传热学7
- 格式:ppt
- 大小:1.51 MB
- 文档页数:76
大学《传热学》试题及答案热辐射基本定律部分一、基本概念主要包括热辐射基本概念及名词解释、黑体辐射基本定律、实际物体辐射特性及其应用。
1、北方深秋季节的清晨,树叶叶面上常常结霜。
试问树叶上、下去面的哪一面结箱?为什么?答:霜会结在树叶的上表面。
因为清晨,上表面朝向太空,下表面朝向地面。
而太空表回的温度低于摄氏零度,而地球表面温度一般在零度以上。
由于相对树叶下表面来说,其上表面需要向太空辐射更多的能量,所以树叶下表面温度较高,而上表面温度较低且可能低于零度,因而容易结霜。
2、如图所示的真空辐射炉,球心处有一黑体加热元件,试指出①,②,③3处中何处定向辐射强度最大?何处辐射热流最大?假设①,②,②处对球心所张立体角相同。
答:由黑体辐射的兰贝特定律知,定向辐射强度与方向无关。
故Il =I2=I3。
而三处对球心立体角相当,但与法线方向夹角不同,θ1>θ2>θ3。
所以①处辐射热流最大,③处最小。
3、有—台放置于室外的冷库,从减小冷库冷量损失的角度出发,冷库外壳颜色应涂成深色还是浅色?答:要减少冷库冷损,须尽可能少地吸收外界热量,而尽可能多地向外释放热量。
因此冷库败取较浅的颜色,从而使吸收的可见光能量较少,而向外发射的红外线较多。
4、何谓“漫─灰表面”?有何实际意义?答:“漫─灰表面”是研究实际物体表面时建立的理想体模型.漫辐射、漫反射指物体表面在辐射、反射时各方向相同. 灰表面是指在同一温度下表面的辐射光谱与黑体辐射光谱相似,吸收率也取定值.“漫─灰表面”的实际意义在于将物体的辐射、反射、吸收等性质理想化,可应用热辐射的基本定律了。
大部分工程材料可作为漫辐射表面,并在红外线波长范围内近似看作灰体.从而可将基尔霍夫定律应用于辐射换热计算中。
5、你以为下述说法:“常温下呈红色的物体表示此物体在常温下红色光的单色发射率较其它色光(黄、绿、兰)的单色发射率为高。
”对吗?为什么?(注:指无加热源条件下)答:这一说法不对。
传热学第七版知识点总结●绪论●热传递的基本方式●导热(热传导)●产生条件●有温差●有接触●导热量计算式●重要的物理量Rt—热阻●热对流●牛顿冷却公式●h—表面传热系数●Rh—既1➗h—单位表面积上的对流传热热阻●热辐射●斯蒂芬—玻尔茨曼定律●黑体辐射力Eb●斯蒂芬—玻尔茨曼常量(5678)●实际物体表面发射率(黑度)●传热过程●k为传热系数p5●第一章:导热理论基础●基本概念●温度场●t=f(x,y,z,t)●稳态导热与非稳态导热●等温面与等温线(类比等高线)●温度梯度●方向为法线●gradt●指向温度增加的方向●热流(密度)矢量●直角坐标系●圆柱坐标系●圆球坐标系●傅里叶定律●适用条件:各向同性物体●公式见p12●热导率●注意多孔材料的导温系数●导热微分方程式●微元体的热平衡●热扩散率●方程简化问题p19●有无穷多个解●导热过程的单值性条件●几何条件●物理条件●导热过程的热物性参数●时间条件●也叫初始条件●边界条件●第一类边界条件●已知温度分布●第二类边界条件●已知热分布●第三类边界条件●已知tf和h●第二章:稳态导热●通过平壁的导热●第一类边界条件●温度只沿厚度发生变化,H和W远大于壁厚●第三类边界条件●已知tf1和2,h1和2●通过复合平壁的导热●具有内热源的平壁导热●通过圆筒壁的导热●公式见p37●掌握计算公式及传热过程●掌握临界热绝缘直径dc●通过肋壁的导热●直肋●牛顿冷却公式●环肋●肋片效率●通过接触面的导热●了解接触热阻Rc●二维稳态导热●了解简化计算方法●形状因子S●第三章:非稳态导热●非稳态导热过程的类型和特点●了解过程●了解变化阶段●无限大平壁的瞬态导热●加热或冷却过程的分析解法●表达式及物理意义●傅立叶数Fo●毕渥准则Bi●集总参数法●应用条件●见课本p69●物理意义●见课本p70●半无限大物体的瞬态导热●其他形状物体的瞬态导热●周期性非稳态导热●第四章:导热数值解法基础●建立离散方程的方法●有限差分法●一阶截差公式p91●控制容积法●根据傅立叶定律表示导热量●稳态导热的数值计算●节点方程的建立●热平衡法●勿忽略边界节点●非稳态导热的数值计算●显式差分●勿忽略稳定性要求●隐式差分●第五章:对流传热分析●对流传热概述●流动的起因和状态●起因●自然对流●受迫对流●流速快强度大h高●状态●层流●紊流●采用较多●流体的热物理性质●热物性●比热容●热导率●液体大于气体●密度●黏度●大了不利于对流传热●液体●温度越高黏度越低●气体●温度越高黏度越大●定性温度●流体温度●主流温度●管道进出口平均温度●容积平均温度●壁表面温度●流体温度与壁面温度的算数平均值●流体的相变●相变传热●传热表面几何因素●壁面形状●长度●定型长度l●粗糙度●流体的相对位置●外部流动●外掠平板●外掠圆管及管束●内部流动●管内流动●槽内流动●对流传热微分方程组●对流传热过程微分方程式●见课本p116公式5-2●第一类边界条件●已知壁温●第二类边界条件●已知热流密度q●连续性方程●质量流量M的概念●p117公式5-3●二维常物性不可压缩流体稳态流动连续性方程●动量守恒微分方程式●动量守恒方程式●p118公式5-4●N- S方程●注意各项的含义●能量守恒微分方程式●四种热量●导热量●热对流传递的能量●表面切向应力对微元体做功的热(耗散热)●内热源产生的热●方程式p119公式5-5●边界层对流传热微分方程组●流动边界层●层流边界层●紊流边界层●层流底层(黏性底层)●会画分布规律●热边界层●也称温度边界层●会画分布规律●数量级分析与边界层微分方程●普朗特数Pr的概念●外掠平板层流传热边界层微分方程式分析解简述●熟记雷诺准则●努谢尔特数Nu含义●动量传递和热量传递的类比●两传类比见p132内容较多●动量传递●掌握雷诺类比率●热量传递●掌握柯尔朋类比率●相似理论基础●三个相似原理●同类物理现象●同名的已定特征数相等●单值性条件相似●初始条件●边界条件●几何条件●物理条件●对流传热过程的数值求解方法简介p145 ●第六章:单相流体对流传热●会用准则关联式计算h●p162例题●确定定性温度,定型尺寸●查物性参数计算Re●附录2●选择准则关联式●p160公式6-4●第七章:凝结与沸腾传热●凝结传热●形成和传热模式的不同●珠状凝结●膜状凝结●了解影响因素●了解关联式的应用●沸腾传热●了解换热机理●掌握大空间沸腾曲线●影响因素●计算方法●热管●了解工作原理●第八章:热辐射的基本定律●基本概念●理解●热辐射的本质●热辐射的特点●掌握概念●黑体●灰体●漫射体●发射率●吸收率●热辐射的基本定律●重点掌握●维恩位移定律●斯蒂芬-玻尔兹曼定律●基尔霍夫定律●漫灰表面发射率等于吸收率●第九章:辐射传热计算●任意两黑表面之间的辐射换热量●角系数●用代数法进行计算●空间热阻●封闭空腔法●三个黑表面之间的辐射换热●掌握热阻网格图●灰表面间●辐射换热●基尔霍夫定律计算●掌握三个灰表面●有效辐射●掌握概念●表面热阻●绝热面重辐射面●遮热板工作原理及应用●气体辐射特点●第十章:传热和换热器●通过肋壁的传热●了解计算方法●复合传热时的传热计算●传热的强化和削弱●了解措施●换热器的形式和基本构造●了解分类●平均温度差●掌握LMTD方法●换热器计算●对数平均温差法●掌握传热单元数法p305 ●换热器性能评价简述。
第七章热辐射的基本定律在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。
太阳对大地的照射是最常见的辐射现象。
高炉中灼热的火焰会烘烤得人们难以忍受‘太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。
特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。
本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。
第一节基本概念1-1 热辐射的本质和特征由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。
比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。
人们根据电磁波不同效应把电磁波分成若干波段。
波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0.76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。
可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。
因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。
一、热辐射的本质和特点1、发射辐射能是各类物质的固有特性。
当原子内部的电子受温和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这就是辐射。
第七章 气体的流动(Gas Flow)第一节 气体在喷管和扩压管中的流动主题1:喷管和扩压管的断面变化规律一、稳定流动基本方程气体在喷管和扩压管中的流动过程作可逆绝热过程,气体流动过程所依据的基本方程式有:连续性方程式、能量方程式、及状态方程式。
1、连续性方程连续性方程反映了气体流动时质量守恒的规律。
定值=⋅=vf mg ω写成微分形式ggd v dv f df ωω-=7-1它给出了流速、截面面积和比容之间的关系。
连续性方程从质量守恒原理推得,所以普遍适用于稳定流动过程,即不论流体的性质如何(液体和气体),或过程是否可逆。
2、能量方程能量方程反映了气体流动时能量转换的规律。
由式(3-8),对于喷管和扩压管中的稳定绝热流动过程,212122)(21h h g g -=-ωω 写成微分形式dh d g -=221ω7-23、过程方程过程方程反映了气体流动时的状态变化规律。
对于绝热过程,在每一截面上,气体基本热力学状态参数之间的关系:定值=k pv写成微分式0=+vdv k p dp 7-3二、音速和马赫数音速是决定于介质的性质及介质状态的一个参数,在理想气体中音速可表示为kRT kpv a ==7-4因为音速的大小与气体的状态有关,所以音速是指某一状态的音速,称为当地音速。
流速与声速的比值称为马赫数:M ag=ω 7-5利用马赫数可将气体流动分类为:m 2g v 222图7-1管道稳定流动示意图亚声速流动:1<M a g <ω超声速流动:1>M a g >ω 临界流动: 1=Ma g =ω三、促使气体流速变化的条件 1、力学条件由式(3-5),对于开口系统可逆稳定流动过程,能量方程⎰-∆=21vdp h q 或 vdp dh q -=δ,式中0=q δ所以 vdp dh = 7-6 联合(7-2)和(7-6)vdp d g g -=ωω7-7由式7-7可见,气体在流动中流速变化与压力变化的符号始终相反,表明气流在流动中因膨胀而压力下降时,流速增加;如气流被压缩而压力升高时,则流速必降低。
第七章思考题1.什么叫膜状凝结,什么叫珠状凝结?膜状凝结时热量传递过程的主要阻力在什么地方? 答:凝结液体在壁面上铺展成膜的凝结叫膜状凝结,膜状凝结的主要热阻在液膜层,凝结液体在壁面上形成液珠的凝结叫珠状凝结。
2.在努塞尔关于膜状凝结理论分析的8条假定中,最主要的简化假定是哪两条? 答:第3条,忽略液膜惯性力,使动量方程得以简化;第5条,膜内温度是线性的,即 膜内只有导热而无对流,简化了能量方程。
3.有人说,在其他条件相同的情况下.水平管外的凝结换热一定比竖直管强烈,这一说法一定成立?答;这一说法不一定成立,要看管的长径比。
4.为什么水平管外凝结换热只介绍层流的准则式?常压下的水蒸气在10=-=∆w s t t t ℃的水平管外凝结,如果要使液膜中出现湍流,试近似地估计一下水平管的直径要多大? 答:因为换热管径通常较小,水平管外凝结换热一般在层流范围。
对于水平横圆管:()r t t dh R w s e ηπ-=4()4132729.0⎪⎪⎭⎫ ⎝⎛-=w s t t d gr h ηλρ临界雷诺数()()1600161.9Re 434541324343=-=rg t t dw s c ηλρ由100=s t ℃,查表:kg kJ r /2257= 由95=p t ℃,查表:3/85.961m kg =ρ()K m W ∙=/6815.0λ()s m kg ∙⨯=-/107.2986η()()mg t t rd w s 07.23.976313235=-=λρη即水平管管径达到2.07m 时,流动状态才过渡到湍流。
5.试说明大容器沸腾的t q ∆~曲线中各部分的换热机理。
6.对于热流密度可控及壁面温度可控的两种换热情形,分别说明控制热流密度小于临界热流密度及温差小于临界温差的意义,并针对上述两种情形分别举出一个工程应用实例。
答:对于热流密度可控的设备,如电加热器,控制热流密度小于临界热流密度,是为了防止设备被烧毁,对于壁温可控的设备,如冷凝蒸发器,控制温差小于临界温差,是为了防止设备换热量下降。