2.1结晶学基础知识
- 格式:ppt
- 大小:1.39 MB
- 文档页数:10
结晶学矿物学复习资料1. 结晶学基础知识- 结晶定义:指物质在固态条件下,由于凝聚力作用,排列成为有规则、周期性的晶体。
- 结晶分类:晶体按照元素化合价状态分类,可分为离子晶体、共价晶体和金属晶体。
- 结晶生长:指晶体从某个核心生长、扩增。
晶体生长形式主要包括沉积生长、溶液生长、气相生长和固相生长等四种。
2. 组成矿物的结晶学基础- 组成矿物的元素:矿物质元素主要来自地球内壳层和地幔的化学成分。
- 矿物形成的条件:矿物形成的条件主要包括原料、能量和适宜的环境条件。
其中重要的环境因素有温度、压力、热液、氧化还原环境等。
- 矿物的晶体结构:晶体结构是矿物最基本的特征之一。
常见的矿物结构包括两大类:离子型结构和层状结构。
其中,离子型结构包括哈布拉式离子型结构和拓扑异构型离子结构。
3. 知名矿物的结晶学描述- 金红石:化学式为Al2O3,结晶系统为三方晶系。
金红石通常呈六面体或八面体的形式出现,颜色常为深红色。
- 橄榄石:化学式为(Mg,Fe)2SiO4,结晶系统为单斜晶系。
橄榄石通常呈石榴子状,颜色从草绿色到深绿色不等。
- 石英:化学式为SiO2,结晶系统为三角晶系。
石英有六种主要的晶体形态,颜色通常无色或白色。
- 方铅矿:化学式为PbS,结晶系统为立方晶系。
方铅矿通常呈立方形或四面体状,颜色为灰黑色。
以上仅为部分知名矿物的结晶学描述,还有其他的知名矿物,需要我们在课上进行探讨和学习。
4. 知名矿物的物化性质描述- 金红石:外观坚硬,比重大,有用于来做研磨材料的硬度,抗腐蚀性、高融点等特点。
- 橄榄石:外观坚硬,比重适中,高硬度,优异的抛光性、抗磨耗性和抗环境侵蚀性等优点。
- 石英:硬度高,颜色多彩,晶体表面有多种质感,抗压力,不变形等特点。
- 方铅矿:油黑色,外观有光泽,密度大,挥发性小,高熔点,易被空气氧化成铅灰等。
5. 矿物的工业应用不同的矿物通过特定的物理化学性质,可得以广泛的应用。
比如,金红石可用于研磨、切割和球墨铸铁生产;橄榄石可用于难熔金属提取、水泥制造、美容产品等行业;石英则可应用于硬质合金、光学玻璃、电子元件等领域;方铅矿可用于铅生产、油井抛光、接触式陶瓷电容等领域。
结晶学研究内容:是研究结晶体的自然科学,具体地说是研究晶体的发生、成长、外部形态、内部构造、物理性质、化学性质、晶体的破坏、人工制备以及他们相互之间关系的科学。
点阵:整个晶体就被抽象成了一组点, 称为点阵。
空间中形成的无限阵列。
空间格子:把晶体结构中阵点的中心用直线联起来构成的空间格架即晶体格子,简称晶格行列(直线点阵,一维点阵):由于阵点在行列上周期性重复出现,因此同一行列上阵点间距是相等的。
在互相平行的行列上阵点间距也是相等的。
在互不平行的行列上,一般不等。
面网(平面点阵,二维点阵):空间格子中阵点在同一平面上排列,称为空间格子的面网,又称为平面点阵。
面网密度:同一层面网的单位面积内拥有的阵点的数目,称为面网密度.面网间距:两层互相平行的相邻两层面网之间的垂直距离,称为面网间距.面网特点:1.任意不在同一条直线上排列的三个阵点就构成一层面网.2.任意一个空间格子内都有无数多个互不平行的面网存在.3.同层面网的不同部位的面网密度是相等的,且互相平行面网的面密度一般相等,互不平行的面网密度一般不等.4.面网密度越大,两个互相平行的面网间距也就愈大.反之,亦然单位平行六面体:晶体的空间格子内,只有一种能反映晶体构造规律和基本性质的平行六面体。
晶胞(unit cell):实际晶体结构中所划分出的单位平行六面体的相应的单位。
具有实际意义的有限实体选择平行六面体的原则:①所选平行六面体的对称性应符合整个空间点阵的对称性。
②选择棱与棱之间直角关系为最多的平行六面体③所选平行六面体之体积应最小。
④当对称性规定棱间的交角不能为直角关系时,应选择结点间距小的行列作为平行六面体的棱,且棱间的交角接近于直角的平行六面体。
非晶体是指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体。
晶体和非晶体的联系:在一定条件下可以相互转化。
晶体向非晶体转化比较困难。
非晶体向晶体确是自发的。
面角恒等定律是有条件的:1、相同的温度、压力条件2、成分与构造相同的晶体。
晶体学基础必学知识点1. 晶体的定义:晶体是由原子、离子或分子以有序排列形成的固态物质。
2. 结晶学:研究晶体的结构、性质以及晶体的生长过程。
3. 晶体的晶格:晶体具有规则的周期性排列结构,可以用晶格来描述。
4. 晶胞:晶体中最小的重复单元,可以通过平移来产生整个晶体结构。
5. 晶体的晶系:根据晶胞的对称性,晶体可以分为七个晶系,分别为三斜晶系、单斜晶系、正交晶系、四方晶系、六方晶系、菱方晶系和立方晶系。
6. 晶体的晶面和晶向:晶体表面上的平面称为晶面,晶体内部的线段称为晶向。
7. 晶体的点阵和晶格常数:晶胞中的基本单位称为点阵,晶体的晶格常数是指晶格中基本单位的尺寸参数。
8. 布拉格方程:描述X射线或中子衍射中晶体衍射角度与晶格参数之间的关系。
9. 动态散射理论:描述X射线或中子与晶体中原子、离子或分子相互作用的过程。
10. 逆格子:描述晶格的倒数空间,逆格子与晶格的结构存在对偶关系。
11. 晶体缺陷:晶体中的缺陷包括点缺陷、线缺陷和面缺陷,晶体缺陷对晶体的性质和行为有重要影响。
12. 晶体生长:研究晶体从溶液或气体中的形成过程,包括核化、生长和晶面的形态演化等。
13. 晶体的结构表征方法:包括X射线衍射、中子衍射、电子衍射、扫描电子显微镜和透射电子显微镜等。
14. 晶体结构的解析和精修:通过衍射数据和晶体学软件对晶体的结构进行解析和精修,得到晶体的准确原子位置和结构参数。
15. 晶体的物理和化学性质:晶体的结构对其性质有重要影响,包括光学性质、电学性质、磁学性质和力学性质等。
16. 晶体学的应用:晶体学在材料科学、化学、生物学、地质学和矿物学等领域有广泛的应用,如材料合成、催化剂设计、药物研发和矿石勘探等。