软硬结合板的设计制作与品质要求
- 格式:ppt
- 大小:8.78 MB
- 文档页数:64
FPCB板的常规做法以及特例分析常规做法:软板(单双面板、多层板)和软硬结合板。
软板(单双面板、多层板)一.单面板:普通单面板和单面双接触板1.普通单面板:有胶基材和无胶基材叠构:①有胶基材②无胶基材基本流程:下料→化学清洗→贴干膜→曝光→显影→首检/每小时抽检→蚀刻→首检/每小时抽检→去膜→首检/每小时抽检→AOI→化学清洗→烘干120℃15Min→下料→贴上保护膜→层压→首检/每小时抽检→下料→贴补强→层压→首检/每小时抽检→自动认位打孔→首检/每小时抽检→化学清洗→表面处理→首检/每小时抽检→刀模分割→首检/每小时抽检→ET →钢模冲切外形→首检/每小时抽检→FQC→QA→包装出货。
2.单面双接触板⑴上下保护膜开口在同一区域时的做法:CC+CU+CC(纯铜箔+保护膜)。
此时镂空处线宽不能小于8mil;且为防止飘线,CC要压住线路至少20mil;另外要注意上下保护膜错开防止断线。
叠构:纯铜箔+保护膜基本流程:下料→钻孔包装→钻孔→首检/每小时抽检→下料→贴下保护膜→层压→首检/每小时抽检→化学清洗→两面贴干膜→曝光→显影→首检/每小时抽检→蚀刻→首检/每小时抽检→去膜→首检/每小时抽检→AOI→化学清洗→烘干120℃15Min→下料→贴上保护膜→层压→首检/每小时抽检→自动认位打孔→首检/每小时抽检→化学清洗→表面处理→首检/每小时抽检→刀模分割→首检/每小时抽检→ET→钢模冲切外形→首检/每小时抽检→FQC→QA→包装出货。
⑵上下保护膜开口不在同一区域时的做法:CU+CC(无胶基材+保护膜)。
此时CC的胶只能用环氧胶,不可用压克力胶;是走蚀刻PI线。
叠构:无胶基材+保护膜基本流程:下料→化学清洗→贴干膜→曝光→显影→首检/每小时抽检→蚀刻→首检/每小时抽检→去膜→首检/每小时抽检→AOI→化学清洗→烘干120℃15Min→下料→贴上保护膜→层压→首检/每小时抽检→化学清洗→两面贴抗KAPTON ETCH干膜→曝光→显影→首检/每小时抽检→预浸→蚀刻KAPTON→首检/每小时抽检→去膜→首检/每小时抽检→自动认位打孔→首检/每小时抽检→化学清洗→表面处理→首检/每小时抽检→刀模分割→首检/每小时抽检→ET→钢模冲切外形→首检/每小时抽检→FQC→QA→包装出货。
软硬结合板实验标准
以下是软硬结合板实验标准的概述:
1. 板材尺寸:板材尺寸应为2440mm x 1220mm x 4.5mm。
2. 外观质量:板材的外观应该平整、无裂纹、变形、色差、污渍等缺陷。
3. 可锯性:板材应该能够方便地进行锯切,且在锯切后边缘应该平整光滑,无毛刺。
4. 端部保留力:板材应该能够承受端部有重量负荷的情况,同时不能发生破裂、爆裂等现象。
5. 拉伸强度和弯曲强度:板材的拉伸强度应该在1.5MPa以上,弯曲强度应该在
6.0MPa以上。
6. 表面硬度:板材的表面硬度应该在硬度计上读取不低于25N 的数值。
7. 结合强度:板材的结合强度应该通过所选用的胶水、压合温度和时间等因素来控制。
8. 其他测试:除上述测试外,还应进行悬挂强度、冲击强度、耐久性等多项测试。
以上是软硬结合板实验标准的概述,具体标准可根据实际情况来制定。
软硬结合板的设计要求1. 引言软硬结合板是一种具有软硬件结合特性的电子设备板,它将软件和硬件相结合,旨在提供更高的性能和灵活性。
本文将探讨软硬结合板的设计要求,并介绍如何满足这些要求。
2. 设计要求2.1 硬件设计要求2.1.1 硬件选择在软硬结合板的设计中,选择适当的硬件是至关重要的。
需要根据项目需求选择适当的处理器、存储器、传感器等硬件组件。
硬件应具有良好的兼容性和稳定性,以确保软硬结合板的正常运行。
2.1.2 接口设计软硬结合板通常需要与其他设备或系统进行通信。
在设计过程中需要考虑接口设计。
接口应该易于使用、可靠稳定,并且能够满足数据传输速率和容量的需求。
2.1.3 散热设计由于软硬结合板通常会产生较高的热量,在设计过程中需要考虑散热问题。
散热设计应确保设备在长时间运行时的稳定性和可靠性。
可以采用散热片、风扇等散热装置,以提高散热效果。
2.2 软件设计要求2.2.1 系统架构设计在软硬结合板的设计中,系统架构设计是至关重要的。
系统架构应该清晰明确,各个模块之间的关系和功能应该明确定义。
系统架构还应具有良好的扩展性和可维护性。
2.2.2 软件开发环境选择适当的软件开发环境对于软硬结合板的设计非常重要。
软件开发环境应具有良好的兼容性,并提供丰富的开发工具和库。
软件开发环境还应支持多种编程语言,以满足不同项目需求。
2.2.3 软件接口设计软硬结合板通常需要与其他设备或系统进行数据交互,因此需要进行软件接口设计。
软件接口应该易于使用、可靠稳定,并且能够满足数据传输速率和容量的需求。
3. 满足设计要求的方法3.1 硬件设计方法3.1.1 硬件选择方法在选择硬件时,可以根据项目需求进行评估和比较。
可以考虑处理器的性能、功耗、价格等因素,选择适合项目需求的处理器。
同样,也需要考虑存储器、传感器等硬件组件的性能和稳定性。
3.1.2 接口设计方法在接口设计中,可以使用标准接口或自定义接口。
标准接口具有广泛的兼容性和可靠性,但可能无法满足特定需求。
软硬结合板工艺流程软硬结合板工艺流程是一种先进的生产技术,通过将软硬结合板与其他材料进行结合,使其具备软板的柔韧性和硬板的稳定性。
下面将介绍软硬结合板的工艺流程。
首先,准备材料。
软硬结合板的材料主要包括软板、硬板和粘合剂。
软板可以选择弹性好且具有较高韧性的材料,如橡胶或塑料。
硬板可以选择具有较高强度和稳定性的材料,如钢板或木板。
粘合剂可以选择耐高温和耐水的胶水。
其次,制备软板。
软板的制备可以通过模压、注塑或挤出等工艺进行。
模压是将熔化的橡胶或塑料注入模具中,然后经过冷却硬化,最后取出软板。
注塑是将熔化的橡胶或塑料通过喷嘴注射到模具中,在模具中冷却硬化,最后取出软板。
挤出是将熔化的橡胶或塑料通过挤出机挤出成型,然后在模具中冷却硬化,最后取出软板。
然后,制备硬板。
硬板的制备可以通过切割、冲压或焊接等工艺进行。
切割是将钢板或木板按照需要的尺寸剪切出来。
冲压是将钢板加工成所需的形状,使用冲床进行冲击加工。
焊接是将钢板通过焊接工艺进行连接,使其成为一个整体。
接下来,进行软硬结合。
将软板和硬板放在一起,根据需求使用粘合剂将其粘合在一起。
粘合剂可以选择双面胶、环氧胶或热熔胶等。
将粘合剂涂抹在软板和硬板的接触面上,然后将两个板材压合在一起,使粘合剂充分粘合,形成软硬结合板。
可以通过加热或施加压力来加快粘合剂的固化。
最后,进行后续处理。
制备好的软硬结合板可以进一步进行后续处理。
例如,可以进行修整、打磨、喷漆或贴膜等工艺,使软硬结合板的表面更加光滑、美观。
总结起来,软硬结合板的工艺流程包括准备材料、制备软板、制备硬板、软硬结合和后续处理。
这种工艺结合了软板的柔韧性和硬板的稳定性,可以广泛应用于汽车、家具、电子产品等领域。
相信随着技术的发展,软硬结合板的工艺流程将会不断完善,为各行各业提供更多的应用可能。
软硬结合板简介减少电子产品的组装尺寸、重量、避免联机错误,增加组装灵活性,提高可靠性及实现不同装配条件下的三维立体组装,是电子产品日益发展的必然需求。
软性电路板(Flexible Printed Circuits,FPC)结构灵活、体积小、重量轻及可挠曲的特性可满足三维组装需求的互连技术,在电子通讯产业得到广泛的应用及重视。
近年来已有朝向软硬结合板(Rigid-Flex Board)发展之趋势,其结合FPC及PCB优点于一身,可柔曲,立体安装,有效利用安装空间。
藉以再缩小整个系统的体积及增强其功能软硬结合板特性软硬结合板的出现为电子组件之间的互连提供了一种新的连接方式,随着电子信息技术的发展和人们对电子设备的需要趋向轻薄短小且多功化,软硬结合印刷恰好符合此种潮流优点:–可3D 立体布线组装–可动态使用,高度挠折需求–高密度线路设计,可实现HDI–高信赖度,低阻抗损失,完整型号传输–缩短安装时间,降低安装成本,便于操作.–具有刚性板强度,起到可支撑作用.缺点–制作难度大,不光要有刚性板的制作工艺,还要有挠性的制作工艺,特别是挠性板,同时制作流程远远比刚性、挠性板多而杂.–一次性成本高,设备投入性大,既要有可供刚性板生产的,还要有供挠性板生产的设备.使用方面, 在装拆损坏后无法修复,导致其它部分一块报废软硬结合板常见叠层及工艺流程1.生产工艺流程:L1工艺流程:开料→内光成像→内层酸性蚀刻→打靶位孔→激光割缝/铣沉头槽→棕化L2/3软板工艺流程:开料→外光成像(贴干膜)→内层酸性蚀刻→AOI→棕化→贴覆盖膜→快压→烘烤→棕化L4工艺流程:开料→内光成像→内层酸性蚀刻→打靶位孔→激光割缝/铣沉头槽→棕化覆盖膜工艺流程:开料→线切割→贴合待用NO FLOW PP工艺流程:开料→钻孔→外形(锣槽)→压合待用主流程:压合→除胶渣→钻孔→等离子除胶→沉铜2次→板镀→二次板镀/VCP镀铜→外光成像→外层酸性蚀刻→半成品测试/AOI→半成品检查→阻焊→字符→沉金→E-T测试→外形→外形开盖/激光开盖→激光外形→FQC →FQA →包装生产工艺流程:L1工艺流程:开料→内光成像→内层酸性蚀刻→打靶位孔→激光割缝/铣沉头槽→棕化L2/3软板工艺流程:开料→外光成像(贴干膜)→内层酸性蚀刻→AOI→棕化→贴覆盖膜→快压→烘烤→棕化L4工艺流程:开料→内光成像→内层酸性蚀刻→打靶位孔→激光割缝/铣沉头槽→棕化覆盖膜工艺流程:开料→线切割→贴合待用NO FLOW PP工艺流程:开料→钻孔→外形(锣槽)→压合待用主流程:压合→除胶渣→钻孔→等离子除胶→沉铜2次→板镀→二次板镀/VCP镀铜→外光成像→外层酸性蚀刻→半成品测试/AOI→半成品检查→阻焊→字符→沉金→E-T测试→外形→外形开盖/激光开盖→激光外形→FQC →FQA →包装层数结构类型叠层层别硬板区软板区硬板区层别备注生产工艺流程:L1工艺流程:开料→内光成像→内层酸性蚀刻→打靶位孔→激光割缝/铣沉头槽→棕化L2/3软板工艺流程:开料→钻孔→沉铜→板镀→加厚铜→外光成像(贴干膜)→内层酸性蚀刻→AOI→棕化→贴覆盖膜→快压→烘烤→沉金→贴高温胶带(茶色)→棕化L4工艺流程:开料→内光成像→内层酸性蚀刻→打靶位孔→激光割缝/铣沉头槽→棕化覆盖膜工艺流程:开料→线切割→贴合待用NO FLOW PP工艺流程:开料→钻孔→外形(锣槽)→压合待用主流程:压合→除胶渣→钻孔→等离子除胶→沉铜2次→板镀→二次板镀/VCP镀铜→外光成像→外层酸性蚀刻→半成品测试/AOI→半成品检查→阻焊→字符→沉金→外形→外形开盖/激光开盖→激光外形→E-T测试→FQC →FQA →包装层数结构类型叠层层别硬板区软板区硬板区层别备注生产工艺流程:L1/2工艺流程:开料→内光成像→内层酸性蚀刻→打靶位孔→激光割缝/铣沉头槽→棕化L3/4软板工艺流程:开料→外光成像(贴干膜)→内层酸性蚀刻→AOI→棕化→贴覆盖膜→快压→烘烤→字符→棕化L5/6软板工艺流程:开料→外光成像(贴干膜)→内层酸性蚀刻→AOI→棕化→贴覆盖膜→快压→烘烤→字符→棕化L7/8工艺流程:开料→内光成像→内层酸性蚀刻→打靶位孔→激光割缝/铣沉头槽→棕化覆盖膜工艺流程:开料→线切割→贴合待用NO FLOW PP工艺流程:开料→钻孔→外形(锣槽)→压合待用主流程:压合→除胶渣→钻孔→等离子除胶→沉铜2次→板镀→二次板镀/VCP镀铜→外光成像→外层酸性蚀刻→半成品测试/AOI→半成品检查→阻焊→字符→沉金→E-T测试→外形→外形开盖/激光开盖→激光外形→FQC →FQA →包装。
什么是软硬结合板
软硬结合板是什么
FPC(软板)与PCB(硬板)的诞生与发展,催生了软硬结合板这一新产品。
因此,软硬结合板,就是柔性线路板与硬性线路板,经过压合等工序,按相关工艺要求组合在一起,形成的具有FPC特性与PCB特性的线路板。
应用领域
软硬结合板应用广泛,譬如:高端智能手机;高端蓝牙耳机;智能穿戴设备;机器人;无人机;曲面显示器;高端工控设备;航天航空卫星等领域都能见到它的身影。
软硬结合板的优点与缺点
优点:具有PCB和FPC双方面优秀特性,既可以对折,弯曲,减少空间,又可以焊接复杂的元器件。
同时相比排线有更长的寿命,更加可靠的稳定性,不易折断氧化脱落。
缺点:软硬结合板生产工序繁多,生产难度大,良品率较低,所投物料、人力较多,因此,其价格比较贵,生产周期比较长。
我司制作软硬结合板的优势
拥有高端的生产设备,质量体系完备;在线路板领域拥有多年丰厚技术积累;拥有软硬结合板领域最好的工艺专家;具有大批量供货高端多层软硬结合板的能力。
软硬结合板常见类型
板型一:软硬组合板
软板(FPC)和硬板(PCB)粘贴成一体,粘贴处无镀覆孔连接,层数多于一层。
板型二:软硬多层结合板
有镀覆孔,导线层多于两层。
软硬结合板的设计与生产工艺1.前言工业、医疗设备、3G手机、LCD电视及其它消费类电子如:电子计算机用的硬盘驱动器、软盘驱动器、手机、笔记本计算机、照相机、摄录机、PDA等便携式电子产品市场需求的不断扩大,电子设备越来越向着轻、薄、短、小且多功能化的方向发展。
特别是高密度互连结构(HDI)用的柔性板的应用,将极大地带动柔性印制电路技术的迅猛发展,同时随着印制电路技术的发展与提高,软硬结合板(Rigid-Flex PCB)的开发研究并得到大量的应用,预计全球今后软硬结合板的供应量将会大量增加。
同时,软硬结合板的耐久性与挠性,亦使其更适合于医疗与军事领域应用,逐步蚕食刚性PCB的市场份额。
由于韩国、台湾地区有大量手机厂商,因此这些厂商主导了软硬结合板市场。
据台湾电路板协会(TPCA)的数据,目前该地区约有200家PCB生产商。
香港地区也有少数企业在生产软硬结合板,但大约有不到五家企业具备良好的生产技术。
在中国大陆,这类产品在总体PCB市场中所占比例不大,台湾地区工业技术研究院(IEK)估计仅占2%左右。
但大陆的生产份额正不断增长,厂商们都意识到,软硬结合板既轻且薄,而且紧凑,特别适合最新式的便携电子和高端医疗及军事设备——这些终端产品目前都在推升大陆软硬结合板的产量。
因此,业内人士预计软硬结合板将在未来几年超越其它类型的PC B。
产品虽好,制造门槛有些高,在所有类型的PCB中,软硬结合板对于恶劣应用环境的抵抗力最强,因此受到医疗与军事设备生产商的青睐。
软硬结合板兼具刚性PCB的耐久力和柔性PCB的适应力。
中国大陆的企业正在提高此类PCB占总体产量的比例,以充分利用需求不断增长的大好机会。
减少电子产品的组装尺寸、重量、避免连线错误,增加组装灵活性,提高可靠性,实现不同装配条件下的三维立体组装,是电子产品日益发展的必然需求,挠性电路作为一种具有薄、轻、可挠曲等可满足三维组装需求的特点的互连技术,在电子及通讯行业得到日趋广泛的应用和重视。
FPC设计规范一、目的规范FPC的设计方法及统一设计标准,以提高设计人员的设计水平及效率,保证LCD模块整体的合理性、可靠性。
二、适用范围:开发部FPC设计人员三、FPC相关简介FPC(Flexible Printed Circuit)软性印刷线路板,简称软板,是由柔软的塑胶底膜(PI)、铜箔(CU)及粘合胶压合而成。
具有优秀的灵活性和可靠性。
1.FPC的结构和材料单面板双面板: 基层:铜箔层:覆盖层:粘合胶: 补强板:补强板:加强菲林插接式与贴合的接口与焊接的接口单面板镂空式常 用 接 口 结 构FPC可分为单面板、双面板、分层板、多层分层板、软硬结合板。
两层板以上的FPC均通过导通孔连接各层。
我司常用的是前面两种,其结构见上图。
(1)基层(BASE FILM):材料一般采用聚酰亚胺(Polyimide,简称PI),也有用聚脂(Polyerster,简称PET)。
料厚有12.5、25、50、75、125um。
常用12.5和25um的。
PI在各项性能方面要优于PET。
(2)铜箔层(COPPER FOIL):有压延铜(RA COPPER)和电解铜(ED COPPER)两种。
料厚有18、35、75um。
由于压延铜比电解铜有较好的机械性能,所以在需要经常弯曲的FPC中优选压延铜。
主屏FPC的铜箔厚度一般为18um;对于镂空板FPC(比如接口处为开窗型的)需采用35um的。
(3)覆盖层(COVER LAYER):材料与基层相同,覆盖在铜箔上,起绝缘、阻焊、保护作用。
常用料厚为12.5um。
(4)粘合胶(ADHESIVE):对各层起粘合作用。
(5)补强板(Stiffener)和加强菲林(Reinforcement film):对于插接式的FPC,为与标准插座配合,需在接触面背面加一块补强板,材料可用PI、PET和FR4;常用PET。
补强板贴合后接触位的厚度根据插座的要求而定,一般为0.3、0.2或0.12mm 。
软硬结合板的设计与工艺
哇塞,说到软硬结合板的设计与工艺,那可真是一门超级有趣又超级重要的学问呢!你想想看,这就像是给电子世界搭建了一座坚固又灵活的桥梁啊!
软硬结合板,它可不是简单的玩意儿。
设计的时候,那可得像一位精密的建筑师一样,每一个细节都要考虑得清清楚楚。
从板材的选择开始,就像是挑选建房子的基石,得挑最合适的。
然后呢,布线就像是给房子搭建脉络,要让电流能够顺畅地流动,不能有丝毫的阻碍。
这可需要超级厉害的技巧和经验啊!
工艺方面呢,那就像是一场精细的手术。
每一个步骤都要小心翼翼,不能有半点马虎。
钻孔就像是在板子上开一个个小窗口,得精确到毫米级别呢!镀铜就像是给板子穿上一层闪亮的铠甲,保护着里面的电路。
再看看那些制造软硬结合板的工厂,里面的工人就像一群勤劳的小蜜蜂,忙碌而又专注。
他们用自己的双手和智慧,把一片片普通的板材变成了神奇的软硬结合板。
这难道不是很了不起吗?
而且啊,软硬结合板的应用那可真是广泛得不得了。
从手机到电脑,从汽车到航天,哪里都有它的身影。
它就像是一个默默无闻的英雄,在背后支撑着我们现代生活的方方面面。
你说,要是没有软硬结合板,我们的生活会变成什么样呢?那肯定会变得很不方便,很多高科技产品都没法正常工作啦!所以说啊,软硬结合板的设计与工艺真的是太重要啦!我们应该好好珍惜和发展这项技术,让它为我们的生活带来更多的便利和惊喜呀!这不就是我们一直追求的吗?。
软硬结合板的设计与生产工艺(论文)1. 前言工业、医疗设备、3G手机、LCD电视及其它消费类电子如:电子计算机用的硬盘驱动器、软盘驱动器、手机、笔记本电脑、照相机、摄录机、PDA等便携式电子产品市场需求的不断扩大,电子设备越来越向着轻、薄、短、小且多功能化的方向发展。
特别是高密度互连结构(HDI)用的柔性板的应用,将极大地带动柔性印制电路技术的迅猛发展,同时随着印制电路技术的发展与提高,软硬结合板(Rigid-Flex PCB)的开发研究并得到大量的应用,预计全球今后软硬结合板的供应量将会大量增加。
同时,软硬结合板的耐久性与挠性,亦使其更适合于医疗与军事领域应用,逐步蚕食刚性PCB的市场份额。
由于韩国、台湾地区有大量手机厂商,因此这些厂商主导了软硬结合板市场。
据台湾电路板协会(TPCA)的数据,目前该地区约有200家PCB生产商。
香港地区也有少数企业在生产软硬结合板,但大约有不到五家企业具备良好的生产技术。
在中国大陆,这类产品在总体PCB市场中所占比例不大,台湾地区工业技术研究院(IEK)估计仅占2%左右。
但大陆的生产份额正不断增长,厂商们都意识到,软硬结合板既轻且薄,而且紧凑,特别适合最新式的便携电子和高端医疗及军事设备——这些终端产品目前都在推升大陆软硬结合板的产量。
因此,业内人士预计软硬结合板将在未来几年超越其它类型的P CB。
产品虽好,制造门槛有些高,在所有类型的PCB中,软硬结合板对于恶劣应用环境的抵抗力最强,因此受到医疗与军事设备生产商的青睐。
软硬结合板兼具刚性PCB的耐久力和柔性PCB的适应力。
中国大陆的企业正在提高此类PCB占总体产量的比例,以充分利用需求不断增长的大好机会。
减少电子产品的组装尺寸、重量、避免连线错误,增加组装灵活性,提高可靠性,实现不同装配条件下的三维立体组装,是电子产品日益发展的必然需求,挠性电路作为一种具有薄、轻、可挠曲等可满足三维组装需求的特点的互连技术,在电子及通讯行业得到日趋广泛的应用和重视。
软硬结合板工艺流程1. 简介软硬结合板是一种由软性材料和硬性材料组成的复合材料,具有软硬结合、柔韧性好、耐磨损等特点。
它广泛应用于电子设备、汽车、家具等领域。
软硬结合板的制作过程主要包括原材料准备、软硬结合处理、热压成型、修整加工等步骤。
2. 工艺流程2.1 原材料准备原材料包括软性材料和硬性材料。
常用的软性材料有橡胶、塑料等,常用的硬性材料有金属、玻璃纤维等。
在原材料准备阶段,需要对软硬结合板所需的软性和硬性材料进行筛选和加工。
1.筛选:根据产品要求选择符合规格要求的软性和硬性材料,并进行筛选,去除不符合要求的杂质。
2.加工:对筛选出来的材料进行加工处理,如切割、打孔等,以便后续工艺使用。
2.2 软硬结合处理软硬结合处理是软硬结合板制作的关键步骤,通过将软性材料与硬性材料结合在一起,形成软硬结合层。
1.表面处理:对硬性材料表面进行清洁处理,去除油污和杂质,以提高软硬结合的粘接强度。
2.粘接剂选择:根据软硬结合板的使用要求选择适当的粘接剂,常用的粘接剂有胶水、胶带等。
3.粘接:将粘接剂均匀涂布在硬性材料表面上,并将软性材料放置在粘接剂上。
根据需要,可以采用压力或加热等方法促使软硬材料更好地粘接在一起。
4.固化:按照粘接剂的要求和工艺参数进行固化处理,使得软硬结合层达到所需的强度。
2.3 热压成型热压成型是为了进一步增强软硬结合板的整体强度和稳定性。
通过热压成型可以使得软硬结合板更加紧密、坚固。
1.成型模具准备:根据产品要求,选择合适的成型模具,并进行清洁和涂抹模具释模剂,以便于软硬结合板的脱模。
2.板材堆叠:将软硬结合层与其他需要的材料堆叠在一起,形成整体结构。
3.进行热压:将材料堆叠放入热压机中,根据产品要求设定温度和压力参数,并进行热压处理。
在热压过程中,软硬结合板的材料会发生熔融、流动和固化等变化,从而形成坚固的整体结构。
4.冷却:完成热压后,将热压板从热压机中取出,并进行冷却处理,使得软硬结合板达到室温。
版本:R-FPCB 软板线路设计规范页码:第 1 页 共 5 页1.0目的:制定软硬结合板软板线路设计指引,为其设计制作提供规范,以保证产品品质符合客户要求。
2.0适用范围:适用于软硬结合板之中软板的制作。
3.0材料类型定义: 3.1 RF-- 软硬结合板 3.2 LPI-- 内层湿膜涂布 3.3 DES-- 显影/蚀刻/剥膜 3.4 SES-- 退膜/蚀刻/退锡 4.0工艺规范:4.1 内层线路菲林制作规范:4.1.1 内层菲林板边需倒角R=5mm ,防止在湿制程卷角卡板;PE 冲孔处的板边需保留铜,增加强度,防止压合Bonding 套PIN 时崩孔,遭成偏位。
4.1.2内层软板贴合加强片、胶带、单PCS 或条贴Cover lay 需在成型区外制作标识线,标识线宽度为 8mil ,对标识线中心贴合;整PNL 或SET 套板贴合需制作贴合对位mark 点,Cover lay 钻出比mark 点直径大0.2mm 的孔。
R=5mmPE 冲孔处保留侗白色为贴合标识线单PCS 或条贴: SET 或PNL 贴合:绿色为Coverlay 钻孔的圆 绿色为Coverlay proflie 棕色为对位贴合mark 点对位处版本:R-FPCB 软板线路设计规范页码:第 2 页 共 5页4.1.3内层软板有插接手指需设计手指成型偏位检验线,公差依客户要求,如没要求,按0.15mm 设计。
4.1.4进行防撕裂。
1、绿色为Coverlay 窗口2、白色为成型 Profile手指偏位检验线挠折区域边缘无大铜箔连线时,可采用如上图白色补强铜设计挠折区域边缘有大铜箔连线时,可采用如上图白色补强大铜箔连线弯折处设计。
版本:R-FPCB软板线路设计规范页码:第 3 页共 5 页4.1.5内层软板需设计导气条,正、反面需错开2mm,单元边的上下层工艺边需错开0.5mm ,用于Cover lay及PP压合时层间导气,防止气泡产生爆板。
PCB行业之软硬结合板的设计制作与品质要求首先,软硬结合板设计制作是将软件电路板(FPC)和硬件电路板(PCB)结合在一起形成的一种电路板。
软硬结合板的设计制作过程分为以下几个步骤:1.设计规划:确定软硬结合板的功能要求和布局设计,包括确定信号传输路径和布线要求等。
2.硬件设计:根据软硬结合板的功能要求,进行硬件电路设计和布线,选择适当的元件和材料。
3.软件设计:根据硬件电路设计和功能要求,进行软件电路设计和编程,实现软件和硬件的配合和交互。
4.制作工艺:根据软硬结合板的设计要求,选择合适的制作工艺,包括印刷、蚀刻、堆焊、钻孔、贴片等。
5.组装测试:将软硬结合板的元件组装到一起,并进行测试和调试,确保软硬结合板的功能正常。
软硬结合板的设计制作需要满足一定的品质要求,以确保电路板的性能和可靠性。
以下是软硬结合板的品质要求的主要方面:1.性能要求:软硬结合板需要具备一定的电气性能指标,如电阻、电容、电感等参数的要求,以及信号传输的稳定性和可靠性要求。
2.可靠性要求:软硬结合板需要具备一定的可靠性要求,包括耐温性能、抗振性能、抗湿性能等,以确保电路板在不同环境下的正常工作。
3.焊接质量:软硬结合板的焊接质量对电路板的可靠性和性能有重要影响,要求焊接质量良好,焊点牢固,不得出现焊接开裂、焊接短路等问题。
4.材料选择:软硬结合板的材料选择需要符合相关的标准和要求,包括基板材料、元件材料等,以确保电路板的可靠性和性能。
5.测试要求:软硬结合板需要进行一系列的测试和验证,包括电气性能测试、可靠性测试、环境适应性测试等,以确保软硬结合板的品质符合要求。
总结起来,软硬结合板的设计制作与品质要求是PCB行业中重要的一部分。
软硬结合板的设计制作过程分为多个步骤,需要满足一定的品质要求,包括性能要求、可靠性要求、焊接质量、材料选择和测试要求等。
只有满足这些品质要求,软硬结合板才能够达到设计预期的功能和性能,并具备良好的可靠性。