苏教版初中数学知识点整理
- 格式:doc
- 大小:198.00 KB
- 文档页数:13
苏教版初中数学知识点苏教版初中数学知识点概述一、数与代数1. 有理数- 有理数的概念- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念及性质2. 整数- 整数的性质- 整数的四则运算- 整数的因数与倍数- 质数与合数3. 代数表达式- 单项式与多项式- 代数式的加减运算- 乘法公式与因式分解- 分式与分式的运算4. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 不等式及其解集- 一元一次不等式及其解法5. 二元一次方程组- 二元一次方程组的概念- 代入法与消元法解方程组 - 三元一次方程组的解法6. 函数- 函数的概念- 函数的表示方法- 一次函数与反比例函数- 二次函数的图像与性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念及分类- 三角形的性质与分类- 四边形的性质与分类- 圆的性质2. 几何图形的计算- 面积与体积的计算公式- 三角形、四边形的面积计算 - 圆的周长与面积- 空间图形的体积计算3. 相似与全等- 全等三角形的判定- 相似三角形的判定与性质 - 相似多边形- 相似三角形的面积比4. 解析几何- 坐标系的概念与应用- 直线与曲线的方程- 点、线、面间的几何关系三、统计与概率1. 统计- 数据的收集与整理- 统计图表的绘制与解读- 平均数、中位数、众数的计算- 方差与标准差的概念及计算2. 概率- 随机事件的概念- 概率的计算与表示- 事件的可能性分析- 独立事件与条件概率四、综合应用题1. 数学问题的实际应用- 利用数学知识解决实际问题- 数学建模的基本概念- 应用题的解题策略与方法2. 数学探究活动- 数学问题的发现与提出- 数学探究的方法与步骤- 数学结论的归纳与证明以上是苏教版初中数学的主要知识点概述,每个部分都包含了相应的概念、性质、公式和解题方法。
在实际教学过程中,教师会根据学生的具体情况和学习进度,逐步深入讲解每个知识点,并通过大量的练习题来巩固学生的理解和应用能力。
苏教版七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
(3)0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0(0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
苏教版初中数学知识点大全初中数学是一个逐步深入和拓展的知识体系,苏教版教材涵盖了丰富的内容。
以下是对苏教版初中数学知识点的详细梳理。
一、数与代数1、有理数有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。
数轴是规定了原点、正方向和单位长度的直线,有理数可以在数轴上表示出来。
相反数是绝对值相等,符号相反的两个数,例如 5和-5 互为相反数。
绝对值是一个数在数轴上所对应点到原点的距离。
有理数的加法、减法、乘法、除法运算都有特定的法则。
2、实数无理数是无限不循环小数,例如π和√2。
实数包括有理数和无理数。
平方根和立方根是数的开方运算。
3、代数式用运算符号把数和字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
整式包括单项式和多项式。
单项式是数字与字母的积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
整式的加减运算实质就是合并同类项。
4、方程与不等式一元一次方程是只含有一个未知数,并且未知数的最高次数是 1 的整式方程。
解一元一次方程的一般步骤包括去分母、去括号、移项、合并同类项、系数化为 1 等。
二元一次方程组由两个二元一次方程组成,通过消元法(代入消元法或加减消元法)求解。
一元二次方程的一般形式是 ax²+ bx + c = 0(a ≠ 0),求解方法有配方法、公式法和因式分解法。
不等式的性质是解不等式的依据,不等式组的解集是各个不等式解集的公共部分。
5、函数函数是表示两个变量之间关系的一种数学表达式。
一次函数的一般形式是 y = kx + b(k、b 为常数,k ≠ 0),它的图象是一条直线。
反比例函数的一般形式是 y = k/x(k 为常数,k ≠ 0),图象是双曲线。
二次函数的一般形式是 y = ax²+ bx + c(a ≠ 0),图象是抛物线,其性质包括开口方向、对称轴、顶点坐标等。
二、图形与几何1、线与角直线没有端点,射线有一个端点,线段有两个端点。
初中数学知识点总结苏教一、数与代数1. 整数和有理数- 整数的概念:正整数、零、负整数及其运算(加、减、乘、除)。
- 有理数的概念:分数、小数、整数和分数的混合运算。
- 绝对值、相反数、科学计数法。
2. 代数表达式- 单项式和多项式的概念及运算。
- 合并同类项、分配律、结合律、交换律、整式的加减乘除。
- 因式分解:提公因式、公式法(平方差公式、完全平方公式)。
3. 一元一次方程与不等式- 方程和不等式的概念及基本性质。
- 解一元一次方程的基本方法:移项、合并同类项、系数化为1。
- 解一元一次不等式的基本方法:去分母、去括号、移项、合并同类项、系数化为1。
4. 二元一次方程组- 二元一次方程组的概念。
- 解方程组的基本方法:代入法、消元法(加减消元、代数代入)。
5. 函数- 函数的概念:定义、函数关系式、函数图像。
- 线性函数、二次函数、反比例函数的图像和性质。
- 函数的基本运算:函数的和、差、积、商。
二、几何1. 平面图形- 点、线、面的基本性质。
- 角的概念:邻角、对角、平行线与对角的关系。
- 三角形的分类与性质:等边、等腰、直角三角形的性质和判定。
- 四边形的分类与性质:平行四边形、矩形、菱形、正方形。
2. 图形的变换- 平移:平移的性质和作图方法。
- 旋转:旋转的性质和作图方法。
- 轴对称:轴对称图形的性质和作图方法。
3. 圆的基本性质- 圆的定义、圆心、半径、直径。
- 圆的对称性、切线的性质、弦的概念。
- 圆周角定理、圆心角定理、圆的面积和周长计算公式。
4. 空间图形- 空间几何体的基本概念:点、线、面、体。
- 多面体的分类与性质:长方体、正方体、棱柱、棱锥、圆柱、圆锥。
- 体积和表面积的计算公式。
5. 相似与全等- 全等图形的判定条件:SSS、SAS、ASA、AAS。
- 相似图形的判定条件:SSS、SAS、ASA。
- 相似三角形的性质:对应角相等、对应边成比例、面积比等于边长比的平方。
苏教版初中数学最全面知识点大全苏教版初中数学包含了丰富的知识点,从基础的四则运算和整数,到代数、几何和概率统计等各个方面。
以下是一个基本的数学知识点大全,供你参考:1. 四则运算及其性质- 加法- 减法- 乘法- 除法2. 整数- 整数的读写与比较- 整数的加减乘除- 整数的绝对值和相反数 - 整数的乘方和乘方根3. 分数- 分数的读写与比较- 分数的加减乘除- 分数的化简与约分- 分数的运算性质4. 小数- 小数的读写与比较- 小数的加减乘除- 小数与分数的相互转换- 小数的运算性质5. 负数- 负数的加减乘除- 负数的乘方和乘方根- 负数在实际问题中的应用6. 代数与方程- 代数式的化简- 简单方程的求解- 一元一次方程与二元一次方程的求解 - 一次方程组的解法7. 平面图形与空间图形- 直线和角的性质- 三角形、四边形、多边形的性质- 圆和圆的性质- 立体图形的名称和性质8. 空间几何- 直线和面的关系- 线段、角的部分与线段的垂直、平行关系 - 平行线的判定及其性质- 同位角、内错角和同旁内角的性质9. 比例与相似- 比例的概念与性质- 比例的四则运算- 图形的相似性质与相似判定- 相似三角形的性质和应用10. 数据分析- 平均数、中位数、众数的概念与计算 - 简单统计图的绘制与分析- 折线图、柱状图、扇形图的制作与应用 - 概率的概念与计算11. 几何证明- 线段垂直的证明- 等腰三角形性质的证明- 相等角、相似三角形的证明- 过定点作直线的证明以上只是一些基本的数学知识点,初中数学知识非常广泛,无法一一列举。
希望这些知识点对你有所帮助。
如果你对特定的知识点有问题,欢迎继续提问。
苏教版初中几何知识点总结几何是研究空间形状、位置、大小等性质的数学学科。
在初中阶段,学生学习到了很多几何知识,包括平面几何和立体几何。
本文将对初中几何知识点进行总结,希望能为学生的学习提供指导和帮助。
一、平面几何知识点总结1. 点、线、面在平面几何中,点、线、面是最基本的概念。
点是没有大小和形状的,只有位置的,用大写字母标示。
线是由无数个点连在一起形成,只有长度没有宽度。
面是由一条封闭曲线包围的区域,具有长、宽、没有厚度。
2. 角角是由两条射线共同端点组成的,角的度量单位是度。
根据角的大小可以分为锐角、钝角、直角、平角。
3. 直线、射线、线段直线是由无数个点连在一起构成的,没有始末点,永远延伸。
射线是有一个始点,永远延伸的直线。
线段是有一个始点和一个终点的部分直线。
4. 三角形三角形是由三条边和三个角组成的。
根据边和角的关系,可以分为等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形。
5. 四边形四边形是由四条边和四个角组成的。
根据边和角的关系,可以分为矩形、正方形、平行四边形、梯形。
6. 圆圆是平面上所有到一个定点距离都相等的点的集合。
圆的性质包括圆心、半径、直径、圆周、弧、扇形等。
7. 相似两个图形,如果一个是另一个的放大(或缩小)和旋转,我们就说这两个图形相似。
相似的图形有相似的形状,但是大小不同。
8. 合并集合中一个大集合,包含其他小的集合,同时和小集合不相等,称之为合并。
9. 切割把一个图形分成两个图形的操作称为切割。
切割的目的在于得到我们需要的图形的形状和大小。
10. 翻折图形绕着某点旋转一定的角度,就形成了一个新图形。
这个操作叫做翻折。
二、立体几何知识点总结1. 立体图形的认识立体图形是三维的图形,具有长、宽、高三个方向的尺寸。
常见的立体图形有棱柱、棱锥、球体、圆柱、圆锥等。
2. 棱柱和棱锥棱柱是底面为多边形,侧面为平行四边形的立体图形。
棱锥是底面为多边形,侧面为三角形的立体图形。
苏教版初一数学下册知识点总结七年级数学公式大全1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 速度×时间=路程路程÷速度=时间路程÷时间=速度4 单价×数量=总价总价÷单价=数量总价÷数量=单价5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 加数+加数=和和-一个加数=另一个加数7 被减数-减数=差被减数-差=减数差+减数=被减数8 因数×因数=积积÷一个因数=另一个因数9 被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式 1 正方形C周长 S面积 a边长周长=边长×4 C=4a面积=边长×边长S=a×a 2 正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a 3 长方形C周长 S面积 a边长周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高 6 平行四边形 s面积 a底 h高面积=底×高 s=ah 7 梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷2 8 圆形S面积 C周长∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏ 9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3 总数÷总份数=平均数和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数) 差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数) 植树问题七年级数学知识点总结统计科学记数法:一个大于10的数可以表示成A.10N的形式,其中1小于等于A小于10,N是正整数。
2024年苏教版七年级数学知识点总结一、数与式1. 自然数、整数、有理数的认识和比较2. 分数的概念及其表示方法3. 数的运算:加法、减法、乘法、除法4. 整数的四则运算5. 分数的加减运算及混合运算6. 数的乘方和乘法运算律7. 简单的代数式二、比1. 比的定义和性质2. 比例和比例的性质3. 比例中的四则运算4. 百分数与百分数的运算5. 比例的应用三、形状与运动1. 平面图形:点、线、面、角的基本概念2. 直线与角3. 三角形和四边形的性质4. 平行线与它们的性质5. 梯形、菱形和平行四边形的性质6. 圆的基本性质四、数据和图表1. 数据收集与整理2. 图表的读取和分析3. 表格的制作和应用4. 统计的基本概念和统计图的绘制5. 常见统计图形的分析五、方程与不等式1. 一元一次方程与一元一次不等式2. 代数式与方程式的应用3. 做运算与解方程之间的关系六、正比例与反比例1. 直接比例与反比例2. 比例线性方程和反比例函数图形的认识3. 比例线性方程和反比例函数的应用七、整式的加减1. 代数式的加减法则和乘法法则2. 积的分配率和提公因式3. 化简代数式八、三角形的面积1. 三角形的面积及其性质2. 面积公式的推导和应用3. 相似三角形与面积的计算九、数与式的应用1. 问题的变式及解法2. 数与式的应用问题3. 代数方法解决应用问题十、数据和不等式1. 数据和不等式的综合应用2. 数据的分析、预测和预测误差3. 解决实际问题以上是____年苏教版七年级数学的主要知识点,总结如上,希望对您有所帮助。
初中数学知识点大全第一章 实数 一、重要概念1.数的分类及概念 数系表:2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a≠1/a (a≠±1);B.1/a 中,a≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a≠0时,a≠-a; B.a 与-a 在数轴上的位置; C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n (n 为自然数)7.绝对值:①定义(两种): 代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个;实数无理数(无限不循环小数)有理数正分数 负分数 正整数0 负整数 (有限或无限循环性整数分数正无理数负无理数 0实数负数整数 分数 无理数有理数正数整数分数无理数有理数│a │ 2aa (a ≥0)(a 为一切实数) a(a≥0) -a(a<0)│a │=④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算运算法则(加、减、乘、除、乘方、开方)运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
第二章 代数式1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式没有加减运算的整式叫做单项式。
(数字与字母的积—包括单独的一个数或字母) 几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同 合并依据:乘法分配律6.根式 表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:3、7是根式,但不是无理式(是无理数)。
7.算术平方根⑴正数a 的正的平方根(a [a ≥0—与“平方根”的区别]); ⑵算术平方根与绝对值单项式 多项式整式分有理式 无理式代数式51① ②区别:│a │中,a 为一切实数;a 中,a 为非负数。
8.同类二次根式、最简二次根式、分母有理化:把分母中的根号划去叫做分母有理化。
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式; ②被开方数中不含有开得尽方的因数或因式。
运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则 2.分式的性质 ⑴基本性质:a b =am bm (m ≠0) ⑵符号法则:a ba b ab -=-=- ⑶繁分式:①定义;②化简方法(两种) 3.整式运算法则(去括号、添括号法则)4.幂的运算性质:①m a ·n a =n m a +;②m a ÷n a =nm a -; ③n m a )(=mn a ;④n ab )(=n a n b ; ⑤n n n b a ba =)( 技巧:pp b a a b )()(=- 5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
6.乘法公式:(正、逆用)2222)(b ab a b a +±=± (a+b )(a-b )=22b a -(a ±b))(22b ab a + =33b a ± 7.除法法则:⑴单÷单;⑵多÷单。
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质:2a =a ;)0()(2≥=a a a ;b a ab ⋅=(a ≥0,b ≥0);b a b a=(a ≥0,b>0)(正用、逆用)10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.a 1;B.a abab =;C.b n a m -1. 11.科学记数法:na 10⨯(1≤a <10,n 是整数)第三章 统计初步 一、 重要概念1.总体:考察对象的全体。
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数) 二、 计算方法 1. 样本平均数:⑴)(121n x x x n x +++=;⑵若a x x -=1'1,a x x -=2'2,…,a x x n n -=',则a x x +='(a —常数,1x ,2x ,…,n x 接近较整的常数a);⑶加权平均数:)(212211n f f f n f x f x f x x k kk =++++++=;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。
通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴])()()[(1222212x x x x x x n s n -++-+-= ; ⑵若a x x -=1'1,a x x -=2'2,…,a x x n n -=',则])[(12'2'2'22'12x n x x x n s n -+++= (a —接近1x 、2x 、…、n x 的平均数的较“整”的常数);若1x 、2x 、…、n x 较“小”较“整”,则])[(12222212x n x x x n s n -+++= ;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3.样本标准差:2s s =第四章 直线形一、 直线、相交线、平行线1.线段、射线、直线三者的区别与联系从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”) 4.两点间的距离(三个距离:点-点;点-线;线-线) 5.角(平角、周角、直角、锐角、钝角) 6.互为余角、互为补角及表示方法 7.角的平分线及其表示8.对顶角及性质9.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”) 10.平行线及判定与性质(互逆)(二者的区别与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成 13.公理、定理 14.逆命题二、 三角形 分类:⑴按边分; ⑵按角分 1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n 边形内角和;④n 边形外角和。
⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。
⑶角与边:在同一三角形中,3.三角形的主要线段讨论:①定义 ②××线的交点—三角形的×心 ③性质 ①高线 ②中线 ③角平分线 ④中垂线 ⑤中位线⑴一般三角形 ⑵特殊三角形:直角三角形、等腰三角形、等边三角形 4.特殊三角形的判定与性质 5.全等三角形⑴一般三角形全等的判定(SAS 、ASA 、AAS 、SSS ) ⑵特殊三角形全等的判定:①一般方法②专用方法6.三角形的面积 ⑴一般计算公式 ⑵性质:等底等高的三角形面积相等。
7.重要辅助线 ⑴中点配中点构成中位线; ⑵加倍中线; ⑶添加辅助平行线 8.证明方法⑴直接证法:综合法、分析法 ⑵间接证法—反证法:①反设②归谬③结论等边等角大边大角小边小角⑶证线段相等、角相等常通过证三角形全等⑷证线段倍分关系:加倍法、折半法⑸证线段和差关系:延结法、截余法⑹证面积关系:将面积表示出来三、四边形分类表:1.一般性质(角)⑴内角和:360°⑵顺次连结各边中点得平行四边形。
⑶外角和:360°推论1:顺次连结对角线相等的四边形各边中点得菱形。
推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。
2.特殊四边形⑴研究它们的一般方法:⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定⑶判定步骤:四边形→平行四边形→矩形→正方形→菱形──⑷对角线的纽带作用:3.对称图形⑴轴对称(定义及性质);⑵中心对称(定义及性质)4.有关定理:①平行线等分线段定理及其推论1、2 ②三角形、梯形的中位线定理③平行线间的距离处处相等。
5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。
6.作图:任意等分线段。
第五章方程(组)一、基本概念1.方程、方程的解(根)、方程组的解、解方程(组)1.分类:二、解方程的依据—等式性质1.a=b←→a+c=b+c 2.a=b←→ac=bc (c≠0)二次方程一次方程高次方程整式方程分式方程有理方程无理方程方程三、 解法1.一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化成1→解。
2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法 ②加减法四、 一元二次方程1.定义及一般形式:)0(02≠=++a c bx ax 2.解法:⑴直接开平方法(注意特征) ⑵配方法(注意步骤—推倒求根公式)⑶公式法:)04(24222,1≥--±-=ac b a ac b b x⑷因式分解法(特征:左边=0)3.根的判别式:ac b 42-=∆4.根与系数顶的关系:a cx x a b x x =⋅-=+2121, 逆定理:若n x x m x x =⋅=+2121,,则以21,x x 为根的一元二次方程是:02=+-n mx x 。