当前位置:文档之家› 苏教版中考数学模拟试题及答案

苏教版中考数学模拟试题及答案

苏教版中考数学模拟试题及答案
苏教版中考数学模拟试题及答案

P

大丰市二〇〇八届初中毕业班调研测试

数 学 试 题

(考试时间:120分钟 试卷满分:150分 考试形式:闭卷)

注 意 事 项

考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页。

2.答题前,请你务必将答题纸上密封线内的有关内容用书写黑色字迹的0.5毫米签字笔填写清楚。 3.答题必须用书写黑色字迹的0.5毫米签字笔写在答题纸上的指定位置,在其它位置作答一律无效。

第Ⅰ部分

(选择题,共30分)

一、选择题(本大题共10小题,每小题3分,共30分。每小题都有四个备选答案,请把你认为正确的一个答案的代号填在答题纸的相应位置). 1.计算|2-3|的结果是 A .5

B .-5

C .1

D .-1

2.2007年,盐城市旅游业的发展势头良好,旅游收入累计达5 163 000 000元,用科学记数法表示是

A . 5163×106元

B . 5.163×108元

C .5.163×109元

D .5.163×1010元

3.下列运算中,正确的是 A.422

2a a a

=+

B .

()

422

2b a ab = C.236a a a =÷ D .a a a =-23

4.下列图形中,是轴对称图形的是

A B C D

5. 如图,直线a,b 被直线c 所截,已知a ∥b ,∠1=40°,则∠2的度数为

A.160° B.140° C.50°

D. 40°

6. 一位篮球运动员站在罚球线后投篮,球入篮得分. 下列图象中,可以大致反映篮球出手后到入篮框这一时

间段内,篮球的高度h (米)与时间t (秒)之间变化关系的是

7.右图是一个正方体的表面展开图,那么将它折叠成正方体后,“建”字的对面是 A .社 B .会 C .和 D .谐

8. 在综合实践活动中,小亮为了测量路灯杆的高度,先开启路灯A ,再由路灯A 走向

B ,当他走到点P 时,发现他头顶部的影子正好落在路灯B 的底部,这时他与路灯A 的距离为25米, 与路灯B 的距离为5米(如右图所示),如果小亮的身高为1.6米,那么路灯高

度为

题号 一

总 分

23 24

25

26

27

28

得分

c a

b 1 2

h (米)

t (秒) A . O h (米) t (秒) B . O h (米) t (秒) C . O

h (米) t (秒) D O

· M

B

O

A

A .9.6米

B . 8米

C .6.4米

D . 6米 9.若m 、n 取正数,p 、q 取负数,则以下各式中,其值最大的是

A .()q p n m --+

B .()q p n m +--

C .()q p n m -+-

D .()q p n m +-+

10. 观察表一,寻找规律。表二、表三分别是从表一中截取的一部分,其中a 、b 的值分别为

A .20、30 B.18、30 C.18、32 D.18、20

第Ⅱ部分(非选择题,共120分) 二、填空题(本大题共8小题,每小题3分,共24分)

11.-22

= ▲ . 12.当x ▲ 时,分式1

1

+x 有意义. 13.分解因式:=-a a

3

▲ .

14.右图是某个几何体的展开图,这个几何体是 ▲ .

15.圆柱的底面半径是3cm ,圆柱的高是5cm ,则圆柱的侧面积是 ▲ 2cm .(结果保留π)

16.命题“平行四边形的对角线互相平分”的逆命题是 ▲ .

17.某电视台综艺节目从接到的5000个热线电话中,抽取10名“幸运观众”,小颖打通了一次热线电话,她

成为“幸运观众”的概率是 ▲ .

18.如图,∠AOB=30°,M 为边OB 上一点,以M 为圆心,2cm 为

半径作⊙M ,若点M 在OB 上运动,则当OM= ▲ cm 时,⊙M 与OA 相切。

三、解答题(本大题共4小题,每题8分,共32分) 19.计算:

2·8-(2-π)0-1)2

1(-+2?45cos .

20.解不等式组:??

?≥+<-1

520

2x x ,并把其解集在数轴上表示出来.

21.已知:如右图所示,在⊙O 中,弦AC 与BD 交于E ,

AB=6,AE=8,ED=4,求CD 的长.

22.某小商店开展购物摸奖活动,声明:购物时每消费2元可获得一次摸奖机会,每次摸奖时,购物者从标有

数字1,2,3,4,5的5个小球(小球之间只有号码不同)中摸出一球,若号码是2就中奖,奖品为一张精美图片(当摸奖的次数大于1数时,前一次摸出的小球必须放回,以保证每次都是从5个小球中摸出1个小球).

(1)摸奖一次时,得到一张精美图片的概率是多少?得不到精美图片的概率是多少?

(2)一次,小聪购买了10元钱的物品;前4次摸奖都没有摸中,他想:“第5次摸奖我一定能摸中”,你同意他的想法吗?说说你的想法. 四、解答题(本大题共6小题,共64分)

23.(本题9分)如图,我们称每个小正方形的顶点为“格点”,以格

点为顶点的三角形叫做“格点三角形”.根据图形解答下列问题: (1)图中的格点△DEF 是由格点△ABC 通过怎样的变换得到的?

表一

表二

表三

… …

… … … … … … ·

A

B

C D

E

O

(写出变换过程)

(2)在图中建立适当的直角坐标系,写出△DEF 各顶点的坐标.

24.(本题9分)李明、王鹏、刘轩三位同学对本校300名学生进行一次每周课余的“上网”时间抽样调查,

结果如下图(t 为上网时间)。根据图中提供的信息,解答下列问题: (1)本次抽样调查的学生人数是 ▲ ; (2)每周上网时间在2≤t <3小时这组的频率是 ▲ ;

(3)每周上网时间的中位数落在哪个时间段 ▲ ;

(4)请估计该校学生每周上网时间不少于4小时的人数是多少人?答:___▲____.

25.(本题9分)近期,海峡两岸关系的气氛大为改善。大陆相关部门于2008年1月1日起对原产台湾地区的

15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售。某经销商销售了台湾水果凤梨,根据以往销售经验,在一定的范围内,每天的售价x (元)与销售量y (千克)之间满足一次函数关系,下表是一些参考数据:

每千克售价x (元) 38 37 36 35 … 20 每天销量y (千克)

50

52

54

56

86

(1)写出

y 与x (2)如果凤梨的进价是20元/千克,某天的售价定为30元/千克,问这天的销售利润是多少(利润=销售额-成

本)?

(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若

每天售价不低于30元/千克,问一次进货最多只能是多少千克?

26.(本题12分)已知抛物线c bx x y ++=2

,经过点A (0,2)和点B (3,5)

(1)求抛物线的解析式:

(2)在此抛物线上是否存在点P ,使P 点到x 轴、y 轴的距离相等?若存在,求出P 点的坐标;若不存在,

请说明理由.

27. (本题12分)已知:如图1所示,AB 、CD 是两条线段,M 是AB 的中点,ΔDMC S 、ΔDAC S 、ΔDBC S 分别

表示△DMC 、△DAC 、△DBC 的面积.且AB ∥CD ,此时结论2

S S S ΔDBC

ΔDAC ΔDMC

+=

是成立的.

(1) 如图2所示,M 是AB 的中点,AB 与CD 不平行,上述结论是否成立?请说明理由.

(2) 如图3所示,AB 与CD 相交于点O 时,问ΔDMC S 、ΔDAC S 、ΔDBC S 三者之间有何种相等关系?试证明

你的结论.

28分)在平面直角坐标系中,点E 从点O 出发,以每秒1单位的速度沿点F 也从点O 出发,以每秒2单位的速度沿y 轴正向运动.点B(4,2),以O 1与x 轴的另一个交点为A .

(1)若线段EF 与线段OB 相交于点G ,试判断点G 是否在⊙O 1上?并说明理由.(2)若点E 在线段OA 上运动,连接AF ,交⊙O 1于点M .

①如果△ABM ∽△FOA ,求M 点的坐标; ②设AM=x ,AF=y ,试用含x 的式子表示y .

数 学 参 考 答 案 一、选择题(本大题共10小题,每小题3分,共30分。)

D

图1 图2

图3 A B

C D M A

B

C D M A M

B C O y

x

A

B

F

O

E

O 1

· G

M

二、填空题:(每小题3分,共24分)

11.-4;12.≠-1;13.a(a-1)(a+1);14.正三棱柱(或三棱柱);

15.30π;16.对角线互相平分的四边形是平行四边形. 17.

1

500;18.4.

三、19.(8分)

解:原式=4-1-2+2×

2

2-----5′

=1+ 2 ---------------------8′20.(8分)

解:原不等式组的解为:-2≤x<2-------5′

------8′

21

解:证得:△ABE∽△DCE----------5′

求得CD=3--------------------------8′

22.(8分)

解:(1)

1

5- --------3′

4

5-----------5′

(2) 不同意,理由叙述正确---------8′

四、解答题:

23.(9分)

(1)图中的△DEF是由△ABC先向右平移3个单位,再按逆时针方向

绕点C旋转90°而得到的.----------------4′

(2)以过E点的水平直线为x轴,以E、F所在的直线为y轴,建立如图

所示的平面直角坐标系.----------------6′

在此坐标系下D、E、F三点的坐标分别为:D(-2,1),E(0,0),

F(0,4).---------------------------------------9′

(本题的解答可以不相同,只要正确即可)

24.(9分)

(1)50人;-------2′

(2)

11

50;--------4′

(3) 3≤t<4 ;--------6′

(4) 108;--------9′

25.(9分)

解:(1)y=-2x+126----------3′

(2)当x=30时,y=66

66(30-20)=660(元) ----------5′

(3)设一次进货最多m千克

则有:7

30

66

-

m----------7′

解之得:1518

m

·

A

B

C

D

E

O

∴一次进货最多不能超过1518千克----------9′

26.(12分)

解:(1)求得抛物线的解析式为:y=x2-2x+2-------------------4′

(2)根据题意,可设P点的坐标为(m,m)或(-m,m)------- 6′

当P(m,m)在抛物线上时,有m2-2m+2=m,解之得:m1=1,m2=2-------8′故此时P点的坐标为:(1,1)或(2,-2)-------------------------------10′

当P(-m,m)在抛物线上时,有m2+2m+2=m,此方程无解,

故这样的P点不存在

因此,满足条件的P点的坐标为:(1,1)或(2,-2)-------------------------------12′27.(12分)

解:(1)成立-------------------------2′

在图2

E、MF,

则因为MF

(2)S△DMC

正确地表述理由-------------------------------------------12′

28.(13分)

解:(1)点G在⊙O上-------------2′

正确说明理由-------------4′

(2)

①由EB是圆的直径,得∠EMB=∠EAB=90o

又∠MBE=∠OAF

所以△EMB∽△FOA

由△ABM∽△FOA可知:△EMB∽△ABM

∠ABM=∠EMB =90o 又MB=BM

所以△EMB≌△ABM

故四边形ABME是矩形-----------------5′

故M点的纵坐标为2,且MB=AE

设M点的坐标为(x,2)

则有MB∶OA=ME∶OF,即(4=x)∶4=2∶2x 解之得x=2

故M点的坐标为(2,2)-------------------------8′

②设OE=m,由①知:△EMB∽△FOA,则MB∶ME=OA∶OF=2∶m

且AB∶OE=2∶m,即MB∶ME=AB∶OE

在△ABM和△OEM中,

∠OEM=∠EMA+∠EAM=∠EBA+∠EBM=∠ABM

又MB∶ME=AB∶OE

所以△ABM∽△OEM

∠AOM=∠MAB=∠OFA,又∠OAM=∠FAO

所以△OAM∽△FOA,则OA∶FA=AM∶AO

即:y=16

x----------------------------13′

中考数学冲刺试题(2) 苏教版

中考数学冲刺试题(2) 苏教版 一、仔细选一选(本题有10个小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。注意可以用多种不同的方法来选取正确答案。 1.北京时间2011年3月11日,日本发生了9.0级大地震,地震发生后, 中国红十字会一直与日本红十字会保持沟通,密切关注灾情发展。截至目前,中国红十字会已经累计向日本红十字会提供600万元人民币的人道援助。这里的数据“600万元”用科学计数法表示为( ▲ ) A . 4 610?元 B . 5 610?元 C .6 610?元 D .7 610?元 2. 若5 a = ,5b =,则a b 、两数的关系是( ▲ ) A 、a b = B 、5ab = C 、a b 、互为相反数 D 、a b 、互为倒数 3. 公务员行政能力测试中有一类图形规律题,可以运用我们初中数学中的图形变换再结 合变化规律来解决,下面一题问号格内的图形应该是( ▲ ) (第3题) 4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12, 则在这一周中,最低气温的众数和中位数分别是( ▲ ) A. 13和11 B. 12和13 C. 11和12 D. 13和12 5.若有甲、乙两支水平相当的NBA 球队需进行总决赛,一共需要打7场,前4场2比2,最后三场比赛,规定三局 两胜者为胜方,如果在第一次比赛中甲获胜,这时乙最终取胜的可能性有多大?(不考虑主场优势)( ▲ ) A . 21 B .31 C .41 D . 15 6. 如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( ▲ ) A .1 B .22 C .2 D .2 (第6题) (第7题) 7. 如图,小亮同学在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他的身影顶部正好接触路灯B 的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为 ( ▲ ) A .6.4米 B . 8米 C .9.6米 D . 11.2米 8. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ▲ ) A .15° B .30° C .45° D .60°

苏教版初中数学知识点总结

初中数学知识点大全 第一章 实数 一、 重要概念 1.数的分类及概念 数系表: 2.非负数:正实数与零的统称。(表为:x ≥0) 常见的非负数有: 性质:若干个非负数的和为0,则每个非负担数均为0。 3.倒数: ①定义及表示法②性质:A.a≠1/a (a≠±1);B.1/a 中,a≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。 4.相反数: ①定义及表示法②性质:A.a≠0时,a≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。 5.数轴:①定义(“三要素”) ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n (n 为自然数) 实数 无理数(无限不循环小数) 有理数 正分数 负分数 正整数 0 负整数 (有限或无限循环性整数 分数 正无理数 负无理数 实数 负数 整数 分数 无理数 有理数 正数 整数 分数 无理数 有理数 │a │ 2a a (a ≥0) (a 为一切实数)

7.绝对值:①定义(两种): 代数定义: 几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。 ②│a│≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。 二、实数的运算 运算法则(加、减、乘、除、乘方、开方) 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律) 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷×5);C.(有括 号时)由“小”到“中”到“大”。 第二章 代数式 1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。 整式和分式统称为有理式。 2.整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 有除法运算并且除式中含有字母的有理式叫做分式。 3.单项式与多项式 没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母) 几个单项式的和,叫做多项式。 说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、a(a≥0) -a(a<0) │a │= 单项式 多项式 整式 分 有理式 无理式 代数式 51

苏教版中考数学压轴题动点问题

苏教版中考数学压轴题动 点问题 Modified by JEEP on December 26th, 2020.

运动变化型问题专题复习 【考点导航】 运动变化题是指以三角形、四边形、圆等几何图形为载体,设计动态变化,并对变化过程中伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行考察研究的一类问题,这类试题信息量大,题目灵活多变,有较强的选拔功能,是近年来中考数学试题的热点题型之一,常以压轴题的面目出现.解决此类问题需要运用运动和变化的观点,把握运动和变化的全过程,动中取静,静中求动,抓住变化过程中的特殊情形,建立方程、不等式、函数模型.【答题锦囊】 例1 如图在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C 以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒). (1)设四边形PCQD的面积为y,求y与t的函数关系式; (2)t为何值时,四边形PQBA是梯形 (3)是否存在时刻t,使得PD∥AB若存在,求出t的值;若不存在,请说明理由; (4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由. 例2如图2,直角梯形CD ,AD=4,DC=3,动点P从点 A出发,沿A→D→C→B方向移动,动点P移动的路程为x,点Q移动的路程为y,线段 PQ平分梯形ABCD (1)求y与x的函数关系式,并求出x y ,的取值范围;(2)当PQ∥AC时,求 x y ,的值; (3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积若能,求出此时x的值;若不能,说明理由. 例3 如图3,在平面直角坐标系中,以坐标原点O为圆心,2 为半径画⊙O,P是⊙O上一动点,且P的切线与x轴相交于点A,与y轴相交于点B. (1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由; (2)在⊙O上是否存在一点Q,使得以Q、O、A、P为顶点的四边形时平行四边形若存在,请求出Q点的坐标;若不存在,请说明理由. 例4如图7①,一张三角形纸片ABC沿斜边AB的中线CD把这张 纸片剪成 11 AC D ?和 22 BC D ? 11 AC D沿直线 2 D B(AB)方向平 移(点 12 ,,, A D D B始终在同一直线上),当点.在平移过程中,11 C D与 2 BC交于点E, 1 AC与222 C D BC 、分别交于点F、P. ⑴当 11 AC D ?平移到如图7③所示的位置时,猜想图中的 1 D E与 2 D F的数量关系,并证明你的猜想; ⑵设平移距离 21 D D为x, 11 AC D ?与 22 BC D ?重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围; ⑶对于(2)中的结论是否存在这样的x的值,使重叠部分的面积等于原ABC ?面积的 1 4 .若存在,求x的值;若不存在,请说明理由. 【中考预 测】 ⒈如图8①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点. 如图8②,若整个△EFG从图①的位置出发,以1cm/s 的速度沿射线AB方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况). (1)当x为何值时,OP∥AC Q B M 图1 AC D Q P B 图2 1 2 2 D ① 2 1 ②

苏教版2020中考数学仿真模拟试卷

2020中考数学仿真模拟试卷 一、选择题(10*3=30) 1.2-的绝对值是( ) A. 12 B. 12 - C. 2- D. 2 2. 已知α∠和β∠互为余角. 40α∠=?,则β∠等于( ) A. 40° B. 50° C. 60° D. 140° 3.下列说法正确的是( ) A.两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定 B.某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生 C.学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大 D.为了解某学校“阳光体育”活动开展情况,必须采用普查的方式 4. 不等式叫组22010 x x +>??-+≥?的解集是( ) A. 1x ≤ B. 11x -≤< C. 1x >- D. 11x -<≤ 5. 若关于x 的一元二次方程 222(1)10x k x k +-+-=有实数根,则k 的取值范围是( ) A. 1k ≥ B. 1k > C. 1k < D. 1k ≤ 6. 如图,直线//a b ,射线DC 与直线a 相交于点C ,过点D 作DE b ⊥于点E .已知125∠=?,则2∠的度数为( ) A. 115o B. 125o C. 155o D. 165o 第7题图 7. 如图,PA 和PB 是⊙O 的切线,点A 和点B 是切点,AC 是⊙O 的直径,己知40P ∠=?,则ACB ∠的大小是( ) A. 60° B. 65° C. 70° D. 75° 8.如图,在矩形纸片ABCD 中,3AB =.点E 在边BC 上.将ABE ?沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若EAC ECA ∠=∠,则AC 的长是( ) A. B. 6 C. 4 D. 5 9.一艘渔船从港口A 沿北偏东60o方向航行至C 处时突然发生故障,在C 处等待救援.有一救援艇位于港口A 正东方向 1)海里的B 处,接到求救信号后,立即沿北偏东45o方向以30海里/小时的速度前往C 处救援.则救援艇到达C 处所用的时间为( )

2020年度中考数学模拟试卷一

2020年中考数学模拟试卷一 一、选择题(本大题共12个小题,每小题3分,共36分,符合题意的选项只有一个) 1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为() A.5.8×1010B.5.8×1011C.58×109D.0.58×1011 2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A.千里江山图 B.京津冀协同发展 C.内蒙古自治区成立七十周年 D.河北雄安新区建立纪念 3.实数m,n在数轴上对应的点的位置如图所示,若mn<0,且|m|<|n|,则原点可能是() A.点A B.点B C.点C D.点D 4.如果a﹣b=,那么代数式(﹣a)?的值为() A.﹣B.C.3 D.2

5.若正多边形的内角和是540°,则该正多边形的一个外角为() A.45°B.60°C.72°D.90° 6.在△ABC中,∠C=90°,sin A=,则cos B的值为() A.1 B.C.D. 7.如图,⊙O中,AD、BC是圆O的弦,OA⊥BC,∠AOB=50°,CE⊥AD,则∠DCE的度数是() A.25°B.65°C.45°D.55° 8.已知关于x的分式方程﹣2=的解为正数,则k的取值范围为() A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1 9.关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A.B.C.D.0 10.如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E(0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连结CM.则线段CM的最大值是() A.3 B.C.D.5

江苏各市中考数学压轴题汇编

江苏省13市2015年中考数学压轴题 1. (2015年江苏连云港3分)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是【】 A. 第24天的销售量为200件 B. 第10天销售一件产品的利润是15元 C. 第12天与第30天这两天的日销售利润相等 D. 第30天的日销售利润是750元 2. (2015年江苏南京2分)如图,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分别与⊙O相切于E、F、G三点,过点D作⊙O的切线交BC于点M,则DM的长为【】 A. 13 3 B. 9 2 C. 4 13 3 D. 25 3. (2015年江苏苏州3分)如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为【】 A.4km B.() 22 +km C.22km D.() 42 -km 4. (2015年江苏泰州3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是【】

A. 1对 B. 2对 C. 3对 D. 4对 5. (2015年江苏无锡3分)如图,Rt △ABC 中,∠ACB =90o,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为【 】 A. 35 B. 45 C. 2 3 D. 32 6. (2015年江苏徐州3分)若函数y kx b =-的图像如图所示,则关于x 的不等式()3>0k x b --的解集为【 】 A. <2x B. >2x C. <5x D. >5x 7. (2015年江苏盐城3分)如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图像大致为【 】

苏教版中考数学预测性测试卷

2012年中考适应性考试 数学试卷 注意事项 1.本试卷共4页,选择题(第1题~第8题,计24分)、非选择题(第9题~第28题,共20题,126 分)两部分.本次考试时间为120分钟。满分为150分,考试结束后,请将答题卡交回. 2.答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米签字笔填写在答题卡上. 3.作答非选择题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效.作答选择题必须用 2B 铅笔把答题卡上对应选项的方框涂满涂黑。如需改动,请用橡皮擦干净后,再选涂其它答案.如有作图需要,可用2B 铅笔作答,并请用签字笔加黑描写清楚. 一、选择题(本大题共8小题,每小题3分,计24分) 1.下列四个数的绝对值比2大的是 A .-3 B .0 C .1 D .2 2.在平面直角坐标系中,点P 的坐标为(-4,6),则点P 在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.化简3 92+-x x 的结果是 A .3+x B .9x - C .3-x D .9+x 4.下列图形中,由AB CD ∥,能得到12∠=∠的是 5.下列说法中正确的是 A .“打开电视,正在播放《新闻联播》”是必然事件 B .想了解某种饮料中含色素的情况,宜采用抽样调查 C .数据1,1,2,2,3的众数是3 D .一组数据的波动越大,方差越小 6.已知一次函数y=x+b 的图像经过一、二、三象限,则b 的值可以是 A C B D 1 2 A C B D 1 2 A . B . 1 2 A C B D C . B D C A D . 1 2

2018年度中考数学压轴题

1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. 解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2, 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,

∵AP=x ,∴BP=10﹣x ,BQ=2x ,∵△QHB ∽△ACB , ∴ QH QB AC AB = ,∴QH=错误!未找到引用源。x ,y=错误!未找到引用源。BP ?QH=1 2 (10﹣x )?错误!未找到引用源。x=﹣4 5 x 2+8x (0<x ≤3), ②当点Q 在边CA 上运动时,过点Q 作QH ′⊥AB 于H ′, ∵AP=x , ∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH ′∽△ABC , ∴'AQ QH AB BC =,即:' 14106 x QH -=错误!未找到引用源。,解得:QH ′=错误!未找到引用源。(14﹣x ), ∴y= 12PB ?QH ′=12(10﹣x )?35(14﹣x )=310x 2﹣36 5 x+42(3<x <7); ∴y 与x 的函数关系式为:y=2 248(03)5 33642(37)10 5x x x x x x ?-+<≤????-+<

苏教版中考数学模拟试题及答案

P 大丰市二〇〇八届初中毕业班调研测试 数 学 试 题 (考试时间:120分钟 试卷满分:150分 考试形式:闭卷) 注 意 事 项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页。 2.答题前,请你务必将答题纸上密封线内的有关内容用书写黑色字迹的0.5毫米签字笔填写清楚。 3.答题必须用书写黑色字迹的0.5毫米签字笔写在答题纸上的指定位置,在其它位置作答一律无效。 第Ⅰ部分 (选择题,共30分) 一、选择题(本大题共10小题,每小题3分,共30分。每小题都有四个备选答案,请把你认为正确的一个答案的代号填在答题纸的相应位置). 1.计算|2-3|的结果是 A .5 B .-5 C .1 D .-1 2.2007年,盐城市旅游业的发展势头良好,旅游收入累计达5 163 000 000元,用科学记数法表示是 A . 5163×106元 B . 5.163×108元 C .5.163×109元 D .5.163×1010元 3.下列运算中,正确的是 A.422 2a a a =+ B . () 422 2b a ab = C.236a a a =÷ D .a a a =-23 4.下列图形中,是轴对称图形的是 A B C D 5. 如图,直线a,b 被直线c 所截,已知a ∥b ,∠1=40°,则∠2的度数为 A.160° B.140° C.50° D. 40° 6. 一位篮球运动员站在罚球线后投篮,球入篮得分. 下列图象中,可以大致反映篮球出手后到入篮框这一时 间段内,篮球的高度h (米)与时间t (秒)之间变化关系的是 7.右图是一个正方体的表面展开图,那么将它折叠成正方体后,“建”字的对面是 A .社 B .会 C .和 D .谐 8. 在综合实践活动中,小亮为了测量路灯杆的高度,先开启路灯A ,再由路灯A 走向 路 灯 B ,当他走到点P 时,发现他头顶部的影子正好落在路灯B 的底部,这时他与路灯A 的距离为25米, 与路灯B 的距离为5米(如右图所示),如果小亮的身高为1.6米,那么路灯高 度为 题号 一 二 三 四 总 分 23 24 25 26 27 28 得分 c a b 1 2 h (米) t (秒) A . O h (米) t (秒) B . O h (米) t (秒) C . O h (米) t (秒) D O

【中考模拟】中考数学模拟试卷(一)含答案

2019年江西中考模拟卷(一) 时间:120分钟 满分:120分 题号 一 二 三 四 五 六 总分 得分 一、选择题(本大题共6小题, 每小题3分, 共18分.每小题只有一个正确选项) 1.|-2|的值是( ) A .-2 B .2 C .-12 D.1 2 2.铁路部门消息:2017年“端午节”小长假期间, 全国铁路客流量达到4640万人次, 4640万用科学记数法表示为( ) A .4.64×105 B .4.64×106 C .4.64×107 D .4.64×108 3.观察下列图形, 其中既是轴对称又是中心对称图形的是( ) 4.下列计算正确的是( ) A .3x 2y +5xy =8x 3y 2 B .(x +y )2=x 2+y 2 C .(-2x )2÷x =4x D.y x -y +x y -x =1 5.已知一元二次方程x 2-2x -1=0的两根分别为x 1, x 2, 则1x1+1 x2的值为( ) A .2 B .-1 C .-1 2 D .-2 6.如图, 在△ABC 中, 点D 是边BC 上的点(与B , C 两点不重合), 过点D 作DE ∥AC , DF ∥AB , 分别交AB , AC 于E , F 两点, 下列说法正确的是( ) A .若AD ⊥BC , 则四边形AEDF 是矩形 B .若AD 垂直平分B C , 则四边形AEDF 是矩形 C .若B D =CD , 则四边形AEDF 是菱形 D .若AD 平分∠BAC , 则四边形AEDF 是菱形 第6题图 第8题图 二、填空题(本大题共6小题, 每小题3分, 共18分) 7.计算:-12÷3=________. 8.如图, 要在一条公路的两侧铺设平行管道, 已知一侧铺设的角度为120°, 为使管道对接, 另一侧铺设的角度大小应为________. 9.阅读理解:引入新数i , 新数i 满足分配律, 结合律, 交换律, 已知i 2=-1, 那么(1+i )·(1-i )=________.

中考数学模拟试卷1

仪征市第三中学中考数学模拟试卷 一、选择题:(每题3分,计24分) 1. 2的相反数是( ) A. 2 B. -2 C. 0.5 D. -0.5 2. 在如图所示的几何体中,它的左视图是( ) 3. 如右图,宽为50 cm 的矩形图案由10个全等的小长方形 拼成,其中一个小长方形的面积为( ) A. 400 cm 2 B. 500 cm 2 C. 600 cm 2 D. 4000 cm 2 4. 在“等边三角形、平行四边形、圆、正五角星、抛物线”这五个图形中,是中心对称图 形但不是轴对称图形的个数是 ( ) A .0 B .1 C .2 D .3 5. 下列各式的计算结果是a 6的是( ) A. ()-a 32 B. ()-a 23 C. a a 33 + D. a a 23 ? 6. 从边长为a 的正方形内去掉一个边长为b 的小正方形(如图1所示),然后将剩余部分剪拼成一个矩形(如图2所示),上述操作所能验证的等式是( ) A. a b a b a b 2 2 -=+-()() B. ()a b a ab b -=-+222 2 C. ()a b a ab b +=++2 2 2 2 D. a ab a a b 2 +=+() 图1 图2 7. 平面直角坐标系中,点A (2,3)关于x 轴对称的点的坐标是( ) A. (2,-3) B. (-2,3) C. (-2,-3) D. (3,2) 8. 如果一直角三角形的三边长为a 、b 、c ,∠C=90°,那么关于x 的方程a(x 2 —1)—2cx+b(x 2 +1)=0的根情况是 ( ). A B C D

最完整苏教版初中数学知识点总结(精华版)

初中数学知识点大全 第一章 实数 正整数 0 负整数 正分数 负分数 一、 重要概念 整数 ( 有 限或无 分数 限循 环性 有理数 1.数的分类及概念 数系表: 实数 正无理数 负无理数 有理数 无理数 (无限不循环小数 ) 整数 分数 正数 无理数 实数 整数 2.非负数: 正实数与零的统称。(表为:x ≥ 0) 常见的非负数有: 有理数 分数 负数 2 a 无理数 (a 为一切实数 ) │a │ a (a ≥0) 性质:若干个非负数的和为 0,则每个非负担数均为 0。 3.倒数: ①定义及表示法 ②性质: A.a ≠1/a (a ≠±)1;B.1/a 中, a ≠0;C.0<a <1 时 1/a > 1;a > 1 时, 1/a <1;D. 积为 1。 4.相反数: ①定义及表示法 ②性质: A.a ≠0时, a ≠-a;B.a 与-a 在数轴上的位置 ;C.和为 0, 商为-1。 5.数轴:①定义(“三要素”) ②作用: A. 直观地比较实数的大小 ;B. 明确体现绝对值意义 ;C. 建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数: 2n-1 偶数: 2n (n 为自然数) 7.绝对值:①定义(两种) : 代数定义: a(a ≥ 0) -a(a<0) │a │= 几何定义:数 a 的绝对值顶的几何意义是实数 a 在数轴上所对应的点到原点的距离。 ②│a │≥ 0符, 号 “││是”“非负数 ”的标志 ; ③数 a 的绝对值只有一个 ;

二、实数的运算 运算法则(加、减、乘、除、乘方、开方) 运算定律(五个—加法 [ 乘法 ] 交换律、结合律 ;[ 乘法对加法的分配律) 1 运算顺序: A. 高级运算到5 低级运算 ;B. 括号时 ) 由“小”到“中”到“大” 。 (同级运算)从“左”到“右” (如 5÷ × 5) ;C.( 有 第二章 代数式 单项式 多项式 整式 有理式 分 代数式 1. 代数式与有理式 无理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代 数式。整式和分式统称为有理式。 2. 整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 有除法运算并且除式中含有字母的有理式叫做分式。 3. 单项式与多项式 没有加减运算的整式叫做单项式。 (数字与字母的积—包括单独的一个数或字母) 几个单项式的和,叫做多项式。 说明:①根据除式中有否字母,将整式和分式区别开 ; 根据整式中有否加减运算,把单项式、 多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为 对象。划分代数式类别时,是从外形来看。 4. 系数与指数区别与联系:①从位置上看 ; ②从表示的意义上看 5. 同类项及其合并条件:①字母相同 ; ②相同字母的指数相同合并依据:乘法分配律 6. 根式表示方根的代数式叫做根式。 含有关于字母开方运算的代数式叫做无理式。 3 、 7 是根式,但不是无理式(是无理数) 。 注意:①从外形上判断 7. 算术平方根 ; ②区别: a [a ≥0—与“平方根”的区别 ⑴正数 a 的正的平方根( ⑵算术平方根与绝对值 ] ); 2 a ① 联系:都是非负数, =│a │

苏教版中考数学压轴题:动点问题

运动变化型问题专题复习 【考点导航】 运动变化题是指以三角形、四边形、圆等几何图形为载体,设计动态变化,并对变化过程中伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行考察研究的一类问题,这类试题信息量大,题目灵活多变,有较强的选拔功能,是近年来中考数学试题的热点题型之一,常以压轴题的面目出现.解决此类问题需要运用运动和变化的观点,把握运动和变化的全过程,动中取静,静中求动,抓住变化过程中的特殊情形,建立方程、不等式、函数模型. 【答题锦囊】 例1 如图在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒). (1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形? (3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由; (4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由. 例2 如图2,直角梯形ABCD 中,AB ∥CD ,∠A=900,AB=6,AD=4,DC=3,动点P 从点A 出发,沿A →D →C →B 方向移动,动点Q 从点A 出发,在AB 边上移动.设点P 移动的路程为x ,点Q 移动的路程为 y ,线段PQ 平分梯形ABCD 的周长. (1)求y 与x 的函数关系式,并求出x y ,的取值范围; (2)当PQ ∥AC 时,求x y ,的值; (3)当P 不在BC 边上时,线段PQ 能否平分梯形ABCD 的面积?若能,求出此时x 的值;若不能,说明理 由. 图1 P A C D Q P B 图2

中考数学模拟试卷(有答案)

中考数学模拟试卷(3) 一、选择题(共10小题,每小题3分,满分30分) 1.下列各式不成立的是() A.|﹣2|=2 B.|+2|=|﹣2| C.﹣|+2|=±|﹣2| D.﹣|﹣3|=+(﹣3) 2.下列各实数中,最小的是() A.﹣π B.(﹣1)0C.D.|﹣2| 3.如图,AB∥CD,∠C=32°,∠E=48°,则∠B的度数为() A.120°B.128°C.110°D.100° 4.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是() A.B.C.D. 5.下列计算正确的是() A.2a+3b=5ab B.(a2)4=a8C.a3?a2=a6D.(a﹣b)2=a2﹣b2 6.据报道,中国内地首次采用“全无人驾驶”的燕房线地铁有望年底完工,列车通车后将极大改善房山和 燕山居民的出行条件,预计年输送乘客可达7300万人次,将7300用科学记数法表示应为() A.73×102B.7.3×103C.0.73×104D.7.3×102 7.如图是根据某班50名同学一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为() A.9,8 B.8,9 C.8,8.5 D.19,17 8.已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是() A.m<﹣1 B.m>1 C.m<1且m≠0 D.m>﹣1且m≠0 9.如图,在矩形ABCD中,AB=1,AD=2,将AD边绕点A顺时针旋转,使点D恰好落在BC边上的D′处,则阴影部分的扇形面积为()

A.πB.C.D. 10.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是边AC上一动点,过点E作EF∥BC,交AB边于点F,点D为BC上任一点,连接DE,DF.设EC的长为x,则△DEF的面积y关于x的函数关系大致为() A.B.C.D. 二、填空题(本大题共6小题,每小题4分,共24分) 11.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为. 12.分式方程=的解为. 13.如图,自行车的链条每节长为 2.5cm,每两节链条相连接部分重叠的圆的直径为0.8cm,如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为cm. 14.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为. 15.如图,△ABC与△DEF是位似图形,位似比为2:3,若AB=6,那么DE= .

近五年徐州中考数学压轴题

27.(10分)(2013?徐州)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示: 每月用气量单价(元/m3) 不超出75m3的部分 2.5 超出75m3不超出125m3的部分a 超出125m3的部分a+0.25 (1)若甲用户3月份的用气量为60m3,则应缴费_________元; (2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式; (3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少? 28.(10分)(2013?徐州)如图,二次函数y=x2+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边 在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E. (1)请直接写出点D的坐标:_________; (2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD 重叠部分的面积;若不存在,请说明理由. 27.(本小题8分) 如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm。动点E、F分别从点D、B出发,点E以1 cm/s 的速度沿边DA向点A移动,点F以1 cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动。以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2。已知y与x的函数图象是抛物 线 的一部分,如图2所示。 请根据图中信息,解答下列问题: (1)自变量x的取值范围是; (2)d= ,m= ,n= ;

2019年苏教版中考数学模拟试卷

2019年苏教版中考数学模拟试卷 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 摘要:期中考试已经圆满结束,在期中考试后或多或少我们都会找到自己的复习不到位的地方,小编为大家分享中考数学模拟试卷,希望能帮助大家复习知识! 一、选择题 1.-3的相反数是 A.--D. 2.下列运算正确的是 3.某班在“五一”假期中准备组织全班同学进行郊游,班长对同学们所能承受的郊游费用作了民意调查,并根据钱数决定到哪里郊游,在所调查的数据中,最值得关注的是 A.中位数 B.平均数c.众数D.加权平均数 4.图中所示几何体的俯视图是

5.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中只装有3个黄球且摸出黄球的概率为,那么袋中共有球 个个个个 6.如图,一只蚂蚁从o点出发,沿着扇形oAB的边缘匀速爬行一周,设蚂蚁的运动时间为,蚂蚁到o点的距离为S,则S关于t的函数图象大致为 7.在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是 8.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表所示.给出下列说法: x…-3-2-101… y…-60466… ①抛物线与y轴的交点为;②抛物线的对称轴是在y轴的右侧; ③抛物线一定经过点;④在对称轴左侧,y随x增大而减小. 从表可知,下列说法正确的个数有

个个个个 二、填空题. 9.某天的最高气温为11℃,最低气温为-6℃,则这天的最高气温比最低气温高▲℃. 10.某市南线路段的304盏太阳能路灯一年大约可节电226900千瓦时,用科学记数法表示为▲千瓦时. 11.已知反比例函数的图象经过,则此反比例函数的关系式为▲. 12.分解因式:▲. 13.不等式2x-3≤3的正整数解是▲. 14.如图,直线,直线分别与a、b 相交,若,则▲度. 15.如图,已知∠AoB=30°,m为oB 边上一动点,以m为圆心、2cm为半径作⊙m, 当om=▲cm时,⊙m与oA相切. 16.如图,在菱形中,AB=BD=2,则sin∠cAB的值为▲. 17.下列函数的图象中:①,②,③, ④,与轴没有交点的有▲.

中考数学模拟试卷一及答案.doc

2019-2020 年中考数学模拟试卷(一)及答案 题号一二三总分 得分 A. x≥- 3 B. x≠ 5 C.x≥- 3 或 x≠ 5 D. x≥- 3 且 x≠ 5 5.一元二次方程 x2- 2x= 0 的解是 ( ) A. 0 B. 2 C. 0 或- 2 D .0 或 2 6.下列说法中,正确的有( ) ①等腰三角形两边长为 2 和 5,则它的周长是9 或 12;②无理数- 3在- 2 和- 1 之间; ③六边形的内角和是外角和的 2 倍;④若 a> b,则 a- b> 0.它的逆命题是假命题;⑤北偏 东 30°与南偏东 50°的两条射线组成的角为80°. A. 1 个B. 2 个C. 3 个 D .4 个 7.某交警在一个路口统计的某时段来往车辆的车速情况如表: 车速 (km/h) 48 49 50 51 52 车辆数 (辆 ) 5 4 8 2 1 则上述车速的中位数和众数分别是( ) A. 50, 8 B. 49, 50 C. 50, 50 D .49, 8 8.正比例函数 y1= k1x 与反比例函数 y2=k2 的图象相交于 A, B 两点,其中点 B 的横坐x 标为- 2,当 y1< y2时, x 的取值范围是 ( ) A. x<- 2 或 x> 2 B . x<- 2 或 0<x< 2 C.- 2< x<0 或 0< x<2 D .- 2< x< 0 或 x> 2 1- m-1= 2 的解是正数,则m 的取值范围是 () 9.已知关于 x 的分式方程x-1 1-x A. m< 4 且 m≠ 3 B .m< 4 C. m≤4 且 m≠ 3 D .m> 5 且 m≠6 10.农夫将苹果树种在正方形的果园内,为了保护苹果树不受风吹,他在苹果树的周围种上针叶树.在下图里,你可以看到农夫所种植苹果树的列数(n)和苹果树数量及针叶树数量的规律:当 n 为某一个数值时,苹果树数量会等于针叶树数量,则n 为 () A. 6 B. 8 C. 12 D .16 二、填空题 (每小题 3 分,共 24 分 ) 11.分解因式m2+2mn+ n2- 1= ____________. 12.某厂今年一月份新产品的研发资金为 a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y( 元 ) 关于x 的函数关系式为

中考数学压轴题(动点)

中考数学压轴题总结(动点) (一) 因动点产生的相似三角形问题 例1,已知抛物线的方程C 1:1(2)()y x x m m =-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧. (1)若抛物线C 1过点M (2, 2),数m 的值; (2)在(1)的条件下,求△BCE 的面积; (3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标; (4)在第四象限,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由. 图1 思路点拨 1.第(3)题是典型的“牛喝水”问题,当H 落在线段EC 上时,BH +EH 最小. 2.第(4)题的解题策略是:先分两种情况画直线BF ,作∠CBF =∠EBC =45°,或者作BF //EC .再用含m 的式子表示点F 的坐标.然后根据夹角相等,两边对应成比例列关于m 的方程. 满分解答 (1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m =-?-.解得m =4. (2)当m =4时,2111(2)(4)2442 y x x x x =-+-=-++.所以C (4, 0),E (0, 2). 所以S △BCE =1162622 BC OE ?=??=. (3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小. 设对称轴与x 轴的交点为P ,那么 HP EO CP CO =. 因此234HP =.解得32 HP =.所以点H 的坐标为3(1,)2. (4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′. 由于∠BCE =∠FBC ,所以当CE BC CB BF =,即2BC CE BF =?时,△BCE ∽△FBC .

苏教版中考数学模拟试题及答案.doc

大丰市二〇〇八届初中毕业班调研测试 数 学 试 题 (考试时间:120分钟 试卷满分:150分 考试形式:闭卷) 注 意 事 项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页。 2.答题前,请你务必将答题纸上密封线内的有关内容用书写黑色字迹的0.5毫米签字笔填写清楚。 3.答题必须用书写黑色字迹的0.5毫米签字笔写在答题纸上的指定位置,在其它位置作答一律无效。 第Ⅰ部分(选择题,共30分) 一、选择题(本大题共10小题,每小题3分,共30分。每小题都有四个备选答案,请把你认为正确的一个答案的代号填在答题纸的相应位置). 1.计算|2-3|的结果是 A .5 B .-5 C .1 D .-1 2.2007年,盐城市旅游业的发展势头良好,旅游收入累计达5 163 000 000元,用科学记数法表示是 A . 5163×106元 B . 5.163×108元 C .5.163×109元 D .5.163×1010元 3.下列运算中,正确的是 A.4 2 2 2a a a =+ B .() 422 2 b a ab = C.236a a a =÷ D .a a a =-2 3 4.下列图形中,是轴对称图形的是 A B C D 5. 如图,直线a,b 被直线c 所截,已知a ∥b ,∠1=40°,则∠2的度数为 A.160° B.140° C.50° D. 40° 6. 一位篮球运动员站在罚球线后投篮,球入篮得分. 下列图象中,可以大致反映篮球出手后到入篮框这一时间段内,篮球的高度h (米)与时间t (秒)之间变化关系的是 c a b 1 2

· M B O A 7.右图是一个正方体的表面展开图,那么将它折叠成正方体后,“建”字的对面是 A .社 B .会 C .和 D .谐 8. 在综合实践活动中,小亮为了测量路灯杆的高度,先开启路灯A ,再由路灯A 走向路灯B ,当他走到点P 时,发现他头顶部的影子正好落在路灯B 的底部,这时他与路灯A 的距离为25米, 与路灯B 的距离为5米(如右图所示)亮的身高为1.6米,那么路灯高度为 A .9.6米 B . 8米 C .6.4米 D . 6米 9.若m 、n 取正数,p 、q 取负数,则以下各式中,其值最大的是 A .()q p n m --+ B .()q p n m +-- C .()q p n m -+- D .()q p n m +-+ 10. 观察表一,寻找规律。表二、表三分别是从表一中截取的一部分,其中a 、b 的值分别 为 A .20、30 B.18、30 C.18、32 D.18、20 第Ⅱ部分(非选择题,共120分) 二、填空题(本大题共8小题,每小题3分,共24分) 11.-22= ▲ . 12.当x ▲ 时,分式 1 1 +x 有意义. 13.分解因式:=-a a 3 ▲ . 14.右图是某个几何体的展开图,这个几何体是 ▲ . 15.圆柱的底面半径是3cm ,圆柱的高是5cm ,则圆柱的侧面积是 ▲ 2 cm .(结果保留π) 16.命题“平行四边形的对角线互相平分”的逆命题是 ▲ . 17.某电视台综艺节目从接到的5000个热线电话中,抽取10名“幸运观众”,小颖打通了 一次热线电话,她成为“幸运观众”的概率是 ▲ . 18.如图,∠AOB=30°,M 为边OB 上一点,以M 为圆心,2cm 为 半径作⊙M ,若点M 在OB 上运动,则当OM= ▲ cm 时,⊙M 与OA 相切。 三、解答题(本大题共4小题,每题8分,共32分) 表一 表二 表三 … … … … … … … … … ) A . ) B . ) C . ) D .

相关主题
相关文档 最新文档