锅炉效率计算公式.xls
- 格式:xls
- 大小:146.00 KB
- 文档页数:12
锅炉计算公式1、蒸汽锅炉:(1)燃料耗量计算:B——锅炉燃料耗量(kg/h或Nm3/h);D——锅炉每小时的产汽量(kg/h);Q L——燃料的低位发热值(千焦/公斤),一般取5500大卡/公斤;η——锅炉的热效率(%),一般取75%,亦可按表1选取:表1 锅炉热效率表i——锅炉在某绝对工作压力下的饱和蒸汽热焓值(千焦/公斤),绝对压力=表压+1公斤/厘米2。
具体取值见表2:表2 饱和蒸汽热焓表备注:1.0MP=10.0公斤/厘米 2i0——锅炉给水热焓值(千焦/公斤),一般来说,给水温度为20℃时,给水热焓i0=20大卡/公斤=83.74千焦/公斤。
常用公式可以简化成:B=0.156D(kg/h)(2)理论空气需要量的计算:①固体燃料:=6.055(m3/kg)②液体燃料:③气体燃料当Q≤3000kcal(12561kJ)/Nm3时当Q>3000kcal(12561kJ)/Nm3时④天然气:式中:V0——燃料燃烧所需理论空气量(Nm3/kg);Q——燃料应用基的低位发热值(kJ/kg);表3 全国主要能源折算标准表表4 常用可燃性物质低位发热量表①固体燃料=9.57(m3/kg)②液体燃料③气体燃料当Q≤3000kcal(12561kJ)/Nm3时当Q>3000kcal(12561kJ)/Nm3时对Q<8250kcal(34543kJ)/Nm3的天然气对Q>8250kcal(34543kJ)/Nm3的天然气式中:在计算时,如果发热量Q以kJ为单位计算,分母1000变成4187;Q以kcal为单位,分母则为1000。
V y——实际烟气量(Nm3/kg或Nm3/ Nm3);Q——燃料的低位发热值(kJ/kg或kJ/ Nm3);V0——理论空气需要量(Nm3/kg或Nm3/);α——过剩空气系数,α=α0+△α,α0为炉膛过剩空气系数,△α是烟气流程上各段受热面处的漏风系数,详见表5,表6。
表5 炉膛过剩空气系数α0(4)SO2排放量的计算=式中:G——二氧化硫的产生量,kg/h;B——燃煤量,kg/h;S——煤的含硫量,%;淮南煤1.0%,淮北煤0.5% D——可燃硫占全硫量的百分比,%,一般取80%左右;η——脱硫设施的二氧化硫去除率。
一、锅炉运行热效率简单计算公式的推导1、锅炉燃料消耗量的计算锅炉运行时,燃料送入锅炉的热量与锅炉有效利用热量及各项热损失的和相等,即我们所说的热平衡:Qr=Q1+Q2+Q3+Q4+Q5+Q6(1)Qr:燃料送入锅炉的热量(一般就是燃料应用基低位发热量,即Qr=Qydw),kj/kgQ1:锅炉有效利用热量,kj/kgQ2:排烟带走的热量,Q3:气体不完全燃烧损失的热量,kj/kgQ4:固体不完全燃烧损失的热量,kj/kgQ5:锅炉向周围空气散失的热量,kj/kgQ6:燃料中灰渣带走的热量,kj/kg将公式(1)两边分别除以Qr得:1=Q1/Qr+Q2/Qr+Q3/Qr+Q4/Qr+Q5/Qr+Q6/Qrq1=Q1/Qr×100%q2=Q2/Qr×100%q3=Q3/Qr×100%q4=Q4/Qr×100%q5=Q5/Qr×100%q6=Q6/Qr×100%q1=100-(q2+q3+q4+q5+q6)%(2)q1:锅炉有效利用热量占燃料带入锅炉热量的百分数,即热效率η,%q2:排烟热损失,%q3:气体不完全燃烧热损失,%q4:固体不完全燃烧热损失,%q5:锅炉散热损失,%q6:其它热损失,%锅炉有效利用热量一方面:Q1=η×Qr(3)另一方面:Q1=QGL/B(4)B:锅炉每小时燃料消耗量,kg/hQGL:锅炉每小时有效吸收热量,kj/h蒸汽锅炉QGL=D(iq-igs)×103+DPS(ips-igs)×103热水锅炉QGL=G(i2-i1)×103D:锅炉蒸发量,t/hiq:蒸汽焓,kj/kgigs:锅炉给水焓,kj/kgDPS:锅炉排污水量,t/hips:锅炉排污水焓,即锅炉工作压力下的饱和水焓,kj/kgG:热水锅炉每小时加水量,t/hi2:热水锅炉出水焓,kj/kgi1:热水锅炉进水焓,kj/kg由公式(3)、(4)可得:B=QGL/(η·Qr)(5)2、理论空气量的计算理论空气量的计算可以在已知燃料元素分析的基础上通过各可燃元素化学反应方程式得出。
一、锅炉热效率计算10.1 正平衡效率计算10.1.1输入热量计算公式:Qr=Qnet,v,ar+Qwl+Qrx+Qzy式中: Qr__——输入热量;Qnet,v,ar ——燃料收到基低位发热量;Qwl ——加热燃料或外热量;Qrx——燃料物理热;Qzy——自用蒸汽带入热量。
在计算时,一般以燃料收到基低位发热量作为输入热量。
如有外来热量、自用蒸汽或燃料经过加热(例:重油)等,此时应加上另外几个热量。
10.1.2饱和蒸汽锅炉正平衡效率计算公式:式中:η1——锅炉正平衡效率;Dgs——给水流量;hbq——饱和蒸汽焓;hgs——给水焓;γ——汽化潜热;ω——蒸汽湿度;Gs——锅水取样量(排污量);B——燃料消耗量;Qr_——输入热量。
10.1.3过热蒸汽锅炉正平衡效率计算公式:a. 测量给水流量时:式中:η1——锅炉正平衡效率;Dgs——给水流量;hgq——过热蒸汽焓;hg——给水焓;γ——汽化潜热;Gs——锅水取样量(排污量);B——燃料消耗量;Qr——输入热量。
b. 测量过热蒸汽流量时:式中:η1——锅炉正平衡效率;Dsc——输出蒸汽量;Gq——蒸汽取样量;hgq——过热蒸汽焓;hgs——给水焓;Dzy——自用蒸汽量;hzy——自用蒸汽焓;hbq——饱和蒸汽焓;γ——汽化潜热;ω——蒸汽湿度;hbq——饱和蒸汽焓;Gs——锅水取样量(排污量);B——燃料消耗量;Qr——输入热量。
10.1.4 热水锅炉和热油载体锅炉正平衡效率计算公式式中:η1——锅炉正平衡效率;G——循环水(油)量;hcs——出水(油)焓;hjs——进水(油)焓;B——燃料消耗量;Qr——输入热量。
10.1.5电加热锅炉正平衡效率计算公式10.1.5.1电加热锅炉输-出饱和蒸汽时公式为:式中:η1——锅炉正平衡效率;Dgs——给水流量;hbq——饱和蒸汽焓;hgs——给水焓;γ——汽化潜热;ω——蒸汽湿度;Gs——锅水取样量(排污量);N——耗电量。
锅炉热效率的具体计算公式锅炉的热效率受到多种热损失的影响,但比较而言,以机械不完全燃烧损失q4受锅炉燃烧状况影响最为复杂,飞灰含碳量受锅炉煤种和运行参数影响很大,相互关系很难以常规的计算公式表达,因此采用了人工神经网络对锅炉的飞灰含碳量特性进行了建模,并利用实炉测试试验数据对模型进行了校验,结果表明,人工神经网络能很好反映大型电厂锅炉各运行参数与飞灰含碳量特性之间的关系。
采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、煤种特性,各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角作为神经网络的输入矢量,飞灰含碳量作为神经网络的输出,利用3层BP网络建模是比较合适的.目前锅炉运行往往根据试验调试人员针对锅炉的常用煤种进行燃烧调整,以获得最佳的各种锅炉运行参数供运行人员参考,从而实现锅炉的最大热效率。
但这种方法会带来如下问题:①由于锅炉燃煤的多变性,针对某一煤种进行调整试验获得的最佳操作工况可能与目前燃用煤种的所需的最佳工况偏离;②由于调试试验进行的工况有限,试验获得的最佳工况可能并非全局最优值,即可能存在比试验最佳值更好的运行工况。
本文在对某300MW四角切圆燃烧锅炉进行实炉工况测试并利用人工神经网络技术实现飞灰含碳量与煤种和运行参数关系的建模工作基础上,结合遗传算法这一全局寻优技术,对锅炉热效率最优化运行技术进行了研究,并在现场得到应用。
2 遗传算法和神经网络结合的锅炉热效率寻优算法利用一个21个输入节点,1个输出节点,24个隐节点的BP网络来模拟锅炉飞灰含碳量与锅炉运行参数和燃用煤种之间的关系,获得了良好的效果,并证明了采用人工神经网络对锅炉这种黑箱对象建模的有效性[1]。
人工神经网络的输入采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角和煤种特性,除煤种特性这一不可调节因素外,基本上包括了运行人员可以通过DCS进行调整的所有影响锅炉燃烧的所有参数。
锅炉热效率的具体计算公式锅炉的热效率受到多种热损失的影响,但比较而言,以机械不完全燃烧损失q4受锅炉燃烧状况影响最为复杂,飞灰含碳量受锅炉煤种和运行参数影响很大,相互关系很难以常规的计算公式表达,因此采用了人工神经网络对锅炉的飞灰含碳量特性进行了建模,并利用实炉测试试验数据对模型进行了校验,结果表明,人工神经网络能很好反映大型电厂锅炉各运行参数与飞灰含碳量特性之间的关系。
采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、煤种特性,各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角作为神经网络的输入矢量,飞灰含碳量作为神经网络的输出,利用 3层BP网络建模是比较合适的。
目前锅炉运行往往根据试验调试人员针对锅炉的常用煤种进行燃烧调整,以获得最佳的各种锅炉运行参数供运行人员参考,从而实现锅炉的最大热效率。
但这种方法会带来如下问题:①由于锅炉燃煤的多变性,针对某一煤种进行调整试验获得的最佳操作工况可能与目前燃用煤种的所需的最佳工况偏离;②由于调试试验进行的工况有限,试验获得的最佳工况可能并非全局最优值,即可能存在比试验最佳值更好的运行工况。
本文在对某300MW四角切圆燃烧锅炉进行实炉工况测试并利用人工神经网络技术实现飞灰含碳量与煤种和运行参数关系的建模工作基础上,结合遗传算法这一全局寻优技术,对锅炉热效率最优化运行技术进行了研究,并在现场得到应用。
2遗传算法和神经网络结合的锅炉热效率寻优算法利用一个21个输入节点,1个输出节点,24个隐节点的BP网络来模拟锅炉飞灰含碳量与锅炉运行参数和燃用煤种之间的关系,获得了良好的效果,并证明了采用人工神经网络对锅炉这种黑箱对象建模的有效性[1]。
人工神经网络的输入采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角和煤种特性,除煤种特性这一不可调节因素外,基本上包括了运行人员可以通过DCS进行调整的所有影响锅炉燃烧的所有参数。
燃煤锅炉的热效率热效率计算根据《关于发展热电联产的规定》(计基础〔2000 〕1268 号)文件,热效率= (供热量+供电量X3600千焦/千瓦时)/ (燃料总消耗量M然料单位低位热值)X100%,供热量就是热力产品(热水、蒸汽)根据供热流量、压力、温度的参数进行焓值计算后得出的焦耳热值当量年度产量,加上年发电量换算成焦耳热值当量(kWh 乘以3600),二者的和就是热电厂年产品总量(电+热)。
分母是热电厂的燃料消耗,如果是燃煤电厂,就用所耗煤种的低位热值(可以查到)*年耗煤吨量;如果是燃气电厂,就用天然气的热值*年耗气量。
电厂出口的总产品热值比上输入的各种一次能源消耗热值,就是热效率。
如何求解热效率当前,能源日逐紧张。
如何节能,如何提高能源的利用效率已是摆在人们面前的一个突出而现实的问题。
热效率的计算也成为中考热点问题。
如何求解热效率,下面通过一些典例进行分析归纳。
一、燃具的效率例1、小明学习了热学的有关知识后,他想估算一下自己家煤炉的效率是多少。
于是小明仔细记录了他家每天烧水、煮饭、炒菜需要的时间,并把它折算成了烧水的时间,相当于每天将30Kg20 C的水烧开。
小明家实际平均每天需要烧4块蜂窝煤,按每块蜂窝煤含煤0.5 Kg算,他家每天实际用煤2Kg •普通煤的热值为3 X10 7 J/Kg,则他家煤炉的效率是多少?[分析与解]:煤炉烧水,化学能转化为内能,水吸收的热量是有用能量,完全燃烧煤所放出的热量是总的能量。
煤炉的效率可用n =Q有用/ Q总X100% = cmi A t/m'q X00%计算。
Q 有用=cm A t=4.2 X 103 X 30 X (100)J=1.008 107JQ 总=mq = 2 X3 X107J = 6 X107Jn= Q 有用/Q 总X10 0%= 1.008 >107J/6X107J = 16.8 %二热机的效率例2、小兵同学想知道一辆小汽车的实际效率是多少。
锅炉效率和汽机热耗率计算书一、锅炉效率核算1. 根据锅炉效率反平衡计算公式及项目锅炉相关基础数据对锅炉效率进行核算。
锅炉效率反平衡计算公式如下:65432fp gl q q q q q 100-----=η式中,fpgl η——锅炉反平衡效率;q 2——排烟损失,%;q 3——可燃气体未完全燃烧损失,%; q 4——机械未完全燃烧损失,%; q 5——散热损失,%;q 6——灰渣的物理热损失,%。
项目锅炉相关基础数据见表-1。
表-1项目锅炉相关基础数据表1)排烟损失q 2核算排烟损失q 2计算公式如下:100t t k rf py py2)(-=q式中,py k ——排烟损失系数;py t ——预热器出口(烟气流方向)的排烟温度,℃;rf t ——送风机入口(自然)风温度,℃。
排烟损失系数py k 值根据简化计算公式计算,公式为:37.0100O 7.41145.3k 2py +⨯-⨯=式中,3.45——py k 值计算系数;0.37——py k 值修正系数;2O ——低位预热器出口(烟气流方向)烟气中的氧量,%。
把项目锅炉基础数据表中排烟氧量数据代入py k 值计算公式计算py k 值如下:37.0100O 7.41145.3k 2py +⨯-⨯=37.010067.41145.3 +⨯-⨯= =5.1750将py k 值及项目锅炉基础数据表中排烟温度值、送风温度值代入q 2计算公式,计算q 2值如下:100t t k rf py py2)(-=q 100038.2211750.5)(-⨯==4.8024经核算,排烟损失q 2=4.8024。
2)可燃气体未完全燃烧损失q 3核算可燃气体未完全燃烧损失是指燃料碳在燃烧过程中由于氧气不足、燃烧不完全而生成一氧化碳所造成的损失,根据《电站锅炉性能试验规程》(GB10184-88)中简化计算规定,煤粉锅炉忽略气体未完全燃烧损失,q 3=0。
3)机械未完全燃烧损失q 4核算 机械未完全燃烧损失q 4计算公式如下:hz4fh 44q q +=q式中,fh 4q ——机械未完全燃烧损失中的飞灰损失,%;hz 4q ——机械未完全燃烧损失中的灰渣损失,%。
锅炉平均运行热效率一、概述锅炉是一种将燃料中的化学能转化为热能的设备,广泛应用于工业、发电、供热等领域。
锅炉的运行热效率是指锅炉在单位时间内所释放的热量与燃料完全燃烧所需热量的比值,是衡量锅炉能量转换效率的重要指标。
本文将对锅炉平均运行热效率的计算、影响因素和提高措施进行探讨。
二、锅炉平均运行热效率的计算锅炉平均运行热效率的计算公式为:η = (Qout / Qin) × 100%,其中η为热效率,Qout为锅炉输出的热量,Qin为燃料完全燃烧所需的热量。
为了准确地计算锅炉平均运行热效率,需要测量和计算锅炉的输入和输出热量。
输入热量是指燃料完全燃烧所需的热量,可以通过燃料的元素分析、低位发热量等参数计算得出。
输出热量是指锅炉向外界输出的热量,可以通过测量蒸汽或热水的流量、温度和压力等参数计算得出。
在实际应用中,为了简化计算和提高准确性,可以采用一些经验公式或软件工具进行估算。
例如,对于常见的工业锅炉,可以采用基于输入和输出蒸汽或热水的参数的经验公式进行估算。
三、影响锅炉平均运行热效率的因素1.燃料品质燃料的品质对锅炉平均运行热效率的影响较大。
如果燃料的质量较差,例如低位发热量较低、含硫量较高,会导致燃烧不完全,降低热效率。
因此,选用高品质的燃料是提高锅炉运行热效率的重要措施。
2.燃烧工况燃烧工况的好坏直接影响着锅炉的燃烧效率和热效率。
如果燃烧工况不良,例如火焰颜色偏暗、烟气中有未燃尽的碳黑颗粒等,会导致燃烧不完全,降低热效率。
因此,保持合理的燃烧工况是提高锅炉运行热效率的关键。
3.设备维护状况设备的维护状况对锅炉的运行热效率也有影响。
如果设备维护不当,例如水垢积累过多、炉膛温度不均匀等,会导致传热效率下降,降低热效率。
因此,定期进行设备维护和保养是提高锅炉运行热效率的重要措施。
4.操作人员技能操作人员的技能水平对锅炉的运行热效率也有影响。
如果操作人员技能不足或操作不当,例如不能及时调整燃烧工况、不能合理控制蒸汽或热水流量等,会导致能量损失增加,降低热效率。
锅炉燃烧热效率计算公式锅炉是工业生产中常用的一种热能设备,它通过燃烧燃料产生热能,将水加热蒸发为蒸汽,从而提供动力或热能。
而锅炉的燃烧热效率是衡量锅炉燃烧过程中能源利用情况的重要指标。
本文将介绍锅炉燃烧热效率的计算公式及其影响因素。
锅炉燃烧热效率计算公式。
锅炉燃烧热效率是指锅炉在燃料燃烧过程中,将燃料的热能转化为蒸汽或热水的能力。
燃烧热效率通常用百分比表示,计算公式如下:燃烧热效率 = (锅炉输出的热量 / 燃料的热值) 100%。
其中,锅炉输出的热量是指锅炉产生的蒸汽或热水的热量,通常以千焦或千瓦时为单位;燃料的热值是指单位质量燃料燃烧产生的热量,通常以千焦或千瓦时为单位。
影响锅炉燃烧热效率的因素。
锅炉燃烧热效率受多种因素影响,主要包括燃料的热值、燃烧过程中的损失以及锅炉本身的设计和运行情况。
1. 燃料的热值。
燃料的热值是影响锅炉燃烧热效率的关键因素之一。
不同种类的燃料具有不同的热值,燃料的热值越高,燃烧热效率越高。
因此,在选择锅炉燃料时,应该优先考虑燃料的热值。
2. 燃烧过程中的损失。
燃料在燃烧过程中会产生多种损失,包括燃料不完全燃烧、烟气带走的热量、燃料含灰量等。
这些损失会降低锅炉的燃烧热效率,因此需要通过合理的燃烧控制和烟气余热回收等措施来减少损失。
3. 锅炉设计和运行情况。
锅炉的设计和运行情况也会对燃烧热效率产生影响。
合理的锅炉设计能够提高热能利用效率,而锅炉的运行状态、维护保养情况和操作方式也会对燃烧热效率产生影响。
提高锅炉燃烧热效率的方法。
提高锅炉燃烧热效率对于节能减排和降低生产成本具有重要意义。
以下是一些提高锅炉燃烧热效率的方法:1. 选择高热值的燃料,如天然气、生物质颗粒燃料等,以提高锅炉燃烧热效率。
2. 优化燃烧过程,采用先进的燃烧技术和设备,减少燃料不完全燃烧和烟气带走的热量。
3. 安装余热回收设备,充分利用烟气中的余热,提高锅炉热能利用效率。
4. 加强锅炉运行和维护管理,保持锅炉设备的良好状态,避免因设备损坏或运行不良导致能量浪费。
热损失法锅炉热效率η按下式计算η=[1-(Q2+Q3+Q4+Q5+Q6)/Qr]*100=100-(q2+q3+q4+q5+q6)式中:Q2——每千克燃料的排烟损失热量,kJ/kg;Q3——每千克燃料的可燃气体未完全燃烧损失热量,kJ/kg;Q4——每千克燃料的固体不完全燃烧损失热量,kJ/kg;Q5——每千克燃料的锅炉散热损失热量,kJ/kg;Q6——每千克燃料的灰渣物理显热损失热量,kJ/kg;Qr——每千克燃料低位发热量,kJ/kg;q2——排烟热损失,%q3——可燃气体未完全燃烧热损失,%q4——固体未完全燃烧热损失,%q5——锅炉散热热损失,%q6——灰渣物理显热损失,%1、排烟热损失排烟热损失是指末级热交换器后排出烟气带走的物理显热占输入热量的百分率。
q2=(Q2/ Qr)*100Q2= Q2gy+Q2H2O式中:Q2gy——干烟气带走的热量,kJ/kg;Q2H2O——烟气所含水蒸气的显热,kJ/kg;Q2gy=V gyCP. gy(θPy-tsf)Q2H2O=VH2OCP.H2O(θPy- tsf)式中:V gy ——每千克燃料燃烧生成的实际干烟气体积,m3/kg;VH2O ——每千克燃料燃烧产生的水蒸气及相应空气湿分带入的水蒸气体积, m3/kg; θPy——排烟温度,tsf ——送风温度,CP. gy ——干烟气从t0至θPy的平均定压比热,kJ/(kg•K);cP.H2O——水蒸汽比t0至θPy的平均定压比热,kJ/(kg•K);采用燃料的工业分析进行简化计算,可以按如下计算方法。
实际干烟气体积可以通过下式计算:V gy=(VO gy)C+(agy-1)(VO gk)C式中:(VO gy)C ——每千克燃料燃烧所需的理论干空气量,m3/kg;(VO gk)C ——每千克燃料燃烧产生的理论干烟气量,m3/kg;agy ——空气预热器出口的过剩空气系数。
理论干空气量及理论干烟气量用下式计算:(VO gk)C =K2* Qr/1000(VO gy)C = K1*(VO gk)CK1、K2可根据燃烧的种类及燃料无灰干燥基挥发份的数值在下表中选取。
锅炉热效率的具体计算公式锅炉的热效率受到多种热损失的影响,但比较而言,以机械不完全燃烧损失q4受锅炉燃烧状况影响最为复杂,飞灰含碳量受锅炉煤种和运行参数影响很大,相互关系很难以常规的计算公式表达,因此采用了人工神经网络对锅炉的飞灰含碳量特性进行了建模,并利用实炉测试试验数据对模型进行了校验,结果表明,人工神经网络能很好反映大型电厂锅炉各运行参数与飞灰含碳量特性之间的关系。
采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、煤种特性,各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角作为神经网络的输入矢量,飞灰含碳量作为神经网络的输出,利用3层BP网络建模是比较合适的。
目前锅炉运行往往根据试验调试人员针对锅炉的常用煤种进行燃烧调整,以获得最佳的各种锅炉运行参数供运行人员参考,从而实现锅炉的最大热效率。
但这种方法会带来如下问题:①由于锅炉燃煤的多变性,针对某一煤种进行调整试验获得的最佳操作工况可能与目前燃用煤种的所需的最佳工况偏离;②由于调试试验进行的工况有限,试验获得的最佳工况可能并非全局最优值,即可能存在比试验最佳值更好的运行工况。
本文在对某300MW四角切圆燃烧锅炉进行实炉工况测试并利用人工神经网络技术实现飞灰含碳量与煤种和运行参数关系的建模工作基础上,结合遗传算法这一全局寻优技术,对锅炉热效率最优化运行技术进行了研究,并在现场得到应用。
2 遗传算法和神经网络结合的锅炉热效率寻优算法利用一个21个输入节点,1个输出节点,24个隐节点的BP网络来模拟锅炉飞灰含碳量与锅炉运行参数和燃用煤种之间的关系,获得了良好的效果,并证明了采用人工神经网络对锅炉这种黑箱对象建模的有效性[1]。
人工神经网络的输入采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角和煤种特性,除煤种特性这一不可调节因素外,基本上包括了运行人员可以通过DCS进行调整的所有影响锅炉燃烧的所有参数。
锅炉热效率的具体计算公式锅炉的热效率受到多种热损失的影响,但比较而言,以机械不完全燃烧损失q4受锅炉燃烧状况影响最为复杂,飞灰含碳量受锅炉煤种和运行参数影响很大,相互关系很难以常规的计算公式表达,因此采用了人工神经网络对锅炉的飞灰含碳量特性进行了建模,并利用实炉测试试验数据对模型进行了校验,结果表明,人工神经网络能很好反映大型电厂锅炉各运行参数与飞灰含碳量特性之间的关系。
采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、煤种特性,各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角作为神经网络的输入矢量,飞灰含碳量作为神经网络的输出,利用3层BP网络建模是比较合适的。
目前锅炉运行往往根据试验调试人员针对锅炉的常用煤种进行燃烧调整,以获得最佳的各种锅炉运行参数供运行人员参考,从而实现锅炉的最大热效率。
但这种方法会带来如下问题:①由于锅炉燃煤的多变性,针对某一煤种进行调整试验获得的最佳操作工况可能与目前燃用煤种的所需的最佳工况偏离;②由于调试试验进行的工况有限,试验获得的最佳工况可能并非全局最优值,即可能存在比试验最佳值更好的运行工况。
本文在对某300MW四角切圆燃烧锅炉进行实炉工况测试并利用人工神经网络技术实现飞灰含碳量与煤种和运行参数关系的建模工作基础上,结合遗传算法这一全局寻优技术,对锅炉热效率最优化运行技术进行了研究,并在现场得到应用。
2 遗传算法和神经网络结合的锅炉热效率寻优算法利用一个21个输入节点,1个输出节点,24个隐节点的BP网络来模拟锅炉飞灰含碳量与锅炉运行参数和燃用煤种之间的关系,获得了良好的效果,并证明了采用人工神经网络对锅炉这种黑箱对象建模的有效性[1]。
人工神经网络的输入采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角和煤种特性,除煤种特性这一不可调节因素外,基本上包括了运行人员可以通过DCS进行调整的所有影响锅炉燃烧的所有参数。
锅炉计算公式锅炉计算公式是指用于计算锅炉相关参数的数学公式。
锅炉作为工业生产和生活中常用的热能设备,其性能参数的计算对于锅炉的设计、运行和维护都具有重要意义。
下面将介绍一些常用的锅炉计算公式。
一、锅炉容量计算公式锅炉容量是指锅炉每小时产生的蒸汽量或热水量,通常用吨/小时或千瓦表示。
锅炉容量的计算公式如下:锅炉容量(吨/小时)= 锅炉效率× 燃料热值(千焦/千克)/ 锅炉热效率(千焦/千克)其中,锅炉效率是指锅炉的热效率,表示锅炉将燃料中的热能转化为蒸汽或热水的能力;燃料热值是指燃料每千克所含的热能。
二、锅炉燃料消耗量计算公式锅炉燃料消耗量是指锅炉每小时消耗的燃料量,通常用吨/小时或千克/小时表示。
锅炉燃料消耗量的计算公式如下:锅炉燃料消耗量(吨/小时)= 锅炉容量(吨/小时)/ 锅炉效率通过这个公式,可以计算锅炉每小时的燃料消耗量,以便进行燃料供给和成本估算。
三、锅炉排烟温度计算公式锅炉排烟温度是指燃烧产生的烟气在锅炉燃烧室排出时的温度。
锅炉排烟温度的计算公式如下:锅炉排烟温度(℃)= 炉膛出口温度(℃)- 空气预热器出口温度(℃)- 烟气净过热器出口温度(℃)锅炉排烟温度的计算可以帮助判断燃烧是否充分,以及烟气冷凝和余热回收的潜力。
四、锅炉效率计算公式锅炉效率是指锅炉将燃料中的热能转化为蒸汽或热水的能力,它反映了锅炉的能量利用率。
锅炉效率的计算公式如下:锅炉效率(%)= 实际蒸发量(或供热量)/ 理论蒸发量(或供热量)× 100%其中,实际蒸发量是指锅炉每小时产生的蒸汽量或热水量;理论蒸发量是指锅炉在理想状态下的蒸汽量或热水量。
五、锅炉水处理计算公式锅炉水处理是指对锅炉水进行化学处理,以保证锅炉运行的安全可靠。
常用的锅炉水处理计算公式包括:1. 硬度计算公式:硬度(mg/L)= 水样中的钙离子(mg/L)+2.5 × 水样中的镁离子(mg/L)2. 硷度计算公式:硷度(mg/L)= 2.8 × 水样中的碱度(mmol/L)3. 水碱度计算公式:水碱度(mmol/L)= 碳酸盐碱度(mmol/L)+ 磷酸盐碱度(mmol/L)+ 氢氧化物碱度(mmol/L)以上是一些常用的锅炉计算公式,通过这些公式可以对锅炉进行容量、燃料消耗量、排烟温度、效率和水处理等方面的计算。
1兆帕(MPa)=10巴(bar)=9.8大气压(atm)约等于十个大气压,1标准大气压=76cm汞柱=1.01325×10^5Pa=10.336m水柱约等于十米水柱,所以1MPa大约等于100米水柱,一公斤相当于10米水柱水的汽化热为40.8千焦/摩尔,相当于2260千焦/千克.一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量. 一吨水=1000千克每千克水2260千焦 1000千克就是2260 000千焦1吨蒸汽相当于60万千卡/1吨蒸汽相当于64锅炉马力/1锅炉马力相当于8440千卡热。
用量是70万大卡/H 相当于1.17吨的锅炉以表压力为零的蒸汽为例,每小时产一吨蒸汽所具有的热能,在锅内是分两步吸热获得的,第一步是把20度的一吨给水加热到100度的饱和水所吸收的热能,通常这部分热能为显热,其热能即为1000×(100-20)=8万/千卡时。
第二步则是将已处于饱和状态的热水一吨加热成饱和蒸汽所需要吸收的热能,这部分热为潜热,其热能即为1000×539=53.9万/千卡时。
把显热和潜热加起来,即是一吨蒸汽(其表压力为零时)在锅内所获得的热能,即:53.9+8=61.9万/千卡时。
这就是我们通常所说的蒸汽锅炉每小时一吨蒸发量所具有的热能,相当于热水锅炉每小时60万/大卡的容量。
天然气热值天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ 产地、成分不同热值不同,大致在36000~40000kJ/Nm3,即每一标准立方米天然气热值约为36000至40000千焦耳,即36~40百万焦耳。
天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ。
锅炉额定热效率锅炉额定热效率是指锅炉在额定工况下的热能利用效率。
热效率是衡量锅炉性能的重要指标之一,对于提高能源利用效率和降低能源消耗具有重要意义。
本文将从定义、计算、影响因素、提高方法等方面对锅炉额定热效率进行详细讨论,旨在为锅炉设计、运行和维护提供参考。
一、定义与计算锅炉额定热效率是指在一定条件下,锅炉所转化为热能的实际输出热量与其燃烧所产生热量的比值。
通常以百分比来表示。
锅炉额定热效率计算公式如下:锅炉额定热效率(%)= 实际输出热量(kW)/燃烧热量(kW)×100%其中,实际输出热量是指锅炉在额定工况下所输出的有效热能,包括蒸发热、感热和凝结热等;而燃烧热量是指锅炉总热量,包括燃烧热、煤气化热和燃料中未完全燃烧产生的热量等。
二、影响因素1.锅炉设计参数:锅炉的设计参数包括锅炉结构、材料、燃烧方式等。
合理的设计参数可以提高燃烧效果,减少热损失。
2.燃料性质:燃料的热值、含碳量、灰分、挥发分等参数直接影响到锅炉的燃烧过程和热转化效率。
3.燃烧控制:燃烧控制是指燃料与空气混合的过程。
燃烧过程中的混合均匀性、燃烧温度、燃烧室的烟气流速等因素都会影响到锅炉的热效率。
4.燃烧系统:燃烧系统包括燃烧器、燃烧室和热交换器等组成。
燃烧器的设计和调试对于提高热效率起着关键作用。
5.设备运行管理:合理的设备运行管理可以保证锅炉的长期高效运行,减少热损失。
三、热效率提高方法1.提高锅炉的燃烧效率:通过改善燃烧系统和燃烧控制方式,提高燃烧效率,降低燃料消耗。
2.节能改造:利用先进的锅炉燃烧技术和余热回收技术,降低锅炉热损失,提高热效率。
3.设备运行管理:建立科学的运行管理制度,严格执行运行规范,保养设备,确保设备正常运行。
4.锅炉热控:通过烟气测温和换热表面清洗等措施,控制燃烧温度,减少热损失,提高热效率。
5.燃料选择:选择高热值、低含硫、低灰分的燃料,减少燃料特性对热效率的影响。
四、发展趋势1.锅炉节能技术的发展趋势:随着社会对节能环保的要求越来越高,热效率提升将成为锅炉技术发展的主要方向。
正平衡锅炉效率计算锅炉正平衡热效率:指用被锅炉利用的热量与燃料所能放出的全部热量之比来计算热效率的方法,又称为直接测量法热效率。
(锅炉蒸发量*(蒸发焓-给水焓))/每小时燃料消耗量*燃料低位发热量完整计算公式:〔(锅炉蒸发量*(蒸发焓-给水焓))+锅炉排污量*(排污水焓-给水焓)〕+/每小时燃料消耗量*燃料低位发热量正平衡效率计算10.1.1输入热量计算公式: Qr=Qnet,v,ar+Qwl+Qrx+Qzy式中: Qr__——输入热量;Qnet,v,ar ——燃料收到基低位发热量;Qwl ——加热燃料或外热量;Qrx——燃料物理热;Qzy——自用蒸汽带入热量。
在计算时,一般以燃料收到基低位发热量作为输入热量。
如有外来热量、自用蒸汽或燃料经过加热(例:重油)等,此时应加上另外几个热量。
10.1.2饱和蒸汽锅炉正平衡效率计算公式:式中:η1——锅炉正平衡效率;Dgs——给水流量;hbq——饱和蒸汽焓;hgs——给水焓;γ——汽化潜热;ω——蒸汽湿度;Gs——锅水取样量(排污量);B——燃料消耗量;Qr_——输入热量。
10.1.3过热蒸汽锅炉正平衡效率计算公式:a. 测量给水流量时:式中:η1——锅炉正平衡效率;Dgs——给水流量;hgq——过热蒸汽焓;hg——给水焓;γ——汽化潜热;Gs——锅水取样量(排污量);B——燃料消耗量;Qr——输入热量。
b. 测量过热蒸汽流量时:式中:η1——锅炉正平衡效率;Dsc ——输出蒸汽量;Gq ——蒸汽取样量;hgq —— 过热蒸汽焓 ;hgs —— 给水焓;Dzy ——自用蒸汽量;hzy ——自用蒸汽焓;hbq ——饱和蒸汽焓;γ——汽化潜热;ω——蒸汽湿度; hbq ——饱和蒸汽焓; Gs ——锅水取样量(排污量); B ——燃料消耗量; Qr ——输入热量。