等腰三角形习题课
- 格式:ppt
- 大小:711.50 KB
- 文档页数:28
八年级等腰三角形数学教案【优秀6篇】作为一名专为他人授业解惑的人民教师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
来参考自己需要的教案吧!小编为您精心收集了6篇《八年级等腰三角形数学教案》,如果能帮助到您,小编将不胜荣幸。
等腰三角形篇一9.3章等腰三角形教案(一)、温故知新,激发情趣:1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。
(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。
)(二) 、构设悬念,创设情境:3、一般三角形有哪些特征?(三条边、三个内角、高、中线、角平分线)4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?(把问题3作为教学的出发点,激发学生的学习兴趣。
问题4给学生留下悬念。
)(三)、目标导向,自然引入:本节课我们一起研究——9.3 等腰三角形(板书课题) 9.3 等腰三角形(了解本节课的学习内容)(四)、设问质疑,探究尝试:结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。
[问题]通过观察,你发现了什么结论?(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)[结论]等腰三角形的两个底角相等。
(板书学生发现的结论)等腰三角形特征1:等腰三角形的两个底角相等在△ ABC中,△AB=AC()△△B=△C()[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。
例1:已知:在△ABC中,AB=AC,△B=80°,求△C和△A的度数。
〔学生思考,教师分析,板书〕练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。
等腰三角形练习题(含答案)等腰三角形第1课时:等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为80°。
2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=3cm。
3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为45°。
4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为80°。
5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数为100°。
6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF。
证明:DE=DF。
第2课时:等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为钝角三角形。
2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=5cm。
3.如图,在△ABC中,AD⊥BC于点D,且BD=DC,则△ABC为等腰三角形。
4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有2个等腰三角形。
5.如图,D是△XXX的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF。
证明:AB=AC。
6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G。
证明:△EFG是等腰三角形。
等边三角形第1课时:等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为60°。
2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B。
能判定△ABC为等边三角形的有条件①、②、③。
3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=2.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD的度数为75°。
《等腰三角形》习题课2【学习目标】:相关习题【重点难点】:等腰三角形判断及性质【学法指导】:小组合作【知识链接】:等腰三角形性质,轴对称【学习过程】:一、填空题1.等腰三角形的判定定理是_________________________________________________.2.ΔABC中,∠B=50°,∠A=80°,AB=5cm,则AC=______.3.如图6-1,AE∥BC,∠1=∠2,若AB=4cm,则AC=____________.4.如图6-2,∠A=∠B,∠C+∠CDE=180°,若DE=2cm,则AD=____________.图6-1 图6-2 图6-3 图6-45.如图6-3,四边形ABCD中,AB=AD,∠B=∠D,若CD=1.8cm,则BC=______.6.如图6-4,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则ΔOMN的周长=______.7.ΔABC中,CD平分∠ACB,DE∥BC交AC于E,DE=7cm,AE=5cm,则AC=______.8.ΔABC中,AB=AC,BD是角平分线,若∠A=36°,则图中有______个等腰三角形.9.判断下列命题的真假:(1)有两个内角分别是70°、40°的三角形是等腰三角形.()(2)平行于等腰三角形一边的直线所截得的三角形仍是等腰三角形.()(3)有两个内角不等的三角形不是等腰三角形.()(4)如果一个三角形有不在同一顶点处的两个外角相等,那么这个三角形是等腰三角形.()综合、运用、诊断一、解答题10.已知:如图6-5,ΔABC中,BC边上有D、E两点,∠1=∠2,∠3=∠4.求证:△ABC是等腰三角形.图6-511.已知:如图6-6,ΔABC中,AB=AC,E在CA的延长线上,ED⊥BC.求证:AE=AF.图6-612.已知:如图6-7,ΔABC中,∠ACB=90°,CD⊥AB于D,BF平分∠ABC交CD于E,交AC于F.求证:CE=CF.图6-713.如图6-8,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线,求证:BQ+AQ=AB+BP.图6-8拓展、探究、思考14.如图6-9,若A、B是平面上的定点,在平面上找一点C,使ΔABC构成等腰直角三角形,问这样的C点有几个?并在图6-9中画出C点的位置.图6-915.如图6-10,对于顶角∠A为36°的等腰ΔABC,请设计出三种不同的分法,将ΔABC分割为三个三角形,并且使每个三角形都是等腰三角形.图6-10【学习反思】:。
人教版八年级数学上册《等腰三角形》课时练习题(含答案)一、单选题1.如图,在等边△ABC 中,AB =4cm ,BD 平分∠ABC ,点E 在BC 的延长线上,且30E ∠=,则CE 的长是( )A .1cmB .2cmC .3cmD .4cm 2.如图,等边ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,则ACE ∠等于( )A .15︒B .20︒C .45︒D .60︒ 3.如图,在ABC 中,,AB AC AD =是ABC 的角平分线,过点D 分别作,DE AB DF AC ,垂足分别是点E ,F ,则下列结论错误..的是( )A .90ADC ∠=B .DE DF =C .AD BC = D .BD CD =4.等腰三角形两边长为3,6,则第三边的长是( )A .3B .6C .12D .3或65.如图,AB //CD ,△ACE 为等边三角形,∠DCE =45°,则∠EAB 等于( )A .40°B .30°C .20°D .15°6.已知,在△ABC 中,AB AC =,如图,(1)分别以B ,C 为圆心,BC 长为半径作弧,两弧交于点D ; (2)作射线AD ,连接BD ,CD .根据以上作图过程及所作图形,下列结论中错误..的是( )A .BAD CAD ∠=∠B .△BCD 是等边三角形C .AD 垂直平分BCD .ABDC S AD BC =二、填空题 7.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则CAD ∠的度数为_____.8.如图,等腰三角形ABC 的面积为24,底边6BC =,腰AC 的垂直平分线EF 分别交边AC 、AB 于E 、F 两点,点M 为线段EF 上一动点,点D 为BC 的中点,连接CM 、DM .在点M 的运动过程中,△CDM 的周长存在最______值(填入“大”或“小”),最值为______.9.如图,在△ABC 中,∠B 、∠C 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,下列结论:①△BDF ,△ADE 都是等腰三角形;②DE =BD +CE ;③△ADE 的周长等于AB +AC ;④BF =CF ;⑤若∠A =80°,则∠BFC =130°,其中正确的有_________10.已知ABC 中,20B ∠=︒,在AB 边上有一点D ,若CD 将ABC 分为两个等腰三角形,则A ∠=________.三、解答题11.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.12.如图,点D ,E 在ABC 的边BC 上,AB AC =,AD AE =.求证:BD CE =.13.如图,E 为ABC 的外角CAD ∠平分线上的一点,AE //BC ,BF AE =.(1)求证:ABC 是等腰三角形;(2)若4AF =,求CE 的长.14.如图,在△ABC 和△DCB 中,∠A =∠D =90°,AC =BD ,AC 与BD 相交于点O ,限用无刻度直尺完成以下作图:(1)在图1中作线段BC 的中点P ;(2)在图2中,在OB 、OC 上分别取点E 、F ,使EF ∥BC .参考答案1.B2.A3.C4.B5.D6.D7.50︒##50度8. 小 119.②③⑤10.100°,70°,40°或者10°11.解:(1)根据三角形的三边关系定理可得3-2<c <3+2, 即1<c <5;(2)∵第三边c 为奇数,∴c=3,∵a=2,b=3,∴b=c ,∴△ABC 为等腰三角形.12.证明:∵AB AC =,AD AE =,∴B C ∠=∠,ADE AED ∠=∠,∵∠ADB =180°-∠ADE ,∠AEC =180°-∠AED ,∴ADB AEC ∠=∠,在ABD △和ACE △中,AB AC B C ADB AEC =⎧⎪∠=∠⎨⎪∠=∠⎩∴ABD ACE ≅(AAS ),∴BD =CE ;13.证明:∵AE //BC ,DAE B ∴∠=∠,EAC ACB ∠=∠, E 为ABC 的外角CAD ∠平分线上的一点, DAE EAC ∴∠=∠,B ACB ∴∠=∠,AB AC ∴=,ABC ∴是等腰三角形.(2)解:由(1)已得:,DAE B DAE EAC ∠=∠∠=∠, B EAC ∴∠=∠,在ABF △和CAE 中,AB CA B EAC BF AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF CAE ∴≅,AF CE ∴=,4AF =,4CE ∴=.14.解:(1)如图1,点P 为所作,理由如下:∵∠A =∠D =90°,AC =BD ,BC=CB , ∴△ABC ≌△DCB∴∠ABC=∠DCB,∠ACB=∠DBC∴QB=QC ,OB=OC∴Q,O 在BC 的垂直平分线上,∴延长QO 交BC 于P ,就有P 为线段BC 的中点;(2)如图2,EF为所作.理由如下:∵△ABC≌△DCB ∴AB=DC,又∵∠ABC=∠DCB,BP=PC ∴△ABP≌△DCP∴∠APB=∠DPC又∵∠DBC=∠ACB,BP=PC ∴△BEP≌△CFP∴PE=PF∴∠PEF=∠PFE,∵∠APB+∠DPC+∠APD=180°∠PEF+∠PFE+∠APD=180°∴∠APB=∠PEF∴EF//BC.。
第1课时等腰三角形的有关概念知识要点基础练知识点1全等三角形1.(成都中考)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是(C)A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC2.(荆州中考)已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是SSS.知识点2等腰三角形的性质3.如果一个等腰三角形的两边长分别是 5 cm和6 cm,那么此三角形的周长是(D)A.15 cmB.15 cm或16 cmC.17 cmD.16 cm或17 cm4.已知等腰三角形的一个角为75°,则其顶角为(D)A.30°B.75°C.75°或105°D.30°或75°知识点3等腰三角形三线合一5.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为(C)A.5B.6C.8D.106.如图,在△ABC中,AB=AC,∠BAC的平分线交BC边于点D,AB=5,BC=6,则AD=4.综合能力提升练7.如图,在△ABC中,∠ACB=90°,把△ABC沿AC翻折180°,使点B落在点B'的位置上,则下列关于线段AC的性质的说法正确的是(D)A.是边BB'上的中线B.是边BB'上的高C.是∠BAB'的平分线D.以上三种性质都有8.如图,AB=AC,BD=BC,若∠A=40°,则∠ABD的度数是(B)A.20°B.30°C.35°D.40°9.若实数m,n满足等式|m-4|+-=0,且m,n恰好是等腰△ABC的两边的边长,则△ABC的周长是(B) A.22 B.20C.16D.20或1610.(张家界中考)如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为15°.11.如图,AB=AE,BC=DE,∠B=∠E,M是CD的中点.求证:AM⊥CD.证明:连接AC,AD.在△ABC和△AED中,∴△ABC≌△AED(SAS),∴AC=AD,∴△ACD是等腰三角形.∵M是CD的中点,∴由三线合一知AM⊥CD.12.如图,在△ABC中,AB=AC,EF交AB于点E,交AC的延长线于点F,交BC于点D,且BE=CF.求证:DE=DF.解:过点E作EG∥AC交BC于点G,∴∠F=∠DEG,∠EDG=∠FDC,∠ACB=∠EGB.∵AB=AC,∴∠ACB=∠B,∴∠B=∠EGB,∴BE=EG.∵BE=CF,∴EG=CF.在△EGD和△FCD中,∴△EGD≌△FCD(AAS),∴DE=DF.拓展探究突破练13.(常州中考)如图,在△ABC中,AB=AC,BD,CE是高,BD与CE相交于点O.(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.解:(1)∵AB=AC,∴∠ABC=∠ACB.∵BD,CE是△ABC的两条高线,∴∠BEC=∠BDC=90°,∴△BEC≌△CDB,∴∠ECB=∠DBC,∴OB=OC.(2)∵∠ABC=50°,AB=AC,∴∠A=180°-2×50°=80°.∵∠DOE+∠A=180°,∴∠BOC=∠DOE=100°.第2课时等腰三角形的有关性质知识要点基础练知识点1等腰三角形中相等的线段1.在△ABC中,点D,E分别在边AB,AC上,BE,CD交于点O.若AB=AC,BE是边AC上的中线,且BE=CD,则线段CD(D)A.是边AB上的中线B.是边AB上的高线C.是∠ACB的平分线D.不一定是边AB上的中线2.如图,在△ABC中,AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2BM,AN=2NC.求证:DM=DN.证明:∵AM=2MB,∴AM=AB.同理AN=AC.又∵AB=AC,∴AM=AN.∵AD平分∠BAC,∴∠MAD=∠NAD.在△AMD和△AND中,∴△AMD≌△AND(SAS),∴DM=DN.知识点2等边三角形的性质3.(福建中考)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于(A)A.15°B.30°C.45°D.60°4.如图所示,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F,则∠DFC 的度数为(A)A.60°B.45°C.40°D.30°5.边长为 6 cm的等边三角形中,其一边上高的长度为3cm.6.如图,在等边三角形ABC中,D为AC边的中点,E为BC延长线上一点,CE=CD,DM⊥BC于点M.求证:M是BE的中点.证明:连接BD.∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵CD=CE,∴∠CDE=∠E=30°.∵BD是AC边上的中线,∴BD平分∠ABC,即∠DBC=30°,∴∠DBE=∠E,∴DB=DE,又∵DM⊥BE,∴DM是BE边上的中线,即M是BE的中点.综合能力提升练7.等腰三角形一腰上的高与底边所成的角等于(A)A.顶角的一半B.底角的一半C.90°减去顶角的一半D.90°减去底角的一半8.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是(A)A.100°B.80°C.70°D.50°9.如图,A,C,B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE,BD分别与CD,CE交于点M,N,则下列结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中正确结论的个数是(B)A.3B.2C.1D.010.(徐州中考)边长为a的正三角形的面积等于a2.11.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下几个结论:①AD=BE;②PQ∥AE;③∠AOB=60°.恒成立的有①②③.(把你认为正确的序号都填上)12.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以PB为边作∠PBQ=60°,且BQ=BP,连接CQ.观察并猜想AP与CQ之间的大小关系,并证明你的结论.解:猜想:AP=CQ.证明:∵△ABC是等边三角形,∴∠ABC=60°.∵∠PBQ=60°,∴∠ABC=∠PBQ,∴∠ABP=∠ABC-∠PBC=∠PBQ-∠PBC=∠CBQ.在△ABP和△CBQ中,∴△ABP≌△CBQ(SAS).∴AP=CQ.拓展探究突破练13.已知等边△ABC和点P,设点P到△ABC三边AB,AC,BC的距离分别为h1,h2,h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h.”请直接应用上述信息解决下列问题:当点P在△ABC内(如图2),点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1,h2,h3与h之间的关系如何?请写出你的猜想,不用证明.解:当点P在△ABC内时,结论h1+h2+h3=h仍然成立.理由:连接PA,PB,PC,则S△PAB+S△PBC+S△PCA=S△ABC,∴AB·PD+BC·PF+CA·PE=BC·AM,∴PD+PE+PF=AM,即h1+h2+h3=h.当点P在△ABC外时,结论h1+h2+h3=h不成立.此时,它们的关系是h1+h2-h3=h.提示:∵S△PAB+S△PCA-S△PBC=S△ABC,∴AB·PD+CA·PE-BC·PF=BC·AM,∴PD+PE-PF=AM,∴h1+h2-h3=h.第3课时等腰三角形的判定知识要点基础练知识点1等腰三角形的判定1.下列能判定△ABC为等腰三角形的是(B)A.∠A=3°,∠B=60°B.∠A=50°,∠B=80°C.AB=AC=2,BC=4D.AB=3,BC=7,周长为182.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是(B)A.(4,0)B.(1,0)C.(-2,0)D.(2,0)3.(桂林中考)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是3.知识点2反证法4.用反证法证明“若a⊥c,b⊥c,则a∥b”,第一步应假设(D)A.a∥bB.a与b垂直C.a与b不一定平行D.a与b相交5.用反证法证明:在一个三角形中,至少有一个内角不小于60°,应先假设(B)A.三角形中有一个内角小于60°B.三角形中每一个内角都小于60°C.三角形中有一个内角大于60°D.三角形中每一个内角都大于60°综合能力提升练6.如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过点O作DE∥BC,分别交AB,AC于点D,E,若BD+CE=5,则线段DE的长为(A)A.5B.6C.7D.87.用反证法证明“若|a|≠|b|,则a≠b”时,应假设a=b.8.为了说明命题“等腰三角形腰上的高小于腰”是假命题,可以找的反例是等腰直角三角形.9.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是①②③④.(写出所有正确答案的序号)①∠BAD=∠CAD;②BD=CD;③AB+BD=AC+CD;④AB-BD=AC-CD.10.如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.解:△AFC是等腰三角形.理由:∵∠BAD=∠BCE,∠B=∠B,BD=BE,∴△ABD≌△CBE,∴AB=CB,∴∠BAC=∠BCA,∴∠FAC=∠FCA,∴△AFC是等腰三角形.拓展探究突破练11.在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有没有等腰三角形?若有,请一一写出来(不要求证明);若没有,请说明理由.解:(1)∵BD=AB,∴∠BAD=∠BDA.∵DE⊥BC,∴∠BDE=90°.又∵∠BAC=90°,∴∠EAD=∠EDA,∴△ADE是等腰三角形.(2)还有三个等腰三角形:△ABD,△ABC,△CDE.第4课时等边三角形的判定知识要点基础练知识点1等边三角形的判定1.如图,在△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为(C)A.6B.8C.9D.122.如图,在等边三角形ABC的边AB,AC上分别截出AD=AE,则△ADE(C)A.不是等边三角形B.不一定是等边三角形C.一定是等边三角形D.无法判断3.如图,点D在BC上,点E在AD上,BE=AE=CE,并且∠BED=∠CED=60°.下列结论:①△ABC是等边三角形;②BD=CD;③BE平分∠ABC;④AD ⊥BC.其中正确的有(D)A.1个B.2个C.3个D.4个知识点2含30°角的直角三角形4.如图,AC=BC=10 cm,∠B=15°,AD⊥BC于点D,则AD的长为(C)A.3 cmB.4 cmC.5 cmD.6 cm5.在Rt△ABC中,∠C=90°,∠A=30°,若AB=4 cm,则BC=2cm.综合能力提升练6.已知∠AOB=30°,点P在∠AOB的内部,点P1与点P关于OB对称,点P2与点P关于OA对称,则P1,O,P2三点构成的三角形是(D)A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形7.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A 等于(B)A.25°B.30°C.45°D.60°8.(淄博中考)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为(B)A.4B.6C.4D.89.如图,已知AO=10,P是射线ON上一动点(即P点可在射线ON上运动),∠AON=60°.(1)OP=10时,△AOP为等边三角形;(2)OP=5或20时,△AOP为直角三角形.拓展探究突破练10.如图,△ABC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,CE=BD.求证:△ADE是等边三角形.证明:由条件知∠ACD=120°,∴∠ACE=∠ECD=60°,在△ABD和△ACE中,∵AB=AC,∠B=∠ACE,CE=BD,∴△ABD≌△ACE,∴AE=AD,∠BAD=∠CAE,∴∠DAE=∠BAC=60°,∴△ADE是等边三角形.。
F EDC B A 第八节等腰三角形的性质和判定习题课班级___________ 姓名_______________ 达成目标________________【学习目标】:A 级――能将等腰三角形的知识框架进行梳理并掌握主要的知识点,掌握等腰三角形性质和判定的简单应用B 级――掌握等腰三角形性质和判定较复杂的应用C 级――掌握等腰三角形常见辅助线的添加方法D 级――会对给定问题进行一题多解、一题多变、多题归一、由特殊向一般推广并发现解决问题的根本性原则。
【自学导引】:学习任务一(知识梳理):1. 总结等腰三角形的知识框架2. 主要知识点回顾(1)等腰三角形的定义是: 的三角形是等腰三角形(2)等腰三角形的性质1是(3)等腰三角形的性质2是 这个性质相当于 个结论(4)等腰三角形的判定定理是(5)等腰三角形的判定方法有 种方法,分别是使用 和使用学习任务二(小试牛刀):1.在△ABC 中,AB =AC ,点D 在BC 边上,(1)∵AD 平分∠BAC ∴ = ; ⊥ ;(2)∵AD 是中线 ∴∠ =∠ ; ⊥ ;(3)∵AD ⊥BC ∴ = ;∠ =∠1.已知△ABC 中,∠BAC =90°,AB =AD =AC ,AD 与BC 相交于E ,∠CAD =30°,求∠BCD 和∠DBC 的度数。
2.已知:如图:△ABC 中,AB=AC,在AB 上取一点D,在AC 延长线上取一点E,连结DE 交BC 于点F ,若F 是DE 中点,求证:BD=CE3如图,已知在△ABC 中,AB=AC ,D 为AB 延长线上的一点,E 在AC 上,且BD=EC ,DE 交BC 于点F ,说明EF=DF 的理由。
[详细。
写出步骤理由。
FD C BA4如图,已知在△ABC 中,AB=AC,在AB 上取一点D,在AC 延长线上取一点E,使CE=BD,连结DE ,交BC 于点F ,求证DF=EF5.已知AD 平分∠BAC ,EF 垂直平分AD 交BC 延长线于F ,连接AF ,求证:∠B =∠CAFED CB A6.已知,如图在△ABC 中,AD 是角平分线,求证BD:DC=AB:AC。
等腰三角形习题课 教案【教学目标】1 经历实验操作的探索活动,猜想并通过说理验证等腰三角形的判定方法,体会数学研究的基本方法。
2能运用等腰三角形的判定方法解决简单的几何问题,能规范表达相关的几何说理。
3在创设的情境和运用等腰三角形的判定方法解决简单问题的过程中,获得探究学习和数学应用的体验,增强学习兴趣,提高对数学价值观的认识。
【教学重点】等腰三角形的判定【教学难点】等腰三角形的判定和性质的区别【教学过程】【典型例题】例1:如图,在△ABD 中,C 是BD 上的一点,且AC ⊥BD ,AC=BC=CD . (1)求证:△ABD 是等腰三角形.(2)求∠BAD 的度数例2如图所示,在△ABC 中,AB=AC ,O 是△ABC 内一点,且OB=OC 。
求 证:AO ⊥BC思路点拨:要证AO ⊥BC ,即证AO 是等腰三角形底边上的高,根据三线合一定理,只要先证AO 是顶角的平分线即可【随堂练习】一:判断:1一个三角形中,有两个角的度数分别为20°和80°,那么这个三角形是等腰三角形( )3两腰相等的三角形是等腰三角形( )4两底角相等的三角形是等腰三角形二:解答题:1、如图,∠ABD=∠ACD=60º,∠ADB=90º-1/2∠BDC。
求证:△ABC 是等腰三角形。
2 已知如图所示,在△ABC 中,AB=AC ,D 是AB 上一点,过D 作DE ⊥BC 与E ,并与CA 的延长线相交于F ,求证:AD=AF思路点拨:要证AD=AF ,需证∠1=∠F ,而∠1=∠2,∠2落在△BDE 中,∠F 落在△FEC 中,因为DE ⊥ BC ,所以它们都为直角三角形。
∠F 与∠2的余角分别为∠B 与∠C,由已知可得∠B=∠C ,因而结论成立。
D C AB BC A D注:要注意“两头凑”的分析方法。
本题还可以“作AG⊥BC与G”,则AG∥FE来证。
3 如图,已知△ABC是等边三角形,点分别在AC、BC上,且DE∥AB,DF⊥DE,交BC的延长线与点F.求证:CD=CF4 如图所示,∠ABC,∠ACB的角平分线交于F,过F作DE∥BC,交AB于D,交AC于E。