八年级下册数学《等腰三角形》省优质课一等奖教案
- 格式:pdf
- 大小:43.62 KB
- 文档页数:3
八年级等腰三角形数学教案【优秀6篇】作为一名专为他人授业解惑的人民教师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
来参考自己需要的教案吧!小编为您精心收集了6篇《八年级等腰三角形数学教案》,如果能帮助到您,小编将不胜荣幸。
等腰三角形篇一9.3章等腰三角形教案(一)、温故知新,激发情趣:1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。
(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。
)(二) 、构设悬念,创设情境:3、一般三角形有哪些特征?(三条边、三个内角、高、中线、角平分线)4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?(把问题3作为教学的出发点,激发学生的学习兴趣。
问题4给学生留下悬念。
)(三)、目标导向,自然引入:本节课我们一起研究——9.3 等腰三角形(板书课题) 9.3 等腰三角形(了解本节课的学习内容)(四)、设问质疑,探究尝试:结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。
[问题]通过观察,你发现了什么结论?(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)[结论]等腰三角形的两个底角相等。
(板书学生发现的结论)等腰三角形特征1:等腰三角形的两个底角相等在△ ABC中,△AB=AC()△△B=△C()[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。
例1:已知:在△ABC中,AB=AC,△B=80°,求△C和△A的度数。
〔学生思考,教师分析,板书〕练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。
1.2等腰三角形一等奖创新教学设计1.1.2等腰三角形教学设计课题 1.1.2等腰三角形单元1 学科数学年级八教材分析“等腰三角形(第二课时)”选自《义务教育课程标准实验教科书(北师大版)数学》八年级下册第一章第二节。
从图形的观察到猜想再到严谨的证明进一步研究等腰三角形的特殊性质,丰富了学生实践探究的过程体验,为发展学生数学实践探究能力提供了平台. 本节课主要研究等腰三角形的特殊性质,特殊的等腰三角形(等边三角形)的性质,这是在已经学习了等腰三角形的性质、轴对称图形、全等三角形的知识上进行的,它既是拓展前面所学的知识,又为后面的几何证明打下更牢固的基础。
本节课是继八上《平行线的证明》后再次让学生感受了证明的必要性,深刻体验了“探索——发现——猜想——证明”的全过程。
学生通过学习本节课的知识掌握了用综合法证明相关命题,感受了数学的严谨性,对缜密思维、探究能力的培养有着举足轻重的作用.核心素养分析探索——发现——猜想——证明等腰三角形中相等的线段,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性;在图形的观察中,揭示等腰三角形对称性的本质,发展几何直观,体验数学充满着探索与创造,感受数学的严谨性.学习目标1.进一步学习等腰三角形的相关性质,了解等腰三角形两底角的角平分线(两腰上的高,中线)的性质; 2.学习等边三角形的性质,并能够运用其解决问题.重点等边三角形判定定理的发现与证明。
难点经过探索、猜想、证明、归纳等数学活动过程,发展逻辑推理能力。
教学过程教学环节教师活动学生活动设计意图导入新课我们研究等腰三角形(三角形)的问题时,一般围绕边、角、其他线段展开,尤其注重研究特殊的线段及其关系。
等腰三角形中,除了顶角的角平分线、底边上的高及底边中线外,还有哪些特殊的线段?底角的角平分线、腰上的中线、腰上的高. 那么,这些线段之间是否具有特殊的关系呢?思考,回答问题通过回顾等腰三角形的性质,为其特殊性质及等边三角形性质的探究做好铺垫。
等腰三角形的教案一、教学目标:1. 了解等腰三角形的定义和特征;2. 掌握等腰三角形的性质与判定方法;3. 能够应用等腰三角形的性质解决相关问题。
二、教学重点:1. 理解等腰三角形的定义;2. 掌握等腰三角形的性质与判定方法。
三、教学难点:1. 熟练掌握等腰三角形的判定方法;2. 能够应用等腰三角形的性质解决相关问题。
四、教学过程:步骤一:导入1. 引入等腰三角形的概念:请同学们回顾一下三角形的定义和性质,谈谈等腰三角形是什么样的三角形。
2. 提出问题:请同学们思考一下,如何判断一个三角形是等腰三角形。
步骤二:讲解等腰三角形的定义和性质1. 介绍等腰三角形的定义:等腰三角形是指两边边长相等的三角形。
2. 探讨等腰三角形的性质:a. 对等腰三角形的两边,与底边相对应的角也相等;b. 对等腰三角形的底角,与底边相对应的边也相等。
c. 等腰三角形的高是底边的垂直平分线。
步骤三:判定等腰三角形的方法1. 根据定义判定:如果一个三角形的两边边长相等,则这个三角形是等腰三角形。
2. 根据性质判定:如果一个三角形的两边边长相等,或者两个角相等,则这个三角形是等腰三角形。
步骤四:解决等腰三角形问题的实例1. 通过一些实际问题和图形,让学生利用等腰三角形的性质来解决问题,如计算等腰三角形的面积、周长等。
2. 练习题:在课堂上布置一些关于等腰三角形的练习题,检验学生对所学知识的掌握情况。
步骤五:总结与归纳1. 利用板书总结等腰三角形的定义和性质;2. 强调等腰三角形的判定方法;3. 总结解决等腰三角形问题的思路和方法。
五、课堂讨论与互动1. 引导学生举手提问,答疑解惑;2. 利用课堂讨论的方式,学生之间相互交流,激发思考的活力;3. 鼓励学生在分享解题思路和答案时,相互批评和赞赏。
六、课后作业完成课堂上布置的与等腰三角形相关的作业,复习巩固所学知识。
七、教学反思1. 在教学中,要结合生活实际和教材内外的案例,增加学生的学习兴趣;2. 注重启发学生思考,培养学生对问题的思考能力;3. 课堂的互动性要加强,鼓励学生提问、讨论和交流;4. 要注重课堂实践,让学生通过实践探索和应用等腰三角形的相关知识。
课题等腰三角形班级八章节总用时11分节第 1 课时总课时 13授课时间本节授课时间学习目标教学重点与难点突破措施1、掌握不等式的意义。
2.会根据题意列不等式。
学习重点:掌握不等式的意义。
学习难点:会用不等符号表示不等量的关系。
小组合作交流教学方法教学用具讲授、练习多媒体学习方法课堂类型自主、合作、讨论新授教学流程二次备课一、自主学习、整体感知如图1-1,用两根长度均为l cm的绳子,分别围成一个正方形和圆.(1)如果要使正方形的面积不大于25 cm2,那么绳长l应满足怎样的关系式?(2)如果要使圆的面积不小于100 cm2,那么绳长l应满足怎样的关系式?(3)当l=8时,正方形和圆的面积哪个大?l=12呢?1(4)你能得到什么猜想?改变l的取值,再试一试.二、合作交流、文本探究通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5m的地方作为测量部位,某树栽种时的树围为5cm,以后树围每年增加约为 3cm.这棵树至少生长多少年其树围才能超过2.4 m?(只列关系式).这些关系式都是用不等号连接的式子.由此可知:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式(inequality).三、课内检测、巩固提高1、用“<”或“>”号填空:(1) -7____-5;(2) (-3)4____34;(3) (-4)2____(-3)2;(4) |-0.5|____|-1000|;(5) 3+4____1+4;(6) 5+3____12-5;(7) 6×3____4×3;(8) 6×(-3)____4×(-3)2、用适当的符号表示下列关系:(1) a是负数;(2) a是非负数;(3) a与b的和小于5;(4) x与2的差大于-1;(5) x的4倍不大于7;(6) y的一半不小于3. 3、用适当的符号表示下列关系:(1)直角三角形斜边比它的两直角边a、b都长。
等腰三角形(第1课时)【教学目标】1知识与能力理解并掌握等腰三角形的定义,探索等腰三角形的两个性质;能够用等腰三角形的知识解决相应的数学问题.2过程与方法在探索等腰三角形性质的过程中体会知识间的关系,感受数学与生活的联系,体会轴对称在研究几何问题中的作用。
3情感、态度与价值观培养学生分析解决问题的能力,使学生养成良好的学习习惯.【教学重点】探索并证明等腰三角形的性质.【教学难点】性质1证明中辅助线的添加和对性质2的理解。
【教学方法】创设情境-主体探究-合作交流-应用提高.【教学过程】一、 创设情境活动1如图(1),把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特征DC BA图(1)二、探究新知师生活动:学生动手操作,剪出等腰三角形,然后小组交流.设计意图:让学生利用轴对称性剪出等腰三角形,为等腰三角形的性质探究作准备,问题2:仔细观察自己剪出的等腰腰三角形纸片,你能发现这个等腰三角形有什么特征吗把剪出的△ABC沿折痕AD对折,找出其中重合的线段,填入下表:师生活动:学生独立思考后尝试着概括自己剪出的等腰三角形纸片的特征,并汇报交流,学生如果不能发现结论,或者对结论概括得不全面,教师作如下提示:把剪出的等腰三角形纸片沿折痕对折,找出其中重合的线段和角,并说明这些线段和角在等腰三角形中的名称,由此概括出等腰三角形的特征设计意图:让学生首先从一个等腰三角形开始研究,发现其特殊性追问1:剪下的等腰三角形纸片大小不同,形状各异,是否都具有上述所概括的特征师生活动:学生相互比较,得出结论追问2:在练习本上任意画一个等腰三角形,把它剪下来,折一折,上面得出的结论仍然成立吗由此你能概括出等腰三角形的性质吗师生活动:学生动手操作,相互比较,互动交流,得出性质1和性质2.教师给出性质的简写形式,并着重引导学生分析“三线合一”的含义是什么,从而将其分解为如下三个结论(1)等腰三角形的顶角平分线也是底边上的中线和高(2)等腰三角形的底边上的中线也是底边上的高和顶角平分线(3)等腰三角形底边上的高也是顶角平分线和底边上的中线设计意图:通过丰富的感性材料,让学生在反复比较的过程中发现等腰三角形共同的、本质特征;体会认识事物的一般方法一一由特殊到一般,进一步培养学生抽象概括括能力;让学生真正解“三线合一”的含义,会将“三线合一”分解成三个命题,体会等腰三角形性质2的内容实质。
《等腰三角形》获奖说课稿《等腰三角形》获奖说课稿(通用13篇)作为一名无私奉献的老师, 常常需要准备说课稿, 编写说课稿助于积累教学经验, 不断提高教学质量。
如何把说课稿做到重点突出呢?下面是小编帮大家整理的《等腰三角形》获奖说课稿(通用13篇), 欢迎大家借鉴与参考, 希望对大家有所帮助。
《等腰三角形》获奖说课稿篇1一、教学目标1.知识技能:(1)掌握等腰三角形的性质。
(2)运用等腰三角形的性质进行证明和计算。
2.数学思考:(1)观察等腰三角形的对称性, 发展形象思维。
(2)经历等腰三角形性质的探究过程, 在实验操作、观察猜想、推理论证的过程中发展学生合情推理和演绎推理能力。
3.问题解决:(1)通过观察等腰三角形的对称性, 培养学生观察、分析、归纳问题的能力。
(2)通过运用等腰三角形的性质解决有关问题, 提高运用知识和技能解决问题的能力, 发展学生的应用意识、创新意识、反思意识。
4、情感态度:引导学生对图形的观察、发现, 激发学生的好奇心和求知欲, 并在运用数学知识解决问题的活动中获取成功的体验, 建立学习的自信心。
二、教学方法实验法和探究法。
三、重难点重点是等腰三角形的性质及应用。
难点是等腰三角形性质的证明。
四、教学过程(一)创设情境, 引入新课人类的聪明智慧让我们看到了一个又一个令人惊叹的奇迹, 下面请同学们观察这几幅图片, 看看这些伟大的人类建筑中都含有一个什么样的基本图形?师1: 同学们, 这几张图片中共同存在的基本图形是什么?等腰三角形以它那对称、和谐、庄重、典雅之美成为我们数学殿堂的一枚瑰宝, 可现实生活中为什么这些建筑要设计成等腰三角形的形式呢?等腰三角形有什么特殊的性质吗?今天就让我们一同来走进这个美妙的图形。
(板书)12.3.1等腰三角形(二)探究发现, 学习新知1.认识等腰三角形师1: 在小学时我们就知道两条边相等的三角形叫做等腰三角形。
下面我们利用剪纸的方法将手中的矩形纸片变变形。
第2课时 等腰三角形的判定1.掌握等腰三角形的判定定理及其推论.(重点) 2.掌握等腰三角形判定定理的运用.(难点)一、情境导入某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(A 点)为目标,然后在这棵树的正南方南岸B 点插一小旗作标志,沿南偏东60度方向走一段距离到C 处时,测得∠ACB 为30度,这时,地质专家测得BC 的长度是50米,就可知河流宽度是50米.同学们,你们想知道这样估测河流宽度的根据是什么吗?他是怎么知道BC 的长度是等于河流宽度的呢?今天我们就要学习等腰三角形的判定.二、合作探究探究点一:等腰三角形的判定【类型一】 确定等腰三角形的个数如图,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个解析:共有5个.(1)∵AB =AC ,∴△ABC 是等腰三角形;(2)∵BD 、CE 分别是∠ABC 、∠BCD 的角平分线,∴∠EBC =12∠ABC ,∠ECB =12∠BCD .∵△ABC 是等腰三角形,∴∠EBC =∠ECB ,∴△BCE 是等腰三角形;(3)∵∠A =36°,AB =AC ,∴∠ABC =∠ACB =12(180°-36°)=72°.又∵BD 是∠ABC 的角平分线,∴∠ABD =12∠ABC =36°=∠A ,∴△ABD 是等腰三角形;同理可证△CDE 和△BCD 也是等腰三角形.故选A.方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.【类型二】在坐标系中确定三角形的个数已知平面直角坐标系中,点A的坐标为(-2,3),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( )A.3个 B.4个 C.5个 D.6解析:因为△AOP为等腰三角形,所以可分三类讨论:(1)AO=AP(有一个).此时只要以A为圆心AO长为半径画圆,可知圆与y轴交于O点和另一个点,另一个点就是点P;(2)AO =OP(有两个).此时只要以O为圆心AO长为半径画圆,可知圆与y轴交于两个点,这两个点就是P的两种选择;(3)AP=OP(一个).作AO的中垂线与y轴有一个交点,该交点就是点P的最后一种选择.综上所述,共有4个.故选B.方法总结:解决此类问题的方法主要是线段垂直平分线与辅助圆的灵活运用以及分类讨论时做到不重不漏.【类型三】判定一个三角形是等腰三角形如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.解析:根据直角三角形两锐角互余求得∠ABE=∠ACD,然后根据三角形外角的性质求得∠CEF=∠CFE,根据等角对等边求得CE=CF,从而求得△CEF是等腰三角形.证明:∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的角平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【类型四】等腰三角形性质和判定的综合运用如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =50°时,求∠DEF 的度数.解析:(1)根据等边对等角可得∠B =∠C ,利用“边角边”证明△BDE 和△CEF 全等,根据全等三角形对应边相等可得DE =EF ,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE =∠CEF ,然后求出∠BED +∠CEF =∠BED +∠BDE ,再利用三角形的内角和定理和平角的定义求出∠B =∠DEF .(1)证明:∵AB =AC ,∴∠B =∠C .在△BDE 和△CEF 中,∵⎩⎪⎨⎪⎧BD =CE ,∠B =∠C ,BE =CF ,∴△BDE ≌△CEF (SAS),∴DE =EF ,∴△DEF 是等腰三角形;(2)解:∵△BDE ≌△CEF ,∴∠BDE =∠CEF ,∴∠BED +∠CEF =∠BED +∠BDE .∵∠B +∠BDE =∠DEF +∠CEF ,∴∠B =∠DEF .∵∠A =50°,AB =AC ,∴∠B =12×(180°-50°)=65°,∴∠DEF =65°.方法总结:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.三、板书设计等腰三角形的判定方法: (1)根据定义判定;(2)两个角相等的三角形是等腰三角形.学生通过回顾总结等腰三角形的性质为学习等腰三角形的判定做了知识铺垫.之后将本节课的教学目标展示给学生,让学生做到心中有数,让学生带着问题看书,加强自主探索的能力.通过学生观察、思考例题,自然地渗透分类讨论的数学解题思想.通过课堂小结,让学生归纳比较等腰三角形的性质和判定的区别,同时将等腰三角形的性质定理与判定定理有机的结合起来,重在培养学生对两个知识点的综合运用,鼓励学生积极思考.整节课的目标基本实现,重点难点落实得比较到位,唯一欠缺的是时间有点紧,课堂小结比较仓促.第2课时 含30°角的直角三角形的性质1.理解并掌握含30°角的直角三角形的性质定理.(重点)2.能灵活运用含30°角的直角三角形的性质定理解决有关问题.(难点)一、情境导入 问题:1.我们学习过直角三角形,直角三角形的角之间都有什么数量关系? 2.用你的30°角的直角三角尺,把斜边和30°角所对的直角边量一量,你有什么发现? 今天,我们先来看一个特殊的直角三角形,看它的边角具有什么性质.二、合作探究探究点:含30°角的直角三角形的性质【类型一】 利用含30°角的直角三角形的性质求线段长如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,CD 是斜边AB 上的高,AD =3cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm解析:在Rt △ABC 中,∵CD 是斜边AB 上的高,∴∠ADC =90°,∴∠ACD =∠B =30°.在Rt △ACD 中,AC =2AD =6cm ,在Rt △ABC 中,AB =2AC =12cm.∴AB 的长度是12cm.故选D.方法总结:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.【类型二】 与角平分线或垂直平分线性质的综合运用如图,∠AOP =∠BOP =15°,PC ∥OA 交OB 于C ,PD ⊥OA 于D ,若PC =3,则PD等于( )A .3B .2C .1.5D .1解析:如图,过点P 作PE ⊥OB 于E ,∵PC ∥OA ,∴∠AOP =∠CPO ,∴∠PCE =∠BOP +∠CPO =∠BOP +∠AOP =∠AOB =30°.又∵PC =3,∴PE =12PC =12×3=1.5.∵∠AOP =∠BOP ,PD ⊥OA ,∴PD =PE =1.5.故选C.方法总结:含30°角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.【类型三】 利用含30°角的直角三角形的性质探究线段之间的倍、分关系如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,过点D 作DE ⊥AB .DE 恰好是∠ADB 的平分线.CD 与DB 有怎样的数量关系?请说明理由.解析:由条件先证△AED ≌△BED ,得出∠BAD =∠CAD =∠B ,求得∠B =30°,即可得到CD =12DB .解:CD =12DB .理由如下:∵DE ⊥AB ,∴∠AED =∠BED =90°.∵DE 是∠ADB 的平分线,∴∠ADE =∠BDE .又∵DE =DE ,∴△AED ≌△BED (ASA),∴AD =BD ,∠DAE =∠B .∵∠BAD =∠CAD =12∠BAC ,∴∠BAD =∠CAD =∠B .∵∠BAD +∠CAD +∠B =90°,∴∠B =∠BAD =∠CAD=30°.在Rt △ACD 中,∵∠CAD =30°,∴CD =12AD =12BD ,即CD =12DB .方法总结:含30°角的直角三角形的性质是表示线段倍分关系的一个重要的依据,如果问题中出现探究线段倍分关系的结论时,要联想此性质.【类型四】 利用含30°角的直角三角形解决实际问题某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知AC =50m ,AB =40m ,∠BAC =150°,这种草皮每平方米的售价是a 元,求购买这种草皮至少需要多少元?解析:作BD ⊥CA 交CA 的延长线于点D .在Rt △ABD 中,利用30°角所对的直角边是斜边的一半求BD ,即△ABC 的高.运用三角形面积公式计算面积求解.解:如图所示,作BD ⊥CA 于D 点.∵∠BAC =150°,∴∠DAB =30°.∵AB =40m ,∴BD =12AB =20m ,∴S △ABC =12×50×20=500(m 2).已知这种草皮每平方米a 元,所以一共需要500a 元.方法总结:解此题的关键在于作出CA 边上的高,根据相关的性质推出高BD 的长度,正确的计算出△ABC 的面积.三、板书设计含30°角的直角三角形的性质性质:在直角三角形中,如果一个锐角是30°,那么它所对的直角边等于斜边的一半.本节课借助于教学活动的开展,有效地激发了学生的探究热情和学习兴趣,从而引导学生通过自主探究以及合作交流等活动探究并归纳出本节课所学的新知识,促进了学生思维能力的提高.不足之处是部分学生的综合运用知识解决问题的能力还有待于在今后的教学和作业中进行进一步的训练和提高.123452345123 4。
课题等腰三角形班级八章节总用时11 授课时间
分节第 1 课时总课时 13 本节授课时间
学习目标1、掌握不等式的意义。
2.会根据题意列不等式。
教学重点与难
点学习重点:掌握不等式的意义。
学习难点:会用不等符号表示不等量的关系。
突破措施小组合作交流
教学方法讲授、练习学习方法自主、合作、讨论
教学用具多媒体课堂类型新授
教学流程二次备课
一、自主学习、整体感知
如图1-1,用两根长度均为l cm的绳子,分别围成一个正方形
和圆.
(1)如果要使正方形的面积不大于25 cm2,那么绳长l应满足
怎样的关系式?
(2)如果要使圆的面积不小于100 cm2,那么绳长l应满足怎样的
关系式?
(3)当l=8时,正方形和圆的面积哪个大?l=12呢?
1。