三相不平衡的定义、危害及解决方法
- 格式:doc
- 大小:17.50 KB
- 文档页数:4
电机三相电流不平衡允许范围内随着现代工业的飞速发展,电机作为工业生产中不可或缺的设备,其重要性日益凸显。
而电机的三相电流不平衡问题也成为了电机运行中需要关注的一个重要问题。
本文将从电机三相电流不平衡的定义、原因、危害和允许范围等方面进行探讨。
一、电机三相电流不平衡的定义电机三相电流不平衡是指电机三相电流之间的大小不一致或相位差异较大的现象。
一般来说,电机三相电流不平衡是指三相电流不平衡率超过5%时出现的现象。
二、电机三相电流不平衡的原因1.供电电网问题电机三相电流不平衡的最主要原因是供电电网问题。
例如,供电电网的三相电压不平衡、电源线路接线不良、电源电压波动等都会导致电机三相电流不平衡。
2.电机本身问题电机本身的问题也是导致电机三相电流不平衡的原因之一。
例如,电机三相绕组的匝数不一致、电机轴承损坏、电机转子偏心等都会导致电机三相电流不平衡。
三、电机三相电流不平衡的危害1.影响电机的运行效率电机三相电流不平衡会导致电机的转矩不平衡,从而影响电机的运行效率。
同时,电机三相电流不平衡还会导致电机的功率因数下降,从而影响电机的能耗效率。
2.增加电机的损耗电机三相电流不平衡会导致电机内部的热损耗增加,从而导致电机的寿命缩短。
3.可能引起电机故障电机三相电流不平衡还可能引起电机的故障,例如电机绕组过热、电机轴承损坏等。
四、电机三相电流不平衡的允许范围电机三相电流不平衡的允许范围是指电机三相电流不平衡率的最大值。
根据国家标准,电机三相电流不平衡率的允许范围为5%。
如果电机三相电流不平衡率超过5%,就需要采取措施进行调整。
五、电机三相电流不平衡的调整方法1.调整电源电压如果电机三相电流不平衡是由供电电网问题引起的,可以通过调整电源电压来解决问题。
2.更换电机配件如果电机三相电流不平衡是由电机本身问题引起的,可以通过更换电机配件来解决问题。
例如,更换电机绕组、更换电机轴承等。
3.使用电机控制器电机控制器可以对电机进行监控和调节,从而解决电机三相电流不平衡的问题。
三相不平衡详解三相不平衡详解三相不平衡:是指在电力系统中三相电流(或电压)幅值不一致,且幅值差超过规定范围。
三相不平衡是电能质量的一个重要指标,虽然影响电力系统的因素非常的多,但正常性不平衡的情况大多是因为三相的元器件、线路参数或负荷的不对称。
由于三相负荷的因素是不一定的,所以供电点的三相电压和电流极易出现三相不平衡的现象,损耗线路。
一个三相平衡电路的三相电压源必须是正弦波,且频率相同,幅度相同,相位互差120度;三相的负荷阻抗相同且均为线性阻抗,因此三相的电流都是正弦波,且频率相同,幅度相同,相位互差120度。
绝对的三相平衡是不存在的,实际的三相系统总是存在不同程度的不平衡现象。
▍分类事故性不平衡:是由于三相系统中某一相(或两相)出现故障所致。
例如一相或两相断线,或者单相接地故障等。
这种状况是系统运行所不允许的,一定要在短期内排除故障使系统恢复正常。
正常性不平衡:是由于系统三相元件或负荷不对称引起的。
作为电能质量指标之一的“三相电压允许不平衡度”是针对正常不平衡运行工况而定的。
▍机房设备用电三相负载不平衡造成的危害1. 增加线路的电能损耗,大大降低配电变压器的供电效率。
2. 低压总配电输配电能力减少。
3.三相负载严重不平衡时,将导致技术机房配电柜总开关处于临界额定值运行,影响电缆的安全运行,使配电系统处于不安全运行状态。
4.影响播出设备的安全运行。
三相电源负载不平衡会产生零序电流,零线电位偏移,导致三相电压不稳,严重时会损坏播出设备。
5.技术机房内三相电源负荷不平衡将造成技术电源和UPS电源资源利用率大大降低。
▍三相供电合理分配及三相负荷不平衡度计算在低压电网中,三相线路的导线截面积相同,当三相负荷电流大小不等时,负荷电流大的一相线路压降将增大,端电压降低,造成中性点偏移。
当三相负荷严重不平衡时,一旦中性线断线,就会造成三相相电压严重不平衡,电压髙的一相就会把用电设备烧坏,而电压低的一相用电器也不能正常工作。
线路三相不平衡线路三相不平衡是指三相电压或电流的大小不相等,导致电路中出现电量自动分配不均的情况。
这种情况下,电力系统的运行效率会受到影响,并增加电器设备的损坏率。
以下是三相不平衡的原因和影响,还有应对不平衡的方法。
原因:1. 三相负载分布不均。
例如,在三相电路中连接不同功率的设备,若这些负载在不同的相中,则极易导致三相不平衡。
2. 电源不平衡。
接到三相电路的电源可能出现相间电压值有所差别的情况,例如,一个相的电压较低,而另一个相的电压较高等。
3. 长时间单相过负荷。
在三相电路中,某一相的负载连续工作时间过长,可能导致其电流过大,造成电网三相电流不平衡。
影响:1. 对电气系统的稳定性产生不利影响。
由于不同相之间电压不同,会导致设备电流混乱,影响电气设备的稳定运行。
2. 会加强设备损坏的程度。
由于电力系统中的各项设备都是为三相电流设计,而在三相不平衡的情况下,电流和电压将变得不稳定,容易加快设备老化、热失控和损坏等问题的发生。
3. 会影响电能的分配,导致电能的浪费。
由于电路中电量分配不均,会导致一些线路中的电量无法得到有效使用,从而增加电能的浪费,使电网运行效率降低。
应对措施:1. 均衡电源负载,使三相电流尽可能平衡。
2. 针对不均衡的情况,采用调压装置来平衡电压。
3. 定期检查电源组成电压是否相等,并对不均衡的电流进行有效调整。
4. 在设计和运行过程中,始终时刻注意系统中的三相电流是否平衡。
总之,在电力系统中,三相不平衡是一个普遍存在的问题。
通过正确的解决方法,可以避免不均的问题,从而提高电网的运行效率,减少电气设备的损坏,并节约电能的使用,从而切实保障了用电的安全和稳定运行。
三相不平衡的原因危害以及解决措施!三相不平衡是指三相电路中的三个相电压或电流的幅值不相等或者相角不等的情况。
三相不平衡可能由多种原因造成,例如电网电压不稳定、负载不均衡、线路阻抗不等等。
三相不平衡会给电力系统带来一系列的危害,包括降低电力系统效率、增加能耗、使设备损坏、影响电能质量等。
为了解决三相不平衡带来的问题,可以采取一系列的措施,包括优化负载分配、使用平衡设备、增加系统容量等。
首先,我们来分析一下导致三相不平衡的原因。
三相不平衡的原因可以从系统、负载和线路三个方面来分析。
从系统来看,电网电压不稳定是导致三相不平衡的主要原因之一、电网电压的不稳定性可能由于电网负荷变化大、供电线路阻抗不等、电源变压器故障等原因造成,这会导致不同相电压的幅值和相角发生变化,从而引起三相不平衡。
从负载来看,不同电器设备的功率需求不同,导致各个相的负载不均衡。
例如,在住宅区,电视、冰箱、洗衣机等电器设备的用电需求可能不同,这就会使得三相负载不平衡。
此外,由于三相线路中的负载采用的三相变压器可能存在不同的连接方式或者单相负载连接方式,也会导致三相不平衡。
从线路来看,线路阻抗不等是一种导致三相不平衡的常见现象。
由于线路长度、导线截面积、接触电阻等因素的差异,导致三相线路中的阻抗不同,进而导致电压不平衡。
三相不平衡会给电力系统带来一系列的危害。
首先,三相不平衡会降低电力系统的效率,增加系统能耗。
由于系统的三相电压或电流不平衡,会导致电能在传输过程中的损耗增加,使得系统的能效降低。
其次,三相不平衡会导致设备损坏。
由于系统中存在电流不平衡,会导致电机、变压器等设备的工作不平稳,增加设备的运行负荷,导致设备过热、烧损等问题。
此外,三相不平衡还会给用户带来电能质量问题,例如电压波动、谐波等,影响用电设备的正常运行。
为了解决三相不平衡带来的问题,可以采取以下措施。
首先,需要优化负载分配。
可以通过合理规划电器设备的用电方式、改善负载的均衡性,尽量减小三相负载不平衡。
三相电不平衡的危害及解决措施三相电不平衡指的是三相电网中的三相电流或电压之间存在不平衡的情况。
当电网中出现三相电不平衡时,会引起一系列的危害,包括设备寿命缩短、能源浪费、安全事故等。
因此,为了确保电力系统的正常运行,需要采取相应的解决措施。
首先,三相电不平衡会引起设备寿命缩短。
当三相电流或电压不平衡时,会导致各个设备的负荷不均衡,从而使得设备在运行过程中承受不均衡的负荷。
这样会导致设备的热负荷不均衡,加速设备的温度上升,缩短设备的寿命。
另外,不平衡的电流还会使电机发生轴向力,进一步损坏设备。
其次,三相电不平衡会导致能源浪费。
在三相电不平衡的情况下,不同的负载和设备承受的电流或电压不同,这将使得电能的分配不均匀。
有些电压和电流会被过载,而有些电压和电流则会被低负载。
一方面,过载电压和电流会浪费能源,另一方面,低负载电压和电流则不能发挥其最佳效能,也浪费了能源。
三相电不平衡还会引起电力系统的安全事故。
电力系统中的不平衡电流会导致线路过热、设备绝缘老化、电弧产生等问题,增加了火灾和电击的风险。
根据统计数据,电力系统的三相电不平衡是导致大部分电力设备事故的主要原因之一、因此,必须采取措施来解决三相电不平衡问题。
解决三相电不平衡问题的措施如下:1.定期检测和监测电力系统的三相电压和电流,发现不平衡的情况及时进行处理。
可以使用专业的电能质量分析仪器,对电力系统进行全面的检测和分析,找出不平衡的原因。
2.进行负载均衡。
根据电能质量分析的结果,可以调整电力系统中各个负载的接入方式,使各个负载平均分布,降低三相电不平衡。
3.安装三相电流互感器或电流差动保护装置。
三相电流互感器可以实时监测电力系统中三相电流的大小和不平衡度,并及时提醒操作人员进行处理。
电流差动保护装置可以感知不平衡电流,并迅速切断供电,保护设备和人员的安全。
4.安装无功补偿装置。
无功补偿装置可以在电力系统产生无功电流时进行调节,提高电力系统的功率因数,减少电力系统的负荷不平衡。
三相不平衡定义:是指在电力系统中三相电流(或电压)幅值不一致,且幅值差超过规定范围。
由于各相电源所加的负荷不均衡所致,属于基波负荷配置问题。
发生三相不平衡即与用户负荷特性有关,同时与电力系统的规划、负荷分配也有关。
《电能质量三相电压允许不平衡度》(GB/T15543-1995)适用于交流额定频率为50 赫兹。
在电力系统正常运行方式下,由于负序分量而引起的PCC 点连接点的电压不平衡。
该标准规定:电力系统公共连接点正常运行方式下不平衡度允许值为2%,短时间不得超过4%。
电流不平衡不超过10%。
实践证明,一般情况下三相负荷不平衡可引起线损率升高2%-10%,三相负荷不平衡度若超过10%,则线损显著增加。
有关规程规定:配电变压器出口处的负荷电流不平衡度应小于10%,中性线电流不应超过低压侧额定电流的25%,低压主干线及主要分支线的首端电流不平衡度应小于20%。
危害:1.增加线路的电能损耗。
在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。
当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。
当三相负载不平衡运行时,中性线即有电流通过。
这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。
三相四线制结线方式,当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小;当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。
当三相负荷不平衡时,无论何种负荷分配情况,电流不平衡度越大,线损增量也越大。
2.增加配电变压器的电能损耗。
配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。
因为配变的功率损耗是随负载的不平衡度而变化的。
在生产、生活用电中,三相负载不平衡时,使变压器处于不对称运行状态。
造成变压器的损耗增大(包括空载损耗和负载损耗)。
三相不平衡处理方法
1. 什么是三相不平衡?
三相不平衡是指三相电路中三相电流或电压不相等的现象。
小幅不平衡可以接受,但如果不平衡太大,则会对电气设备造成损坏,甚至引起火灾事故。
2. 三相不平衡的原因
导致三相不平衡的原因包括三相负载不均匀,电源电压不稳定,电路接触不良等。
3. 三相不平衡的危害
三相不平衡会导致电压波动,降低设备效率,缩短设备寿命,并产生电磁噪声和过热等问题。
此外,不平衡过程中产生的负序电量(损耗电量)还可能使电表读数异常和电费超标。
4. 三相不平衡的检测方法
可以通过测量三相电流或电压来检测三相不平衡。
一般来讲,一个相位的电流或电压值大于其他相位,则可以判断为三相不平衡。
5. 三相不平衡的处理方法
对于三相不平衡问题,我们可以采取以下处理方法:
①增大电源容量,以确保电源能够满足负载的需要。
②调整电源的相序,使得不同相位的负载能够平均分布。
③改变电源节拍,以平滑电流波峰。
④调整电路中的电阻、电感和电容等元件,以平衡不同相位的电压和电流。
⑤安装三相不平衡保护装置,以监测和保护电器设备。
6. 总结
三相不平衡是电力设计和运行中常见的问题。
我们必须及时发现问题,采取措施加以解决,以确保设备运行稳定,降低电费,减少安全隐患。
三相不平衡的危害以及解决措施三相不平衡是指三相电源中的电流或电压之间存在不相等的情况。
这种不平衡可能会导致多种危害,包括功率损失、设备故障、电网不稳定等。
为了解决这个问题,可以采取多种措施,如调整电源接线、使用三相平衡装置、进行定期检测和维护等。
三相不平衡会导致功率损失。
在三相不平衡的情况下,三个相的电流或电压之间不相等,导致整个系统的功率因数下降,造成不必要的能量损失。
这将使电网的效率降低,不仅令用户电费增加,还可能导致电网过载,影响电网的供电能力。
三相不平衡也会导致设备故障。
在不平衡的情况下,设备可能会受到不均匀的电流或电压的冲击,加速设备的损坏和老化。
例如,电动机加速过程中可能会发生热量不均匀分布,导致绕组温度不均匀,从而影响电机的寿命。
不平衡还可能导致设备振动,增加设备的故障风险。
三相不平衡还会导致电网不稳定。
由于不平衡的电流或电压会引起电网电压的扰动,可能导致电网电压过高或过低的情况。
过高的电压可能损坏设备,甚至引发火灾;而过低的电压则可能影响设备正常运行。
此外,不平衡还可能引发谐波,进一步影响电网的稳定性。
为了解决三相不平衡的问题,可以采取以下措施:1.调整电源接线:通过改变电源的接线方式,可以尽量减小电源电压或电流的不平衡。
例如,使用星形接线方式可以减小不平衡程度,而使用三角形接线方式则可能造成更大不平衡。
2.使用三相平衡装置:三相平衡装置可以在电网中实时监测电流或电压的不平衡情况,并通过自动调节相间的电流或电压来保持三相的平衡。
这可以有效地减小不平衡造成的危害。
3.进行定期检测和维护:定期对电网进行检测和维护是预防和解决三相不平衡问题的重要措施。
通过定期测量和分析电流和电压的数据,可以及时发现不平衡的情况,并采取相应的措施进行调整。
4.平衡负载:负载平衡是保持三相平衡的重要方式之一、通过合理规划负载分配,避免其中一相负载过重,可以有效地减小不平衡的发生。
5.防止谐波影响:谐波可能是引起三相不平衡的一种原因。
三相电压不平衡产生原因、危害及治理措施1、基本概念三相电压不平衡是指三相电压的幅值不同或者相位差不是120度,或者两者兼有。
三相电压不平衡的分析通常采用对称分量法,运用该方法可以将三相电压不平衡系统分解为三个独立的对称系统,即正序系统、负序系统和零序系统。
《电能质量三相电压不平衡》GB/T-15543-20**适用于系统标称频率为50Hz的交流电力系统正常运行方式下由于负序基波分量引起的电压不平衡及低压系统由于零序分量而引起的电压不平衡。
在该规范中定义不平衡度为三相电力系统中三相不平衡的程度,并用电压、电流负序基波分量或者零序基波分量与正序基波分量的均方根值百分比来表示。
同时,该规范中也给出了三相不平衡度的近似计算公式如下所示:《电能质量三相电压不平衡》GB/T-15543-20**中规定了对于电力系统公共连接点,电网正常运行时,负序电压不平衡度不超过2%,短时不超过4%。
低压系统零序电压极限值暂不做规定,但是各相电压必须满足GB/T12325的要求。
2、三相电压不平衡产生原因电力系统中三相电压不平衡产生的主要原因是负荷的不平衡和系统阻抗的不平衡。
其中负荷的不平衡是造成三相电压不平衡的主要原因,比较明显的单相负荷由电力机车、电焊机等等。
在电力系统中三相发电机和变压器等设备具有良好的对称性,不会对三相电压不平衡产生影响,故电力系统阻抗的不平衡主要是由供电线路阻抗不平衡造成的,当三相导体(架空线或者电缆)程水平或垂直排列时,为了保持三相阻抗平衡,需要采取换相等措施。
3、三相电压不平衡造成的危害(1)变压器处于负载不平衡运行时,某相电压处于满载,其余两相未满载,使变压器容量不能得到充分的利用,同时变压器长期处于负载不平衡运行时,造成其局部过热,降低其使用寿命。
(2)供电线路处于三相不平衡系统中,负序电流会产生附加损耗,增大线路损耗和压降。
另外还增大对通讯系统的干扰,影响正常通讯质量。
(3)可能会造成继电保护误动作。
三相电机电流不平衡
三相电机电流不平衡指的是三相电机Ia,Ib,Ic中任一相路电流的平均电流与平均电流的差值大于允许值,或者三相电流的比值不平衡。
三相电流的平均电流是指所有三相电流的平均值,所有三相电流的差值是指每一相到平均电流的差值。
二、三相电机电流不平衡的危害
1、三相电机电流不平衡会降低设备的运行效率,因为不平衡的三相电流会造成转矩的不均衡,从而影响设备的正常运行。
2、三相电机电流不平衡也会加剧电机热损耗,因为不平衡的三相电流会使电机发热量变大,从而导致电机损耗增加。
3、三相电机电流不平衡也会影响电机的寿命,不平衡的三相电流会阻碍电机的正常运行,从而缩短电机的使用寿命。
三、三相电机电流不平衡的预防措施
1、要正确安装三相电机,正确的安装可以保证电机正常运行,并减少电机电流不平衡的发生。
2、要保持电缆的良好,电缆的损坏会影响电机的运行效率,从而增加电机电流不平衡的几率。
3、要定期检查电机,定期检查能够发现电机存在的问题,从而及时采取措施解决,减少电机电流不平衡的发生。
- 1 -。
三相不平衡
定义:是指在电力系统中三相电流(或电压)幅值不一致,且幅值差超过规定范围。
由于各相电源所加的负荷不均衡所致,属于基波负荷配置问题。
发生三相不平衡即与用户负荷特性有关,同时与电力系统的规划、负荷分配也有关。
《电能质量三相电压允许不平衡度》(GB/T15543-1995)适用于交流额定频率为50 赫兹。
在电力系统正常运行方式下,由于负序分量而引起的PCC 点连接点的电压不平衡。
该标准规定:电力系统公共连接点正常运行方式下不平衡度允许值为2%,短时间不得超过4%。
电流不平衡不超过10%。
实践证明,一般情况下三相负荷不平衡可引起线损率升高2%-10%,三相负荷不平衡度若超过10%,则线损显著增加。
有关规程规定:配电变压器出口处的负荷电流不平衡度应小于10%,中性线电流不应超过低压侧额定电流的25%,低压主干线及主要分支线的首端电流不平衡度应小于20%。
危害:
1.增加线路的电能损耗。
在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。
当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。
当三相负载不平衡运行时,中性线即有电流通过。
这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。
三相四线制结线方式,当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小;当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。
当三相负荷不平衡时,无论何种负荷分配情况,电流不平衡度越大,线损增量也越大。
2.增加配电变压器的电能损耗。
配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。
因为配变的功率损耗是随负载的不平衡度而变化的。
在生产、生活用电中,三相负载不平衡时,使变压器处于不对称运行状态。
造成变压器的损耗增大(包括空载损耗和负载损耗)。
根据变压器运行规程规定,在运行中的变压器中性线电流不得超过变压器低压侧额定电流的25%。
此外,三相负载不平衡运行会造成变压器零序电流过大,局部金属件升温增高,甚至会导致变压器烧毁。
3.配变出力减少。
配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本一致,各相额定容量相等。
配变的最大允许出力要受到每相额定容量的限制。
假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少。
其出力减少程度与三相负载的不平衡度有关。
三相负载不平衡越大,配变出力减少越多。
为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。
假如配变在过载工况下运行,即极易引发配变发热,严重时甚至会造成配变烧损。
4.配变产生零序电流。
配变在三相负载不平衡工况下运行,将产生零序电流,该电流将随三相负载不平衡的程度而变化,不平衡度越大,则零序电流也越大。
运行中的配变若存在零序电流,则其铁芯中将产生零序磁通。
(高压侧没有零序电流)这迫使零序磁通只能以油箱壁及钢构件作为通道通过,而钢构件的导磁率较低,零序电流通过钢构件时,即要产生磁滞和涡流损耗,从而使配变的钢构件局部温度升高发热。
配变的绕组绝缘因过热而加快老化,导致设备寿命降低。
同时,零序电流的存也会增加配变的损耗。
5.影响用电设备的安全运行。
配变是根据三相负载平衡运行工况设计的,其每相绕组的电阻、漏抗和激磁阻抗基本一致。
当配变在三相负载平衡时运行,其三相电流基本相等,配变内部每相压降也基本相同,则配变输出的三相电压也是平衡的。
假如配变在三相负载不平衡时运行,其各相输出电流就不相等,其配变内部三相压降就不相等,这必将导致配变输出电压三相不平衡。
同时,配变在三相负载不平衡时运行,三相输出电流不一样,而中性线就会有电流通过。
因而使中性线产生阻抗压降,从而导致中性点漂移,致使各相相电压发生变化。
负载重的一相电压降低,而负载轻的一相电压升高。
在电压不平衡状况下供电,即容易造成电压高的一相接带的用户用电设备烧坏,而电压低的一相接带的用户用电设备则可能无法使用。
所以三相负载不平衡运行时,将严重危及用电设备的安全运行。
三相电压不平衡的发生将导致达到数倍电流不平衡的发生。
诱导电动机中逆扭矩增加,从而使电动机的温度上升,效率下降,能耗增加,发生震动,输出亏耗等影响。
各相之间的不平衡会导致用电设备使用寿命缩短,加速设备部件更换频率,增加设备维护的成本。
断路器允许电流的余量减少,当负载变更或交替时容易发生超载、短路现象。
中性线中流入过大的不平衡电流,导致中性线增粗。
6.电动机效率降低。
配变在三相负载不平衡工况下运行,将引起输出电压三相不平衡。
由于不平衡电压存在着正序、负序、零序三个电压分量,当这种不平衡的电压输入电动机后,
负序电压产生旋转磁场与正序电压产生的旋转磁场相反,起到制动作用。
但由于正序磁场比负序磁场要强得多,电动机仍按正序磁场方向转动。
而由于负序磁场的制动作用,必将引起电动机输出功率减少,从而导致电动机效率降低。
同时,电动机的温升和无功损耗,也将随三相电压的不平衡度而增大。
所以电动机在三相电压不平衡状况下运行,是非常不经济和不安全的。
解决办法
由不对称负荷引起的电网三相电压不平衡可以采取的解决办法:
1、将不对称负荷分散接在不同的供电点,以减少集中连接造成不平衡度严重超标的问题。
2、使用交叉换相等办法使不对称负荷合理分配到各相,尽量使其平衡化。
3、加大负荷接入点的短路容量,如改变网络或提高供电电压级别提高系统承受不平衡负荷的能力。
4、装设平衡装置。
简要列出以上几种解决三相电压或电流不平衡对电网及电能质量危害的技术措施。
具体应该采取哪一种措施更为合理有效,还要根据实际情况,经过技术和经济比较后确定实施。
在低压三相四线制的城市居民和农网供电系统中:由于用电户多为单相负荷或单相和三相负荷混用,并且负荷大小不同和用电时间的不同。
所以,电网中三相间的不平衡电流是客观存在的,并且这种用电不平衡状况无规律性,也无法事先预知。
导致了低压供电系统三相负载的长期性不平衡。
对于三相不平衡电流,电力部门除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。
电网中的不平衡电流会增加线路及变压器的铜损,还会增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,最终会造成三相电压的不平衡。
调整不平衡电流无功补偿装置,有效地解决了这个难题,该装置具有在补偿系统无功的同时调整不平衡有功电流的作用。
其理论结果可使三相功率因数均补偿至1,三相电流调整至平衡。
实际应用表明,可使三相功率因数补偿到0.95 以上,使不平衡电流调整到变压器额定电流的10%以内。
根据wangs 定理(王氏定理),在相间跨接的电容可以在相间转移有功电流。
调整不平衡电流无功补偿装置就是利用wangs 定理来进行设计的,在各相与相之间以及各相与零线之间恰当地接入不同数量的电容器,不但可以使各相都得到良好的补偿,而且可以调整不平有功电流。