第5节 氢原子光谱的精细结构
- 格式:ppt
- 大小:436.50 KB
- 文档页数:8
实验 氢原子光谱的研究氢原子的结构最简单,它的线光谱明显地具有规律,早就为人们所注意。
各种原子光谱线的规律性的研究正是首先在氢原子上得到突破的。
氢原子又是一种典型的最适合于进行理论与实验比较的原子,对氢原子光谱的种种研究在量子论的发展中多次起过重要作用。
1913年玻尔建立了半经典的氢原子理论,成功地解释了包括巴耳末线系在内的氢光谱的规律。
事实上氢的每一谱线都不是一条单独的线,换言之,都具有精细结构,不过用普通的光谱仪器难以分辨,因而被当作单独一条而已。
这一事实意味着氢原子的每一能级都具有精细结构。
1916年索末菲考虑到氢原子中电子的椭圆轨道上近日点的速度已经接近光速,他根据相对论性力学修正了玻尔的理论,得到了氢原子能级精细结构的精确公式。
但这仍是一个半经典理论的结果。
1925年薛定谔建立了波动力学(即量子学中的薛定谔方程),重新解释了玻尔理论所得到的氢原子能级。
不久海森伯和约丹(1926年)根据相对论性薛定谔方程推得一个比索末菲所得的在理论基础上更加坚实的结果,将这结果与托马斯(1926年)推得的电子自旋轨道相互作用的结果合并起来,也得到了精确的氢原子能级精细结构公式。
尽管如此,根据该公式所得巴耳末系第一条的(理论)精细结构与不断发展的精密测量中所得实验结果相比,仍有约百分之几的微小差异。
1947年蓝姆和李瑟福用射频波谱学方法,进一步肯定了氢原子第二能级中轨道角动量为零的一个能有确实比上述精确公式所预言的高出1057MHz (乘以普朗克常数即得相应的能量值),这就是有名的蓝姆移动。
直到1949年,利用量子电动力学理论将电子与电磁场的相互作用考虑在内。
这一事实才得到了解释,成为量子电动力学的一项重要实验根据。
[实验目的]1.学习识谱和一种测量谱线波长的方法。
2.通过测量氢光谱可见谱线的波长,验证巴耳末公式的正确性,从而对玻尔理论的实验基础有具体了解,力求准确测定氢的里德伯常数,对近代测量所达到的精度有一初步了解。