第八讲 矩阵范数续,向量和矩阵的极限
- 格式:pdf
- 大小:528.60 KB
- 文档页数:7
§8 向量,矩阵范数,矩阵的条件数一 、 向量、矩阵范数为了讨论线性方程组近似解的误差估计与研究解方程组迭代法的收敛性,需要在)(nn nRR ⨯或中引进向量序列(或矩阵序列)极限概念。
为此,这就需要对量空间n R (或n n R ⨯矩阵空间)元素的“大小”引进某种度量即向量范数(或矩阵范数)即距离的概念。
(一)向量范数:向量范数是3R 中向量长度概念的推广。
},{1为复数i n nx x x x x C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡== 称为n 维复向量空间。
},)({为复数ij n n ij n n a a A A C ⨯⨯==称为n n ⨯复矩阵空间。
(2)设nn nCA C x ⨯∈∈,,称T n Hx x x x=≡),,(1 为x 的共轭转置,T H A A =称为A 共轭转置矩阵。
在许多应用中,对向量的范数(对向量的“大小”的度量)都要求满足正定条件,齐次条件和三角不等式,下面给出向量范数的抽象定义。
nR x ∈(或nC x ∈)的某个实值非负函数x x N ≡)(,如果满足下述条件(1)正定性 00,0=⇒⇐=≥x x x (2)齐次性 x ax α=其中R ∈α(或C ∈α)(3)三角不等式 )(,,nn C R y x y x y x ∈∈∀+≤+或,称x x N ≡)(是n R 上(或n C )一个向量范数(或为模)。
由三角不等式可推出不等式 (4)y x y x -≤- 下面给出矩阵计算中一些常用向量范数。
设)(),,(1nn T n C x R x x x ∈∈=或(1)向量的“∞”范数 i n i x x x N ≤≤∞∞=≡1max )((2)向量的“1”范数 ∑==≡ni i x xx N 111)((3)向量的“2”范数 2/1122/122)(),()(∑===≡ni i x x x xx N(4)向量的能量范数 设n n R A ⨯∈为对称正定阵2/1),()(x Ax xx N R x AA n =≡→∈∀称为向量的能量范数。
矩阵的范数及相关数学含义
矩阵的奇异值:
设A为复数域内m*n阶矩阵,A*表⽰A的共轭转置矩阵,A*·A的n个⾮负特征值的算术平⽅根(即A*·A的开根号值)叫作矩阵A的奇异值。
记为σi(A)。
如果把A*·A的特征值记为λi(A*·A),则σi(A)=sqrt(λi(A*·A))。
或者说矩阵A的奇异值是A*·A 的特征值的平⽅根。
任意矩阵都有奇异值。
对于⼀般的⽅阵来说,其奇异值与是没有关系的。
奇异值的数⽬是矩阵的最⼩的维数。
当A是⽅阵时,其奇异值的⼏何意义是:若X是n维单位球⾯上的⼀点,则Ax是⼀个n维椭球⾯上的点,其中椭球的n个半轴长正好是A的n个奇异值。
简单地说,在⼆维情况下,A将单位圆变成了椭圆,A的两个奇异值是椭圆的长半轴和短半轴。
如果取维空间的单位球,⽤ × 矩阵乘其中对于每个点的向量,这将得到维空间的椭球体. 的奇异值给出椭球体主轴的长度.
矩阵的2-范数 Norm 是椭球体的最⼤的主轴,等于矩阵最⼤的奇异值. 这也是对于任何可能的单位向量,的最⼤的2-范数长度.。
向量与矩阵范数在欧氏空间与酉空间中,我们通过向量的内积定义了下列的长度,对于一般的线性空间,能否引入一个类似于长度而又比其更广泛的概念呢?这就是范数的概念。
向量范数与矩阵范数是应用非常广泛的重要概念,从范数可导出向量与向量,矩阵与矩阵之间的距离,进而引进向量序列和矩阵序列收敛性问题.它是矩阵分析与计算的基础.§1 向量范数定义1.1 设V 是数域()或C R 上的线性空间,如果对于任意V ∈x 按照某种法则对应于一个实数x,且满足:1) 非负性0≥x .当且仅当=x 0时,0=x ; 2) 齐次性k k =x x;3) 三角不等式 对任意,V ∈x y 总有,+≤+x y x y;则称实数x为线性空间V 上向量x 的范数.简称向量范数.定义了范数的线性空间V 称为赋范线性空间.由定义1.1可以看出,向量范数是定义在线性空间上的非负实值函数,它具有下列性质:(1) 当≠x 0时,11||||=x x ;(2) 对任意向量V ∈x ,有||||||||-=x x ;(3)||||||||||||||y -≤-x y x ; (4)||||||||||||||y -≤+x y x .性质(1)与(2)是显然成立的,下面证明性质(3) 因为||||||||||||||||=-+≤-+x x y y x y y , 所以||||||||||||-≤-x y x y .同理可证||||||||||||||()||||||-≤-=--=-y x y x x y x y , 即||||||||||||-≥--x y x y .综上有||||||||||||||y -≤-x y x .若用y -代替性质(3)中的y ,便得到性质(4).n C 上最著名的范数是p 范数,也称赫尔德(hölder )范数11()nppi pk x ==∑x,T 12(,,,)n n x x x =∈x C .这里1p ≤<∞,其中最常用的是1,2p =时的p 范数,即11nik x ==∑x ;12221()ni k x ==∑x 。
矩阵与范数、谱半径、奇异值矩阵论主要研究的是线性空间以及在线性空间中的一些操作,主要是线性变换。
当然书中主要是针对有限维的情况来讨论的,这样的话就可以用向量和矩阵来表示线性空间和线性变换,同其他的数学形式一样,矩阵是一种表达形式(notation),而这一方面可以简洁地表达出我们平时遇到的如线性方程和协方差关系的协方差矩阵等,另一方面又给进一步的研究或者问题的简化提供了一个平台。
如特征值分析、稳定性分析就对应着诸如统计分布和系统稳定性等实际问题。
而一系列的分解则可以方便方程的数值计算。
作为矩阵论的学习,我们需要了解具体的一些计算究竟是怎么算的,但更关键的是要知道各个概念和方法的实际意义,各个概念之间的关系。
首先介绍的是线性空间,对于线性空间中的任意一个向量的表示有基(相当于度量单位)和坐标(相当于具体的尺度),基既然作为度量标准了,当然要求对每一个向量都适用,同时这个标准本身也应该尽可能的简洁,那么就得到了基定义的两点约束:1、基的组成向量线性无关;2、线性空间中的任一个向量都可以由基的线性表示。
基作为一种“计量标准”,当然可能会存在多种形式,只要满足上面的两点条件,因而就有必要解决不同的度量标准之间的转换关系,从而得到过渡矩阵的概念,同时可以使用这种转换关系(过渡矩阵)去完成度量量(坐标)之间的转换。
在完成了线性空间这一对象的认识和表达之后,下面需要研究对象和对象之间的关系。
这里主要是线性变换,线性变换针对于实际对象主要完成类似于旋转和尺度变换方面的操作,而这种操作也牵涉到表达的问题。
为了保持与空间的一致性,我们也同样是在特定的基下来表示,从而线性变换就具体化为一个变换矩阵,并且,在不同的基下对应的变换矩阵当然也不相同,这里的不同的变换矩阵的关系就是相似的概念。
到此,我们完成了空间中向量的表示和线性变换的矩阵表达。
这里涉及了基、坐标、过渡矩阵、变换矩阵、相似矩阵这几个重要的概念。
上面算是内涵上的认识,下面我们需要知道线性空间里究竟有些什么东西,它是如何组成的,各个组成成分之间的关系,也就是空间的结构性方面的东西。
矩阵范数和向量范数的关系矩阵范数和向量范数是线性代数中常用的概念,它们之间存在一定的关系。
本文将从矩阵范数和向量范数的定义、性质以及它们之间的联系等方面进行阐述。
我们来介绍矩阵范数和向量范数的定义。
矩阵范数是定义在矩阵上的一种范数,它可以将一个矩阵映射为一个非负的实数。
常见的矩阵范数有Frobenius范数、1-范数、2-范数和∞-范数等。
以Frobenius范数为例,对于一个矩阵A,它的Frobenius范数定义为矩阵元素平方和的平方根,即∥A∥F = √(∑∑|aij|^2)。
向量范数是定义在向量空间中的一种范数,它可以将一个向量映射为一个非负的实数。
常见的向量范数有1-范数、2-范数和∞-范数等。
以2-范数为例,对于一个向量x,它的2-范数定义为向量元素平方和的平方根,即∥x∥2 = √(∑|xi|^2)。
矩阵范数和向量范数之间存在一定的联系。
首先,对于一个n维向量x,可以将其看作是一个n×1的矩阵。
此时,向量范数就可以看作是矩阵范数的一种特殊情况。
例如,向量的2-范数就是矩阵的2-范数。
因此,矩阵范数可以看作是向量范数的推广。
矩阵范数和向量范数之间满足一些性质。
例如,对于一个矩阵A和一个向量x,满足以下性质:1. 三角不等式:对于任意的矩阵A和向量x,有∥A∥ + ∥x∥ ≤∥A + x∥。
2. 齐次性:对于任意的矩阵A和实数α,有∥αA∥ = |α|∥A∥。
3. 子多重性:对于任意的矩阵A和B,有∥AB∥ ≤ ∥A∥∥B∥。
我们来讨论矩阵范数和向量范数的联系。
通过定义可以看出,矩阵范数和向量范数都是对于矩阵或向量的度量。
矩阵范数可以看作是对矩阵的度量,而向量范数可以看作是对向量的度量。
矩阵范数和向量范数都满足范数的定义,即满足非负性、齐次性和三角不等式。
在应用中,矩阵范数和向量范数有着广泛的应用。
矩阵范数可以用于矩阵的相似性度量、矩阵的特征值估计等问题。
而向量范数可以用于向量的相似性度量、向量的正则化等问题。
向量和矩阵的范数一、引言向量和矩阵是线性代数中最基本的概念之一,而范数则是线性代数中一个非常重要的概念。
范数可以用来度量向量或矩阵的大小,也可以用来衡量它们之间的距离。
在本文中,我们将讨论向量和矩阵的范数。
二、向量范数1. 定义向量范数是一个函数,它将一个向量映射到一个非负实数。
它满足以下条件:(1)非负性:对于任意的向量x,有||x||≥0;(2)齐次性:对于任意的标量α和向量x,有||αx||=|α|·||x||;(3)三角不等式:对于任意的向量x和y,有||x+y||≤||x||+||y||。
2. 常见范数(1)L1范数:也称为曼哈顿距离或城市街区距离。
它定义为所有元素绝对值之和:||x||1=∑i=1n|xi| 。
(2)L2范数:也称为欧几里得距离。
它定义为所有元素平方和再开平方根:||x||2=(∑i=1nxi^2)1/2 。
(3)p范数:它定义为所有元素p次方和的p次方根:||x||p=(∑i=1n|xi|^p)1/p 。
(4)无穷范数:它定义为所有元素绝对值中的最大值:||x||∞=ma xi|xi| 。
三、矩阵范数1. 定义矩阵范数是一个函数,它将一个矩阵映射到一个非负实数。
它满足以下条件:(1)非负性:对于任意的矩阵A,有||A||≥0;(2)齐次性:对于任意的标量α和矩阵A,有||αA||=|α|·||A||;(3)三角不等式:对于任意的矩阵A和B,有||A+B||≤||A||+||B||。
2. 常见范数(1)Frobenius范数:也称为欧几里得范数。
它定义为所有元素平方和再开平方根:||A||F=(∑i=1m∑j=1naij^2)1/2 。
(2)一范数:它定义为每列元素绝对值之和的最大值:||A||1=maxj(∑i=1m|aij|) 。
(3)二范数:它定义为矩阵A的最大奇异值:||A||2=σmax(A) 。
(4)∞范数:它定义为每行元素绝对值之和的最大值:||A||∞=maxi(∑j=1n|aij|) 。
一、向量的范数定义1 设x=(x1 ,x2,…,x n )n ,y=(y1 ,y2,…,y n )n∈R n (或C n )。
将实数(或复数),称为向量x,y的数量积。
将非负实数或称为向量x的欧氏范数。
对向量x,y的数量积有:1. (αx,y)=α(x,y).α为实数(或(x,αy)=(x,y),α为复数);2. (x,y)=(y,x)[(x,y)=(,)];3. (x1 +x2 ,y)=(x1 ,y)+(x2 ,y);4. (Cauchy-Schwarz不等式)(5.1)等式当且仅当x与y线形相关时成立。
对向量x的欧氏范数有:1. ‖x‖2≥0, ‖x‖2 =0当且仅当x=0时成立;2. ‖αx‖2=|α|‖x‖2,任意的α∈R(或α∈C),3. ‖x+y‖2≤‖x‖2 +‖y‖2 (三角不等式),(5.2)注(5.1)和(5.2)有下面的事实得到(x+ty,x+ty)=(x,x)+2(x,y)t+(y,y)t2≥0由一元二次方程根的判别定理可知(5.1)成立;取t=1,再利用(5.1)得即得(5.2)。
定义2(向量的范数) 如果向量x∈R n (或C n )的某个实值函数N(x)=‖x‖, 满足条件:(1) ‖x‖≥0(‖x‖=0当且仅当x=0)(正定条件),(2) ‖αx‖=|α|·‖x‖,任意的α∈R(或α∈C),(3) ‖x+y‖≤‖x‖+‖y‖(三角不等式),则称N(x)是R n (或C n )上的一个向量范数(或模)。
下面我们给出几种常用的向量范数。
1. 向量的∞-范数(最大范数):(5.3)2. 向量的1-范数:3. 向量的2-范数:(5.4)4. 向量的p-范数:(5.5)例6 计算向量x=(1,-2,3)T的各种范数。
解:定理6(N(x)的连续性) 设非负函数N(x)=‖x‖为R n上任一向量范数,则N(x)是x的分量x1 ,x2,…,x n的连续函数。
证明设其中e i=(0,…,1,0,…,0)T, . 只须证明当x→y时N(x)→N(y)即成。