初中数学九年级上册黄金分割(教案)教学设计
- 格式:doc
- 大小:232.23 KB
- 文档页数:4
一、教学目标:1.了解黄金分割的概念和特点。
2.掌握黄金分割的计算方法。
3.能够运用黄金分割原理解决实际问题。
二、教学重点和难点:1.了解黄金分割的概念和特点。
2.计算黄金分割的过程和方法。
3.运用黄金分割原理解决实际问题。
三、教学过程:1.导入(10分钟)引入数学黄金分割的概念和特点。
通过问答和展示一些有关黄金分割的事物,引起学生的兴趣。
2.讲解(20分钟)向学生详细讲解黄金分割的概念和特点。
解释黄金分割的含义,以及黄金分割数和黄金分割线的相关概念。
通过实例演示黄金分割的运算过程,让学生了解如何计算黄金分割。
3.拓展(20分钟)通过展示一些黄金分割应用在艺术、建筑、设计等领域的实例,拓宽学生对黄金分割的认识。
引导学生思考黄金分割在实际问题中的运用,进行讨论和交流。
4.练习(30分钟)设计一些练习题目,供学生巩固掌握黄金分割的计算方法。
提供不同难度的题目,根据学生的能力开展个别辅导。
5.总结(10分钟)对本节课的重点知识进行总结,强调学生需要掌握的要点。
回答学生提出的问题,澄清他们的疑惑。
四、教学资源:1.黄金分割展示图片和实例。
2.黄金分割的计算示意图。
3.黄金分割的练习题目。
五、教学评价:1.学生的课堂参与度和回答问题的准确性。
2.学生在练习中的表现和答案的正确性。
3.学生对黄金分割应用的理解和运用能力。
六、拓展延伸:1.探讨黄金分割和数列的关系。
3.进一步了解黄金分割相关的数学定理和推论。
七、板书设计:一、黄金分割的概念和特点1.黄金分割的含义2.黄金分割数和黄金分割线二、黄金分割的计算方法1.计算黄金分割的过程2.黄金分割的公式3.黄金分割的性质和应用八、教学反思:通过本节课的教学,学生们对黄金分割的概念和特点有了初步的了解。
他们通过实例演示掌握了黄金分割的计算方法,并进一步认识到黄金分割在实际生活中的广泛应用。
教学过程中,学生的参与度较高,课堂气氛积极活跃。
练习环节的设计充分考虑了不同学生的能力差异,达到了个别辅导的效果。
《黄金分割》教学设计一、教学目标:(一)知识技能目标:(1)知道黄金分割的定义(2)会找一条线段的黄金分割点(二)能力训练要求(1)通过找一条线段的黄金分割点,培养学生的理解能力与动手能力(2)学会利用黄金分割比求线段的长度(三)情感态度目标:(1)从学生乐于接受的现实背景中学习黄金分割,认识到数学上解决实际问题和进行交流的重要工具(2)通过对黄金分割的理解和掌握,明确黄金分割的作图方法,体会数形结合的思想二、教学重难点:教学重点:黄金分割的定义和简单应用。
教学难点:黄金点的画法和验证。
三、教学方法和手段利用多媒体教学设备辅助教学,充分调动学生的积极性,创设和谐、轻松的学习氛围。
四、学法指导学生通过观察、动手、动口、动脑等活动,主动探索,发现问题,养成自主学习和合作学习相结合的良好习惯。
五、教学准备教师准备多媒体课件,黄金分割的学习资料直尺圆规六、教学流程设计(一)、创设问题情境,激发学生兴趣向学生展示与“黄金分割”有关的视频《唐老鸭与黄金分割》和图片:以激发学生兴趣,引起学生探索的欲望。
问:为什么它们会给人感到和谐、平衡、舒适、美的感觉?生自由回答,交流感受。
(二)、实例引入,导出定义。
1、黄金分割的定义:从以上的感知中抽象出一条线段,给出黄金分割的定义。
[设计意图] 这是本节课的重点。
学生学习“线段的比”仅有两节课,掌握程度比较浅,而黄金分割的定义又使用了这一知识点,所以在课件使用过程中应注意帮助学生体会、理解定义中出现的“线段的比”。
2、算一算[设计意图] 将黄金比转化为一元二次方程应用题,让学生用已学过的知识去求解黄金比。
从而得到:(三)、随堂练习[设计意图] 通过两道题,来加深对黄金比的了解及简单应用(用黄金比求线段的长度)(四)、寻找一条线段的黄金分割点(尺规作图)[设计意图] 介绍一种黄金分割点的作图方法,巩固黄金分割的有关知识,学会对一任意线段进行黄金分割。
(教师操作),再引导学生通过各种媒介自主学习黄金分割点的另一些画法。
北师大版数学九年级上册《黄金分割》教学设计1一. 教材分析北师大版数学九年级上册《黄金分割》是学生在学习几何基础知识后的进一步拓展。
本节课主要介绍黄金分割的定义、性质和应用。
教材通过丰富的图片和实例,使学生感受黄金分割的美学价值,提高学生对数学的兴趣。
教材内容安排合理,由浅入深,有利于学生掌握黄金分割的知识。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的基础。
但学生对黄金分割的概念和应用可能较为陌生,需要通过实例和操作来加深理解。
同时,学生可能对数学的美学价值缺乏认识,需要通过本节课的教学来培养。
三. 教学目标1.理解黄金分割的概念,掌握黄金分割的性质。
2.能够运用黄金分割解释生活中的美学现象。
3.培养学生的审美情趣,提高学生对数学的兴趣。
四. 教学重难点1.黄金分割的概念和性质。
2.黄金分割在生活中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究黄金分割的知识。
2.运用实例和图片,让学生感受黄金分割的美学价值。
3.采用分组讨论和合作交流的方式,培养学生的团队协作能力。
4.利用多媒体技术,提高教学的趣味性和互动性。
六. 教学准备1.准备相关的图片和实例,用于展示黄金分割的美学价值。
2.准备教学课件,用于辅助教学。
3.分组讨论的材料和工具。
七. 教学过程1.导入(5分钟)利用多媒体展示一些著名的黄金分割作品,如建筑、绘画等,引导学生对黄金分割产生兴趣,并提出问题:“这些作品有什么特殊的比例关系吗?”2.呈现(10分钟)介绍黄金分割的定义和性质,通过示例让学生理解黄金分割的概念。
如,展示一个矩形和它的黄金分割线,让学生观察和描述黄金分割线的特点。
3.操练(10分钟)学生分组讨论,寻找身边的黄金分割现象,并用自己的语言描述。
教师巡回指导,给予适当的反馈和引导。
4.巩固(10分钟)教师邀请几名学生上台演示他们找到的黄金分割现象,并解释黄金分割的应用。
其他学生听后进行评价和讨论,加深对黄金分割的理解。
沪科版数学九年级上册《黄金分割》教学设计一. 教材分析沪科版数学九年级上册《黄金分割》是学生在学习几何知识的基础上,进一步了解和掌握黄金分割的概念、性质和应用。
教材从生活实例出发,引出黄金分割的概念,并通过几何图形让学生深入理解黄金分割的性质。
本节课的内容对于学生来说既有趣又具有挑战性,能够激发学生的学习兴趣和探究欲望。
二. 学情分析学生在学习本节课之前,已经掌握了基本的几何知识,如相似三角形、平行线等。
他们对几何图形的观察和分析能力较强,但可能对黄金分割的概念和性质理解不够深入。
因此,在教学过程中,教师需要注重引导学生从生活实例中发现黄金分割,并通过几何图形让学生深入理解黄金分割的性质。
三. 教学目标1.知识与技能:让学生了解黄金分割的概念,掌握黄金分割的性质,并能运用黄金分割解决实际问题。
2.过程与方法:通过观察生活实例和几何图形,培养学生的观察能力、分析能力和推理能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的创新意识和审美观念。
四. 教学重难点1.重点:黄金分割的概念和性质。
2.难点:黄金分割在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和几何图形,引导学生发现黄金分割,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考和探究,培养学生的分析能力和推理能力。
3.合作学习法:分组讨论,让学生在合作中交流、思考,提高学生的团队协作能力。
六. 教学准备1.准备生活实例和几何图形的图片,用于导入和呈现。
2.准备相关的教学PPT,展示黄金分割的概念和性质。
3.准备练习题和拓展题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过展示一些生活实例和几何图形的图片,如建筑设计、艺术作品等,引导学生发现这些图形中都存在一种特殊的美感。
提问:这种美感是如何产生的?引出黄金分割的概念。
2.呈现(10分钟)介绍黄金分割的定义:将一条线段分为两部分,使其中一部分与整体的比例等于另一部分与这部分的比例,这个比例约为1:1.618。
4.4探索三角形相似的条件(4)--黄金分割教案一.教学目标(一)知识与能力1. 知道黄金分割的定义;2.会找一条线段的黄金分割点;会判断某一点是否为一条线段的黄金分割点;(二)过程与方法通过找一条线段的黄金分割点,培养学生理解与动手能力及合作交流意识。
(三)情感与价值观1. 能动手找到和制作黄金分割点和图形,让学生认识教学与人类生活的密切联系对人类历史发展的作用;2.在实际操作过程中增强学生的实践意识和自信心。
二.教学重点:了解黄金分割的意义并能运用三.教学难点:找出黄金分割点和黄金矩形四.教法:启发探究法五.教学用具:幻灯片和国旗六.教学过程第一环节创设情境导入新课活动内容:发现美展示课件,提出问题:问题⒈你觉得哪张照片的构图最合理?更能体现小松鼠若有所思的在凝视前方?问题⒉从国旗中找出共同的图案度量点C 到A 、B 的距离,ACBC AB AC 与相等吗?教师操作课件,提出问题与共同学交流、观察学生回答: 五角星, 相等第二环节 合作交流 探索新知活动内容:探索美1.黄金分割点在线段AB 上,点C 把线段分成两条线段AC 和BC ,如果ACBC AB AC =,那么称线段AB 被点C 分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫黄金比。
其中618.01:215:≈-=AC AB 即618.0≈ABAC 教师讲解,学生观察、思考、交流。
活动目的:利用五角星,创设一个有利于学生探究和综合运用线段比的情境。
引入黄金分割的概念、黄金比约为0.618。
注意事项:学生通过观察、思考、交流,教师引导、回答问题。
因为学生尚未学习一元二次方程,所以无法理解比值为215-的理由,只需让学生了解这一事实即可。
第三环节 动手操作 感知新知B C活动内容:创造美做一做:如果已知线段AB ,按照如下方法画图:(1)经过点B 作BD ⊥AB ,使AB BD 21= (2)连接AD ,在DA 上截取DE=DB(3)在AB 上截取AC=AE ,则点C 为线段AB 的黄金分割点根据上述作图回答下列问题(1) 如果设AB=2,那么BD 、AD 、AC 、BC 分别等于多少?(2) 点C 是线段AB 的黄金分割点吗?教师操作课件,提出问题,学生独立思考与同伴交流回答问题:活动目的:在于向学生介绍一种作黄金分割点的方法,同时巩固学生对黄金分割的认识。
《黄金分割》教案一、教学目标:1. 让学生了解黄金分割的概念和特点。
2. 培养学生运用黄金分割知识解决实际问题的能力。
3. 提高学生对数学美的感知,培养学生的审美情趣。
二、教学内容:1. 黄金分割的定义及历史背景。
2. 黄金分割线的画法及应用。
3. 黄金分割在生活中的实例分析。
三、教学重点与难点:1. 黄金分割的概念及画法。
2. 黄金分割在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解黄金分割的概念、历史背景及应用。
2. 采用案例分析法,分析生活中的黄金分割实例。
3. 采用实践操作法,让学生动手画黄金分割线,提高实际应用能力。
五、教学过程:1. 导入新课:通过展示著名的黄金分割作品,引发学生对黄金分割的好奇心,激发学习兴趣。
2. 知识讲解:讲解黄金分割的定义、历史背景及画法,让学生掌握基本知识。
3. 案例分析:分析生活中的黄金分割实例,让学生了解黄金分割在现实生活中的应用。
4. 实践操作:让学生动手画黄金分割线,提高实际应用能力。
6. 板书设计:黄金分割1. 定义:线段分割的比例,使较长线段与整体线段的比等于较短线段与较长线段的比。
2. 画法:通过特定方法画出黄金分割线。
3. 应用:生活中的黄金分割实例分析。
六、教学评价:1. 课后作业:要求学生绘制一幅包含黄金分割的画作,并写一篇短文阐述黄金分割在作品中的运用及其美感。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
3. 同伴评价:学生之间互相评价对方的作品,从黄金分割的应用和创意等方面进行评价。
七、课后作业:1. 绘制一幅包含黄金分割的画作,并写一篇短文阐述黄金分割在作品中的运用及其美感。
2. 收集生活中的黄金分割实例,下节课分享。
八、教学反思:1. 课堂节奏是否适中,学生是否能跟上教学进度。
2. 教学方法是否有效,学生是否能更好地理解和掌握黄金分割的知识。
3. 学生参与度如何,是否都能积极投入到课堂活动中。
黄金分割教学教案一、教学目标1. 让学生了解黄金分割的概念和特点。
2. 培养学生运用黄金分割知识解决实际问题的能力。
3. 提高学生对数学美的感受,培养审美情趣。
二、教学内容1. 黄金分割的定义和比例计算。
2. 黄金分割在自然界和生活中的应用。
3. 黄金分割在艺术创作中的意义。
三、教学重点与难点1. 黄金分割的概念和计算方法。
2. 黄金分割在实际应用中的理解。
四、教学方法1. 采用讲授法,讲解黄金分割的定义、计算和应用。
2. 运用案例分析法,分析黄金分割在自然界和生活中的实例。
3. 启发式教学,引导学生发现黄金分割的美学价值。
五、教学准备1. 课件、图片和实物道具。
2. 练习题和案例分析材料。
六、教学过程1. 引入黄金分割的概念,讲解黄金分割的计算方法。
2. 分析黄金分割在自然界中的实例,如植物、动物的身体比例。
3. 探讨黄金分割在生活中的应用,如建筑、设计、时尚等领域。
4. 引导学生发现黄金分割在艺术创作中的美学价值,如绘画、雕塑、音乐等。
5. 布置练习题,巩固所学知识。
七、课堂互动1. 提问环节:让学生回答黄金分割的概念和计算方法。
2. 小组讨论:分组讨论黄金分割在自然界和生活中的实例。
3. 分享环节:各小组代表分享讨论成果。
八、教学评价1. 课堂问答:评估学生对黄金分割知识的掌握。
2. 练习题:检验学生运用黄金分割解决实际问题的能力。
3. 课后作业:布置相关课题的绘画或设计作品,展示学生对黄金分割的理解和应用。
九、教学拓展1. 引导学生进一步研究黄金分割在数学、物理学、生物学等领域的应用。
2. 组织参观展览或艺术家工作室,深入了解黄金分割在艺术创作中的应用。
十、教学反思2. 根据学生反馈,调整教学内容和方法,提高教学质量。
3. 探索更多黄金分割在各个领域的应用,丰富教学资源。
六、教学活动1. 引入黄金分割的概念,讲解黄金分割的计算方法。
通过展示相关图片和实物道具,引导学生直观地理解黄金分割的概念。
黄金分割教学目标(一)教学知识点1.知道黄金分割的定义.2.会找一条线段的黄金分割点.3.会判断某一点是否为一条线段的黄金分割点.4.通过找一条线段的黄金分割点,培养学生的理解与动手能力.5.理解黄金分割的意义,并能动手找到和制作黄金分割点和图形,让学生认识数学与人类生活的密切联系对人类历史发展的作用.教学重点 了解黄金分割的意义,并能运用.教学难点 找黄金分割点和画黄金矩形.教具准备 投影片一张:教学过程Ⅰ.创设问题情境,引入新课在五角星图案中,大家用刻度尺分别度量线段AC 、BC 的长度,然后计算、,它们的值相等吗? 1.黄金分割的定义一般地,点C 把线段AB 分成两条线段AC 和BC ,如果,那么称线段AB 被点C 黄金分割(golden section ),点C 叫做线段AB AB AC AC BC AC BC AB AC的黄金分割点,AC 与AB 的比叫做黄金比.其中≈0.618.2. 计算黄金比.3.作一条线段的黄金分割点.3.想一想古希腊时期的巴台农神庙(Parthenom Temple ).把它的正面放在一个矩形ABCD 中,以矩形ABCD 的宽AD 为边在其内部作正方形AEFD ,那么我们可以惊奇地发现,,点E 是AB 的黄金分割点吗?矩形ABCD 的宽与长的比是黄金比吗?Ⅲ.课时小结本节课学习了:1.黄金分割点的定义及黄金比.2.如何找一条线段的黄金分割点,以及会画黄金矩形.3.能根据定义判断某一点是否为一条线段的黄金分割点.Ⅳ.课后作业 习题4.8Ⅴ.活动与探究ABAC BCAB BE BC要配制一种新农药,需要兑水稀释,兑多少才好呢?太浓太稀都不行.什么比例最合适,要通过试验来确定.如果知道稀释的倍数在1000和2000之间,那么,可以把1000和2000看作线段的两个端点,选择AB的黄金分割点C作为第一个试验点,C点的数值可以算是1000+×0.618=1618.试验的结果,如果按1618倍,水兑得过多,稀释效果不理想,可以进行第二次试验.这次的试验点应该选AC的黄金分割点D,D的位置是1000+(1618-1000)×0.618,约等于1382,如果D点还不理想,可以按黄金分割的方法继续试验下去.如果太浓,可以选DC之间的黄金分割点;如果太稀,可以选AD之间的黄金分割点,用这样的方法,可以较快地找到合适的浓度数据.这种方法叫做“黄金分割法”.用这样的方法进行科学试验,可以用最少的试验次数找到最佳的数据,既节省了时间,也节约了原材料.。
《黄金分割》教案一、教学目标1、知识与技能目标(1)理解黄金分割的定义,能准确找出黄金分割点。
(2)掌握黄金分割比的数值,并能进行简单的计算。
(3)了解黄金分割在生活中的应用,提高学生的数学应用意识。
2、过程与方法目标(1)通过观察、计算、推理等活动,培养学生的探究能力和逻辑思维能力。
(2)经历黄金分割的发现和探究过程,体会从特殊到一般的数学思想方法。
3、情感态度与价值观目标(1)感受黄金分割的美,激发学生对数学的兴趣和热爱。
(2)通过了解黄金分割在生活中的广泛应用,体会数学与生活的紧密联系,增强学生的应用意识和创新意识。
二、教学重难点1、教学重点(1)黄金分割的定义及黄金分割比的计算。
(2)黄金分割在实际生活中的应用。
2、教学难点(1)理解黄金分割的本质,能准确找出黄金分割点。
(2)灵活运用黄金分割解决实际问题。
三、教学方法讲授法、探究法、讨论法、演示法四、教学过程1、导入新课(1)展示一些具有美感的图片,如建筑、艺术作品等,引导学生观察并思考这些图片中美的共同特点。
(2)提出问题:为什么这些图片会给人一种美的感受?是否存在某种数学规律在其中?2、讲授新课(1)黄金分割的定义通过一个简单的几何图形,如线段,引入黄金分割的概念。
在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC,如果AC/AB = BC/AC,那么称线段 AB 被点 C 黄金分割,点 C 叫做线段AB 的黄金分割点,AC 与 AB 的比值约为 0618,这个比值称为黄金分割比。
(2)黄金分割比的计算设线段 AB 的长度为 1,点 C 为黄金分割点,AC 的长度为 x,则BC 的长度为 1 x。
根据黄金分割的定义可得:x/1 =(1 x)/x解方程可得:x =(√5 1)/2 ≈ 0618(3)黄金分割在几何图形中的应用①展示一些常见的几何图形,如矩形、三角形等,引导学生找出其中的黄金分割点和黄金分割比。
②以矩形为例,讲解如何通过黄金分割比来绘制一个具有美感的黄金矩形。
黄金分割数教学设计一、教材中的地位和作用本课选自义务教育课程标准实验教科书——数学——九年级上册.在教材中是第二十二章的选学内容:阅读与思考.<黄金分割数>将从一个崭新的角度加深同学们对比例线段和线段的比的认识.同时,通过<黄金分割数>在建筑、艺术等方面的实例让学生进一步体会数学与自然以及人类社会的密切关系,将进一步丰富学生的数学活动经验,有意识地培养学生积极的情感、态度.认识数学丰富的人文价值,促进学生充分的观察、分析、归纳、概括的能力和审美意识的发展,同时在教学中让学生学会观察、操作、实验、合作与交流及学会学习就变得更为重要.二、教学目标1、知识与技能目标:①了解黄金比及黄金分割数;②会应用黄金分割数进行有关计算和简单应用.2、过程与方法目标:①在实际操作、思考、合作交流等过程中,增强学生的实践意识和自信心,发展学生探究能力和综合应用知识的能力.②通过展现学习过程,培养学生的自主学习能力,表达能力和逻辑思维能力.3、情感态度与价值观①通过黄金分割数的学习,让学生认识数学与人类活的密切联系,以及对人类发展的作用.②通过生产及生活中的实例,了解黄金分割数在广泛的领域里的一些应用,让学生体会其文化价值,激发学生热爱科学的热情.三、教学重点与难点重点:黄金分割数的定义;难点:黄金分割数的定义与应用.四、教法分析本节课我本着以学生为主体,让学生动起来的主旨,采用学生收集资料,预习展示,小组合作探究等方式,指导学生运用观察法、讨论法、引导,启发学生去发现规律,归纳总结规律.在教学中结合本节课的内容特点,有效地调动了学生的学习积极性和主动性,在教学中利用多媒体教学直观生动,通过播放图片及flash动画折纸,激发学生学习数学的兴趣,使全体学生乐于参与,体验到学习的快乐.五、教学过程设计(一)预习展示:(1)预习:安排学生结合本节课的内容进行课前预习,让学生采集有关资料、图片,并收集身边携带方便的长方形或长方体的物品。
黄⾦分割教案(定稿)课题:10.2黄⾦分割【教学⽬标】1.了解黄⾦分割、黄⾦矩形、黄⾦三⾓形的意义.2.会找⼀条线段的黄⾦分割点.3.在应⽤中进⼀步理解线段的⽐、成⽐例线段,并在实际操作、思考、交流等过程中进⼀步感悟数学与⽣活的密切联系.【教学重点】黄⾦分割的意义【教学难点】利⽤黄⾦三⾓形找线段的黄⾦分割点【学具准备】计算器、直尺、量⾓器、圆规、课本、草稿纸【教学过程】课前:让我们⼀起说“我真的很不错”!让我们把最热烈的掌声送给各位嘉宾!好,静息!导⼊新课:⾸先让我们⼀起来欣赏⼀些图⽚:(出⽰幻灯⽚3、4、5、6、7、8)看了这些图⽚之后,你有什么感受?⽤⼀个字概括⼀下!(美)从数学⾓度来看,它们为什么会显得这样美呢?研究了今天的知识就可以揭开这个谜底了。
今天我们⼀起来研究“黄⾦分割”.(板书课题)究竟什么是黄⾦分割呢?请同学们拿出活动单,看活动⼀第1题,课前⽼师已对⼀些线段的长度进⾏了精确的测量。
下⾯就请同学们独⽴完成活动⼀的1,2两⼩题。
活动⼀:认识黄⾦分割、黄⾦矩形、黄⾦三⾓形的意义并能简单应⽤1.看课本第85页⾄87页的四幅图并填表:(⽐值精确到0.001.)思考:从这些计算结果你发现了什么?2.阅读课本第86页图10-2、图10-3下⾯的两段⽂字及第87页第7⾏,完成下列问题:(1)说⼀说什么是黄⾦分割?黄⾦⽐约等于多少?什么是黄⾦矩形?什么是黄⾦三⾓形?(2)如图,点B把线段AC分割成两部分(AB>BC),添加⼀个什么条件能使点B为AC的黄⾦分割点?你有⼏种添加条件的⽅法?请写出来.A刚才同学们⾃学得⾮常认真,下⾯请同学们在组长的带领下进⾏交流。
下⾯先请哪⼀组同学来展⽰第1,2题的答案.(可以添加AC AB =ABBC,也可以将⽐例式变形,或利⽤⽐例中项来说;还可以添加某些⽐值为0.618,甚⾄可以添加某些⽐值为0.382等等.板书:AC AB =ABBC≈0.618)教师强调AC AB ≈0.618是说AB ≈0.618AC ,AB 没有AC ⼤,但AB 与AC 的⼀半要⼤⼀些;同样ABBC≈0.618是说……有同学写出ABAC≈0.618,你觉得对吗?现在我们再来看这些图⽚,你能⽤所学的知识解释⼀下它们为什么会这样美呢?(出⽰幻灯⽚9、10、11)下⾯再请同学们举⼀些⽣活中具有黄⾦分割的例⼦.下⾯让我们对所学进⾏简单应⽤吧,请同学们独⽴完成活动⼀第3题。
第4课时黄金分割学习目标:1、认识线段的黄金分割,理解黄金分割的概念.2、会运用黄金分割进行相关计算和证明.学习重点:比例性质的应用和黄金分割的概念.学习难点:运用黄金分割解决实际问题.【预习案】一、链接请写出比例的基本性质.二、导读阅读课本P95-96,回答下列问题:(1) 叫做黄金分割.(2)黄金分割点是如何确定的?一条线段有几个黄金分割点? 叫做线段的黄金分割点, 叫做黄金比.【探究案】㈠、黄金分割的定义:1、动手操作,然后算一算,完成下面的填空:度量线段AC 、BC 的长度,线段AC= ,BC= , 计算AB AC = 、AC BC = ,AB AC 与AC BC 的值A B C相等吗? ※在线段AB 上,点C 把线段AB 分成两条线段 和 ,如果 = , 那么称线段AB 被点C ,点C 叫做线段AB 的 ,AC 与AB 的比叫做 。
其中ABAC = ≈ ※⑴、黄金分割是一种分割线段的方法,一条线段的黄金分割点有 个。
⑵、黄金比是两条线段的比,没有单位,它的比值为 ,精确到0.001为 。
2、想一想:点C 是线段AB 的黄金分割点,则AB AC = 。
㈡、确定黄金分割点:如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD=21AB.(2)连接AD ,在DA 上截取DE=DB.(3)在AB 上截取AC=AE.点C 就是线段AB 的黄金分割点。
㈢、黄金矩形:宽与长的比是:的矩形叫做黄金矩形。
【训练案】1、若点C 是线段AB 的黄金分割点,且AC >CB ,则AB :AC= ;BC :AB= .2、若在四边形ABCD 和四边形A 1B 1C 1D 1中,=11B A AB =11C B BC 1111CD DA C D D A ==58且四边形A 1B 1C 1D 1的周长为80cm ,求四边形ABCD 的周长.3、已知,如图在△ABC 中ECAE DB AD = 求证:(1)EC AC DB AB =;(2)EC AE AB AD = 4、设点C 是长度为2cm 的线段AB 的黄金分割点,则AC 的长为 . A B。
教学设计
图1 图2 图3 引言:通过欣赏上述三幅图片,大家会发现,不论是古今中外的宏大建筑,还是脍炙人口的艺术作品;不论是精美的生活物品,还是习以为常的动植物,它们都会使大家体验和谐之美.那么,若用数学的眼光观察,它们中间隐藏着怎样的数学规律呢.下面就借名画“迷人的蒙娜丽莎”来开始
则b就叫做a,c的比例
0.1m)
并通过测量、计算、推理发现了五角星和谐之美的
当气温处于人体正常体温的黄金比值时,人体感到最舒适.因此夏天使用空调时室内温度调到什么温度最适合?(人体正常体温是36℃~37℃)
164cm,下身长为100cm,那么老师穿多高的高跟鞋看上去会更协调
吗?请与同学交流。
沪科版数学九年级上册《黄金分割》教学设计1一. 教材分析《黄金分割》是沪科版数学九年级上册的一章内容。
本章主要介绍了黄金分割的定义、性质和应用。
通过学习黄金分割,学生能够理解黄金分割的概念,掌握黄金分割的计算方法,并能够运用黄金分割解决实际问题。
教材中包含了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对数学概念和运算规则有一定的了解。
但是,对于黄金分割这一概念,学生可能比较陌生。
因此,在教学过程中,需要引导学生从实际问题中抽象出黄金分割的概念,并通过例题和练习题帮助学生理解和掌握黄金分割的性质和应用。
三. 教学目标1.知识与技能:学生能够理解黄金分割的定义,掌握黄金分割的计算方法,并能够运用黄金分割解决实际问题。
2.过程与方法:学生能够通过观察、分析和计算,探索黄金分割的性质和应用。
3.情感态度与价值观:学生能够培养对数学的兴趣和好奇心,提高解决问题的能力。
四. 教学重难点1.重点:黄金分割的定义和计算方法。
2.难点:黄金分割的应用和实际问题的解决。
五. 教学方法1.引导发现法:通过提出问题,引导学生观察和分析实际问题,从而发现黄金分割的概念和性质。
2.例题讲解法:通过讲解教材中的例题,引导学生理解黄金分割的计算方法。
3.练习法:通过布置练习题,让学生巩固所学知识,并能够灵活运用。
六. 教学准备1.教具:黑板、粉笔、多媒体教学设备。
2.教材:沪科版数学九年级上册。
3.练习题:教材中的练习题和补充练习题。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如建筑设计、美术作品等,引导学生观察和分析这些问题中的比例关系。
提出问题:“你们认为怎样的比例关系最美观?”从而引出黄金分割的概念。
2.呈现(10分钟)教师通过讲解和示例,向学生介绍黄金分割的定义和计算方法。
讲解黄金分割的定义,即一条线段与它的较长部分之比等于它的较短部分与较长部分之比。
展示黄金分割的计算方法,如使用黄金分割比公式或直接测量和计算。
北京课改版数学九年级上册18.2《黄金分割》教学设计一. 教材分析《黄金分割》是北京课改版数学九年级上册第18.2节的内容。
本节主要介绍黄金分割的定义、黄金比的应用以及黄金分割在实际生活中的运用。
教材通过丰富的图片和实例,使学生感受黄金分割的美,激发学生的学习兴趣。
黄金分割是数学与艺术、生活的完美结合,对于培养学生的审美观念和实际应用能力具有重要意义。
二. 学情分析九年级的学生已具备一定的几何知识基础,对比例、比值等概念有所了解。
但黄金分割作为一种美的规律,与学生的日常生活联系较远,需要通过实例和学生主动探究,才能更好地理解和接受。
同时,学生对于数学在实际生活中的应用可能缺乏足够的认识,需要教师通过生动的教学手段加以引导和启发。
三. 教学目标1.理解黄金分割的定义,掌握黄金分割的基本性质。
2.学会运用黄金分割解释生活中的美学现象,提高审美能力。
3.培养学生的探究能力和合作精神,提高数学应用意识。
四. 教学重难点1.黄金分割的定义及其数学性质。
2.黄金分割在实际生活中的应用。
五. 教学方法1.情境教学法:通过丰富的图片和实例,引导学生感受黄金分割的美,激发学习兴趣。
2.探究教学法:学生进行小组讨论和探究,自主发现黄金分割的性质和应用。
3.实践教学法:让学生亲自动手操作,体验黄金分割在实际生活中的运用。
六. 教学准备1.教学课件:制作含有丰富图片和实例的课件,生动展示黄金分割的美。
2.学习材料:准备相关黄金分割的实例和问题,供学生探究和练习。
3.教学道具:准备一些几何图形和模型,帮助学生更好地理解黄金分割。
七. 教学过程导入(5分钟)教师通过展示一些美丽的图片,如建筑、艺术品等,引导学生感受数学与艺术的联系。
提问:这些美丽的事物背后有没有共同的规律呢?从而引出本节课的主题——黄金分割。
呈现(10分钟)教师简要介绍黄金分割的定义和数学性质,如黄金分割点的求法等。
通过示例,让学生初步了解黄金分割的应用,如建筑设计、美术创作等。
第4课时 黄金分割
教学目标
(一)教学知识点
1.知道黄金分割的定义.
2.会找一条线段的黄金分割点.
3.会判断某一点是否为一条线段的黄金分割点.
(二)能力训练要求
通过找一条线段的黄金分割点,培养学生的理解与动手能力.
(三)情感与价值观要求
理解黄金分割的意义,并能动手找到和制作黄金分割点和图形,让学生认识数学与人类生活的密切联系对人类历史发展的作用.
教学重点
了解黄金分割的意义,并能运用.
教学难点
找黄金分割点和画黄金矩形.
教学过程
Ⅰ.创设问题情境,引入新课
[师]生活中我们见到过许许多多的图形,形态各异,美观大方.那么这些漂亮的图形你能画出来吗?比如,右图是一个五角星图案,如何找点C 把AB 分成两段AC 和BC ,使得画出的图形匀称美观呢?本节课就研究这个问题.
Ⅱ.讲授新课
[师]在五角星图案中,大家用刻度尺分别度量线段AC 、BC 的长度,然后计算
AB AC 、AC
BC ,它们的值相等吗?
[生]相等. [师]所以AC
BC AB AC =. 1.黄金分割的定义
一般地,点C 把线段AB 分成两条线段AC 和BC ,如果AC
BC AB AC =,那么称线段AB 被点C 黄金分割(golden section ),点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.其中AB
AC ≈0.618.
2. 计算黄金比.
解:由AC AB =BC AC
,得∴AC 2=AB ·BC. 设AB =1,AC =x ,则BC =1- x.
∴x 2=1×(1-x )
∴x 2+ x -1=0 解这个方程,得
x 1=-1+√52或x 2=-1-√52
(不合题意,舍去), 所以,黄金比AC AB =√5-12
≈0.618。
3.作一条线段的黄金分割点.
如图,已知线段AB ,按照如下方法作图:
(1)经过点B 作BD ⊥AB ,使BD =2
1AB .
(2)连接DA ,在DA 上截取DE =DB .
(3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点.
[师]你知道为什么吗?
若点C 为线段AB 的黄金分割点,则点C 分线段AB 所成的两条线段AC 、BC 间须满足
AC
BC AB AC =.下面请大家进行验证.自己有困难时可以互相交流.为了计算方便,可设AB =1. 证明:∵AB =1,AC =x ,BD =21AB =21
∴AD =x +21
在Rt △ABD 中,由勾股定理,得
(x +21)2=12+(21)2
∴x 2+x +41=1+4
1
∴x 2=1-x
∴x 2=1·(1-x )
∴AC 2=AB ·BC 即:AC BC AB AC = 即点C 是线段AB 的一个黄金分割点,
在x 2=1-x 中
整理,得x 2+x -1=0
∴x =2
512411±-=+±- ∵AC 为线段长,只能取正
∴AC =
215-≈0.618 ∴AB
AC ≈0.618 ∴黄金比约为0.618.
3.想一想
古希腊时期的巴台农神庙(Parthenom Temple ).把它的正面放在一个矩形ABCD 中,以矩形ABCD 的宽AD 为边在其内部作正方形AEFD ,那么我们可以惊奇地发现,BC
AB BE BC =,点E
是AB 的黄金分割点吗?矩形ABCD 的宽与长的比是黄金比吗? [师]请大家互相交流.
[生]因为四边形AEFD 是正方形,所以AD =BC =AE ,又因为BC AB BE BC =,所以AE AB BE AE =,即AE
BE AB AE =,因此点E 是AB 的黄金分割点,矩形ABCD 宽与长的比是黄金比. [师]在上面这个矩形中,宽与长的比是黄金比,这个矩形叫做黄金矩形.你学会作了吗? Ⅲ.课时小结
本节课学习了:1.黄金分割点的定义及黄金比.
2.如何找一条线段的黄金分割点,以及会画黄金矩形.
3.能根据定义判断某一点是否为一条线段的黄金分割点.
Ⅳ.课后作业
习题4.8
Ⅴ.活动与探究
要配制一种新农药,需要兑水稀释,兑多少才好呢?太浓太稀都不行.什么比例最合适,要通过试验来确定.如果知道稀释的倍数在1000和2000之间,那么,可以把1000和2000看作线段的两个端点,选择AB 的黄金分割点C 作为第一个试验点,C 点的数值可以算是1000+(2000-1000)×0.618=1618.试验的结果,如果按1618倍,水兑得过多,稀释效果不理想,可以进行第二次试验.这次的试验点应该选AC 的黄金分割点D ,D 的位置是1000+(1618-1000)×0.618,约等于1382,如果D 点还不理想,可以按黄金分割的方法继续试验下去.如果太浓,可以选DC 之间的黄金分割点;如果太稀,可以选AD 之间的黄金分割点,用这样的方法,可以较快地找到合适的浓度数据.
这种方法叫做“黄金分割法”.用这样的方法进行科学试验,可以用最少的试验次数找到最佳的数据,既节省了时间,也节约了原材料.
●板书设计。