可用于制造锂离子电池,是电动汽车和便携式电子设备的重要能源;钠在化工工业中用于制备氢氧化钠和制备其他化合物;钾广泛用于农业肥料,促进作物生长;铷和铯在激光技术和通信领域有应用;钫目前主要用于科学研究。
9. 碱金属离子:碱金属元素失去一个外层电子后会形成带正电荷的离子。
这些离子在溶液中具有很高的电导率,被广泛应用于化学分析和电化学研究中。
高中化学碱金属知识点规律大全1.碱金属元素碱金属包含锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)、钫(Fr)六种元素.由于钫是人工放射性元素,中学化学不作介绍.2.碱金属元素的原子结构相似性:碱金属元素的原子最外层都只有1个电子,次外层为8个电子(其中Li原子次外层只有2个电子).所以在化学反应中,碱金属元素的原子总是失去最外层的1个电子而显+1价.递变性:Li、Na、K、Rb、Cs等碱金属元素的原子核外电子层数逐渐增多,原子半径逐渐增大,核对最外层电子的吸引力逐渐减弱,失电子能力逐渐增强,元素的金属性逐渐增强.3.碱金属的物理性质及其变化规律(1)颜色:银白色金属(Cs略带金色光泽).(2)硬度:小,且随Li、Na、K、Rb、Cs,金属的硬度逐渐减小.这是由于原子的电子层数逐渐增多,原子半径逐渐增大,原子之间的作用力逐渐减弱所致.碱金属的硬度小,用小刀可切割.(3)碱金属的熔点低.熔点最高的锂为180.5℃,铯的熔点是28.4℃.随着原子序数的增加,单质的熔点逐渐降低.(4)碱金属的密度小.Li、Na、K的密度小于水的密度,且锂的密度小于煤油的密度.随着原子序数的增大,碱金属的密度逐渐增大.但钾的密度小于钠的密度,出现反常现象.这是由于金属的密度取决于两个方面的作用,一方面是原子质量,另一方面是原子体积,从钠到钾,原子质量增大所起的作用小于原子体积增大的作用,所以钾的密度反而比钠的密度小.4.碱金属的化学性质碱金属与钠一样都是活泼的金属,其性质与钠的性质相似.但由于碱金属原子结构的递变性,其金属活泼性有所差异,化合物的性质也有差异.(1)与水反应相似性:碱金属单质都能与水反应,生成碱和氢气.2R+2H2O=2ROH+H2↑(R代表碱金属原子)递变性:随着原子序数的增大,金属与水反应的剧烈程度增大,生成物的碱性增强.例如:钠与冷水反应放出热量将钠熔化成小球,而钾与冷水反应时,钾球发红,氢气燃烧,并有轻微爆炸.LiOH是中强碱,CsOH是最强碱.(2)与非金属反应相似性:碱金属的单质可与大多数非金属单质反应,生成物都是含R+阳离子的离子化合物.递变性:碱金属与氧气反应时,除锂和常温下缓慢氧化的钠能生成正常的氧化物(R2O)外,其余的碱金属氧化物是复杂氧化物.4Li+O2=2Li2O4Na+O22Na+O2Na2O2(过氧化钠,氧元素化合价-1)K+O2KO2(超氧化钾)(3)与盐溶液反应碱金属与盐的水溶液反应时,首先是碱金属与水反应生成碱和氢气,生成的碱可能再与盐反应.特别注意:碱金属单质都不能从盐溶液中置换出较不活泼金属.如:2Na+CuSO4+2H2O=Cu(OH)2↓+Na2SO4+H2↑5.焰色反应(1)概念:焰色反应是指某些金属或金属化合物在火焰上灼烧时,火焰呈现特殊的颜色(称焰色).(2)几种金属及其离子的焰色Li(Li+)紫红Na(Na+)黄色K(K+)紫色(透过蓝色钴玻璃观察)Cu(Cu2+)绿色Ca(Ca2+)砖红色Ba(Ba2+)黄绿色Sr(Sr2+)洋红色(3)焰色反应是物理变化.焰色是因为金属原子或离子外围电子发生跃迁,然后回落到原位时放出的能量.由于电子回落过程放出能量的频率不同而产生不同的光.所以焰色反应属于物理变化(但单质进行焰色反应时,由于金属活泼则易生成氧化物,此时既有物理变化又有化学变化).(4)焰色反应实验的注意事项a.火焰最好是无色的或浅色的,以免干扰观察离子的焰色.b.每次实验前要将铂丝在盐酸中洗净并在灯焰上灼烧至火焰无色(在酒精灯焰上烧至不改变焰色)。
碱金属元素的原子结构和碱金属的性质教学目的使学生了解碱金属的物理性质和化学性质,并能运用原子结构的初步知识来了解它们在性质上的差异及递变规律,为今后学习元素周期律打好基础。
对学生进行科学方法的训练。
教学重点碱金属元素的性质以及原子结构的关系教学难点教学方法模式的训练教学方法启发、引导、讨论、实验、对比、练习等课时安排:1课时教学用具投影仪、铁架台(带铁圈)、石棉网、酒精灯、烧杯、玻璃片、水、金属钠、金属钾、酚酞试液。
教学过程[引入]前几节课我们共同学习了碱金属的代表性元素——钠及其化合物的主要性质,本节课我们继续学习第三节碱金属元素。
[板书]第三节碱金属元素[师]我先问大家两个问题:碱金属共包括哪几种元素?为什么把这几种元素统称为碱金属?[生]碱金属包括锂、钠、钾、铷、铯、钫,因为它们的氧化物的水化物是可熔于水的强碱,因此被统称为碱金属。
[板书](Li、Na、K、Rb、Cs、Fr)[师]回答得很好。
钫是一种放射性元素,我们现阶段不研究它。
人们把锂、钠、钾、铷、铯等叫做碱金属,并把它们放在一起研究,说明它们之间存在着某种内在的联系,这种联系我们可以从两个方面进行研究:即相似性和递变性。
因为结构决定性质,本节课我们首先从微观的原子结构特征入手。
[板书]一、原子结构[师]请同学们在本上写出Li、Na、K的原子结构图,同时观察它们之间有哪些联系?然后翻看36页表2-2中Rb、Cs的原子结构图,总结碱金属原子结构上的相似性和递变性。
[投影板书]一、碱金属的原子结构性质相似性:递变性:[生]相似性是最外电子层都有一个电子;递变性是随着核电荷数增加,原子的电子层数增多,原子半径增大。
[板书]相似性:最外电子层都有一个电子;递变性:随着核电荷数增加。
原子的电子层数增多。
原子半径增大[师]因为结构决定性质,先让我们共同学习一下碱金属的物理性质[板书]二、物理性质[讲]大家一定要注意看36页左上角的注解1对钾的密度反常的解释。
碱金属是指周期表中第一组元素,包括锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)和铍(Fr)(有些版本的周期表中将氢(H)也包括在内)。
碱金属具有以下特点:
原子结构:碱金属原子的外层电子结构为ns^1,其中n代表能级数,s代表轨道类型。
这使得碱金属具有较低的电离能和较大的原子半径。
金属性质:碱金属是典型的金属,具有良好的导电性和热导性。
它们具有银白色的外观,并且在常温下都是固体。
高反应性:碱金属具有非常高的反应性,尤其是与水反应。
它们可以与水剧烈反应产生氢气并产生碱性溶液。
低密度:碱金属的密度相对较低,是常见金属中最轻的。
易氧化:碱金属很容易与氧气反应形成氧化物。
在空气中暴露时,碱金属会迅速与氧气反应生成氧化物或过氧化物。
高活性:由于其电子配置的稳定性,碱金属非常容易失去外层电子,形成+1的正离子。
因此,它们在化学反应中通常以单价正离子的形式存在。
碱金属在很多领域都有广泛的应用,例如电池制造、合金制备、催化剂、荧光材料等。
然而,由于其高度反应性和易氧化性,碱金属在储存和处理时需要特别注意安全措施。
专题02 碱金属元素结构与性质一、碱金属元素的原子结构特点二、碱金属元素的性质1、碱金属单质物理性质变化规律随着原子序数的递增,碱金属单质的密度逐渐增大(钾反常),熔、沸点逐渐降低。
2、碱金属的原子结构与化学性质的关系(1)相似性原子都容易失去最外层的一个电子,化学性质活泼,它们的单质都具有较强的还原性,它们都能与氧气等非金属单质及水反应。
碱金属与水反应的通式为2R+2H2O===2ROH+H2↑(R表示碱金属元素)。
(2)递变性随着原子序数的递增,原子半径逐渐增大,原子核对最外层电子的引力逐渐减小,碱金属元素的原子失电子能力逐渐增强,金属性逐渐增强,单质还原性增强。
①与O2的反应越来越剧烈,产物更加复杂,如Li与O2反应只能生成Li2O,Na与O2反应还可以生成Na2O2,而K与O2反应能够生成KO2等。
②与H2O的反应越来越剧烈,如K与H2O反应可能会发生轻微爆炸,Rb、Cs遇水发生剧烈爆炸。
③最高价氧化物对应水化物的碱性逐渐增强,CsOH的碱性最强。
3、元素金属性强弱可以从单质与水(或酸)反应置换出氢的难易程度,或其最高价氧化物对应的水化物——氢氧化物的碱性强弱来判断。
【例1】下列各组比较中不正确的是()A.锂与水反应不如钠与水反应剧烈B.还原性:K>Na>Li,故K可以从NaCl溶液中置换出金属钠C.熔、沸点:Li>Na>KD.碱性:LiOH<NaOH<KOH【答案】B【解析】A、锂的活泼性比钠弱,与水反应不如钠剧烈;B、还原性,K>Na>Li,但K不能置换出NaCl溶液中的Na ,而是先与H 2O 反应;C 、碱金属元素从Li 到Cs ,熔、沸点逐渐降低,即Li >Na >K >Rb >Cs ;D 、从Li 到Cs ,碱金属元素的金属性逐渐增强,对应最高价氧化物的水化物的碱性依次增强,即碱性:LiOH <NaOH <KOH <RbOH <CsOH 。
碱金属的化学性质递变探究(1)碱金属与O 2反应①已知1.4 g 锂在空气中加热充分反应,可生成3.0 g 氧化物,该反应的化学方程式是 4Li +O 2=====△2Li 2O 。
碱金属元素的原子结构的异同
碱金属元素包括钠、镁和铝等元素,它们均属于第二组元素,具有原子序数11、12、13,相同碱金属元素的原子结构异同如下:
首先,它们具有相同的外层电子配置模式,即属于ns,np,nd子层类型。
比如,钠
的核心电子配置模式为[Ne]3s,镁的核心电子配置模式为[Ne]3s2,铝的核心电子配置模
式为[Ne]3s2d1。
其中,Ne表示氦的核心电子配置模式,3s表示比核心电子多一层的子层,而3s2d1则表示有两个比核心电子多一层的子层。
其次,碱金属元素的原子半径从钠到铝呈增大趋势。
钠到镁之间的原子半径变化不大,但镁到铝的原子半径变化明显。
具体来说,钠的原子半径为0.97Å;镁的原子半径为
1.02Å;铝的原子半径为1.18Å,有所不同。
再次,碱金属元素的电子配置是不同的,从属性上讲,它们的外电子配置都是s2p3。
但当观察它们的内部电子配置时,发现它们有明显差异,比如,钠1s2 2s2 2p6 3s1,镁
1s2 2s2 2p6 3s2,铝1s2 2s2 2p6 3s2 3p1。
最后,碱金属元素utf-8在各种物理或化学性质上也有明显不同,如电离势,比较钠、镁、铝元素电离势梯度,会发现它们呈递减趋势,分别为:5.14eV,7.64eV,5.99eV。
电
熔点和电熔点也有所不同,钠、镁、铝的电熔点,分别为97.8,650,660℃。
总而言之,不管是原子半径、外/内部电子配置,还是电子电离势梯度、电解质溶解度、电熔点等性质,碱金属元素的不同之处可以从各个方面展现出来。