2020年中考数学压轴题突破(含答案)
- 格式:doc
- 大小:962.50 KB
- 文档页数:16
2020年初三数学中考压轴题综合训练:《二次函数》1.已知抛物线的顶点A(﹣1,4),且经过点B(﹣2,3),与x轴分别交于C,D两点.(1)求直线OB和该抛物线的解析式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的上方,过点M作x轴的平行线与直线OB交于点N,求MN的最大值;(3)如图2,AE∥x轴交x轴于点E,点P是抛物线上A、D之间的一个动点,直线PC、PD与AE分别交于F、G,当点P运动时,求tan∠PCD+tan∠PDC的值.解:(1)设直线OB的解析式为y=kx,∵B(﹣2,3),∴﹣2k=3,∴k=﹣,∴直线OB的解析式为y=﹣x,∵抛物线的顶点为A(﹣1,4),∴设抛物线对应的函数表达式为y=a(x+1)2+4.将B(﹣2,3)代入y=a(x+1)2+4,得:3=a+4,解得:a=﹣1,∴抛物线对应的函数表达式为y=﹣(x+1)2+4,即y=﹣x2﹣2x+3.(2)设M(t,﹣t2﹣2t+3),MN=s,则N的横坐标为t﹣s,纵坐标为﹣(t﹣s),∵,∴x1=﹣2,x2=,∵点M是直线OB的上方抛物线上的点,∴﹣2<t<,∵MN∥x轴,∴﹣t2﹣2t+3=﹣(t﹣s),∴s=﹣t+2=﹣,∵﹣2<t<,∴当t=﹣时,MN的最大值为;(3)解:过点P作PQ∥y轴交x轴于Q,设P(t,﹣t2﹣2t+3),则PQ=﹣t2﹣2t+3,CQ=t+3,DQ=1﹣t,∴tan∠PCD+tan∠PDC=,=,=,=1﹣t+t+3,=4.2.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点B,与y轴交点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴交于另一点A.如图1,点P为抛物线上任意一点.过点P作PM⊥x轴交BC于M.(1)求抛物线的解析式;(2)当△PCM是直角三角形时,求P点坐标;(3)如图2,作P点关于直线BC的对称点P′,作直线P′M与抛物线交于EF,设抛物线对称轴与x轴交点为Q,当直线P′M经过点Q时,请你直接写出EF的长.解:(1)∵直线y=﹣x+2与x轴交于点B,与y轴交点C,∴B(4,0),C(0,2),∴把B(4,0),C(0,2)代入y=﹣x2+bx+c得,,解得,,∴抛物线的解析式为:y=﹣+2;(2)∵PM⊥x轴交BC于M.BC不平行x轴,∴∠PMC≠90°,当∠CPM=90°时,PC∥x轴,则P点的纵坐标为2,∵y=﹣+2的对称轴为x=1,∴P点的横坐标为:2,此时P(2,2);当∠PCM=90°时,设P(m,),则M(m,﹣m+2),由PC2+CM2=PM2得,=,解得,m=0(与C的横坐标相同,舍去),或m=﹣6,此时P(﹣6,﹣10);综上,P点的坐标为(2,2)或(﹣6,﹣10);(3)作Q点关于直线BC的对称点K,QK与BC相交于点N,再过K作KL⊥x轴于点L,如图所示,则根据题意可知,KL与BC的交点为M,P点在KM上,P'在QM上,∵y=﹣+2,∴抛物线的对称轴为x=1,∴Q(1,0),∴BQ=4﹣1=3,∵∠QBN=∠CBO,∠QNB=∠COB=90°,∴△BQN∽△BCO,∴,即,∴QN=,∴QK=2QN=,∠BQN=∠KQL,∠BNQ=∠KLQ=90°,∴△BQN∽△KQL,∴,即,∴QL=,∴OL=1+,∴M(,),设QM的解析式为:y=kx+b(k≠0),则,∴,∴直线QM的解析式为:y=,联立方程组,解得,,或,∴E(,),F(,),∴EF=.3.如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A(﹣1,0),且直线BC的解析式为y=x﹣2,作垂直于x轴的直线x=m,与抛物线交于点F,与线段BC交于点E(不与点B和点C重合).(1)求抛物线的解析式;(2)若△CEF是以CE为腰的等腰三角形,求m的值;(3)点P为y轴左侧抛物线上的一点,过点P作PM⊥BC交直线BC于点M,连接PB,若以P、M、B为顶点的三角形与△ABC相似,求P点的坐标.解:(1)∵直线BC的解析式为y=x﹣2,∴C(0,﹣2),B(4,0),将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,得,解得,,∴y=x﹣2;(2)∵∴,=,,若以C为顶点,则CE2=CF2,∴,解得:m1=2,m2=4(舍去),若以E为顶点,则EC2=EF2,∴=,解得:m3=4﹣,m4=4+(舍去),综合以上得m=2或m=4﹣.(3)①∵AC=,BC=2,∴AC2+BC2=25=AB2,∴当点P与点A重合时,点M与点C重合,此时P1(﹣1,0),②如图,当△BPM∽△ABC时,过点M作HR∥x轴,作PH⊥HR于点H,BR⊥HR于点R,∵∠PMB=∠PHM=∠BRM=90°,∴∠BMR=∠MPH,∴△PHM∽△MRB,∴又∵AB∥HR,∴∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,令BR=a,MR=2a,又∵∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,∴,∴PH=4a,HM=2a,PQ=3a,∴HR=4a,∴P(4﹣4a,3a),又∵点P在抛物线上,将P(4﹣4a,3a)代入y=x﹣2得:(4﹣4a)﹣2=3a,∴a(8a﹣13)=0,a 1=0(舍),a2=.∴.∴符合条件的点P为P1(﹣1,0)或.4.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.(1)求b,c的值:(2)如图1,点P是第一象限抛物线上一动点,过点P作x轴的垂线1,交BC于点H.当△PHC为等腰三角形时,求点P的坐标;(3)如图2,抛物线顶点为E.已知直线y=kx﹣k+3与二次函数图象相交于M、N两点,求证:无论k为何值,△EMN恒为直角三角形.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),∴,解得:,∴b=2,c=3;(2)∵抛物线的函数表达式为:y=﹣x2+2x+3,∴C(0,3),设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),①如图1,过点C作CM⊥PH于点M,则CM=x,PH=﹣x2+3x,当CP=CH时,PM=MH,∠MCH=∠MCP,∵OB=OC,∴∠OBC=45°,∵CM∥OB,∴∠MCH=∠OBC=45°,∴∠PCH=90°,∴MC=PH=(﹣x2+3x),即x=(﹣x2+3x),解得:x1=0(舍去),x2=1,∴P(1,4);②如图2,当PC=PH时,∵PH∥OC,∴∠PHC=∠OCB=45°,∴∠CPH=90°,∴点P的纵坐标为3,∴﹣x2+2x+3=3,解得:x=2或x=0(舍去),∴P(2,3);③当CH=PH时,如图3,∵B(3,0),C(0,3),∴BC==3.∵HF∥OC,∴,∴,解得:x=3﹣,∴P(3﹣,4﹣2).综合以上可得,点P的坐标为(1,4)或(2,3)或(3﹣,4﹣2).(3)∵函数表达式为:y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴点E (1,4);设点M 、N 的坐标为(x 1,y 1),(x 2,y 2),∴MN 2=(x 1﹣x 2)2+(y 1﹣y 2)2,ME 2=(x 1﹣1)2+(y 1﹣4)2,NE 2=(x 2﹣1)2+(y 2﹣4)2,∵ME 2+NE 2=(x 1﹣1)2+(y 1﹣4)2+(x 2﹣1)2+(y 2﹣4)2=x 12+x 22﹣2(x 1+x 2)+2+y 12+y 22﹣8(y 1+y 2)+32=x 12+x 22﹣2x 1x 2+2﹣4+y 12+y 22﹣2y 1•y 2+18﹣48+32 ═(x 1﹣x 2)2+(y 1﹣y 2)2, ∴MN 2=ME 2+NE 2, ∴∠MEN =90°, 故EM ⊥EN ,即:△EMN 恒为直角三角形.5.如图1所示,已知直线y =kx +m 与抛物线y =ax 2+bx +c 分别交于x 轴和y 轴上同一点,交点分别是点B (6,0)和点C (0,6),且抛物线的对称轴为直线x =4; (1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使△PBC 是直角三角形?若存在请直接写出P 点坐标,不存在请说明理由;(3)如图2,点Q 是线段BC 上一点,且CQ =,点M 是y 轴上一个动点,求△AQM的最小周长.解:(1)∵抛物线y=ax2+bx+c与x轴交于点A、B两点,对称轴为直线x=4,∴点A的坐标为(2,0).∵抛物线y=ax2+bx+c过点A(2,0),B(6,0),C(0,6),∴,解得a=,b=﹣4,c=6.∴抛物线的解析式为:y=;(2)设P(4,y),∵B(6,0),C(0,6),∴BC2=62+62=72,PB2=22+y2,PC2=42+(y﹣6)2,当∠PBC=90°时,BC2+PB2=PC2,∴72+22+y2=42+(y﹣6)2,解得:y=﹣2,∴P(4,﹣2);当∠PCB=90°时,PC2+BC2=PB2,∴42+(y﹣6)2+72=22+y2,解得:y=10,∴P(4,10);当∠BPC=90°时,PC2+PB2=BC2.∴42+(y﹣6)2+22+y2=72,解得:y=3.∴P(4,3+)或P(4,3﹣).综合以上可得点P的坐标为(4,﹣2)或(4,10)或(4,3+)或P(4,3﹣).(3)过点Q作QH⊥y轴于点H,∵B(6,0),C(0,6),∴OB=6,OC=6,∴∠OCB=45°,∴∠CQH=∠HCQ=45°,∵CQ=,∴CH=QH=,∴OH=6﹣,∴点Q的坐标为(,),在x轴上取点G(﹣2,0),连接QG交y轴于点M,则此时△AQM的周长最小,∴AQ==,QG==,∴AQ+QG=,∴△AQM的最小周长为4.6.如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=﹣x+3的图象与y轴、x轴的交点,点B在二次函数y=x2+bx+c的图象上,且该二次函数图象上存在一点D,使四边形ABCD能构成平行四边形.(1)试求b、c的值,并写出该二次函数表达式;(2)动点P沿线段AD从A到D,同时动点Q沿线段CA从C到A都以每秒1个单位的速度运动,问:①当P运动过程中能否存在PQ⊥AC?如果不存在请说明理由;如果存在请说明点的位置?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?解:(1)由y=﹣x+3,令x=0,得y=3,所以点A(0,3);令y=0,得x=4,所以点C(4,0),∵△ABC是以BC为底边的等腰三角形,∴B点坐标为(﹣4,0),又∵四边形ABCD是平行四边形,∴D点坐标为(8,3),将点B(﹣4,0)、点D(8,3)代入二次函数y=x2+bx+c,∴,解得:,故该二次函数解析式为:y=x2﹣x﹣3.(2)∵OA=3,OB=4,∴AC=5.①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,∵PQ⊥AC,∴∠AQP=∠AOC=90°,∠PAQ=∠ACO,∴△APQ∽△CAO,∴,即,解得:t=.即当点P运动到距离A点个单位长度处,有PQ⊥AC.②∵S四边形PDCQ +S△APQ=S△ACD,且S△ACD=×8×3=12,∴当△APQ的面积最大时,四边形PDCQ的面积最小,当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽△CAO可得:,解得:h=(5﹣t),∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+,∴当t=时,S△APQ 达到最大值,此时S四边形PDCQ=12﹣=,故当点P运动到距离点A个单位处时,四边形PDCQ面积最小,最小值为.7.如图,抛物线y=﹣x2+bx+c过点x轴上的A(﹣1,0)和B点,交y轴于点C,点P是该抛物线上第一象限内的一动点,且CO=3AO.(1)抛物线的解析式为:y=﹣x2+2x+3 ;(2)过点P作PD∥y轴交直线BC于点D,求点P在运动的过程中线段PD长度的最大值;(3)若sin∠BCP=,在对称轴左侧的抛物线上是否存在点Q,使∠QBC=∠PBC?若存在,请求出点Q的坐标,若不存在,请说明理由.解:(1)∵A(﹣1,0),∴OA=1,又∵CO=3AO,∴OC=3,∴C(0,3),把A,C两点的坐标代入y=﹣x2+bx+c得,,解得:,∴抛物线的解析式为y=﹣x2+2x+3,故答案为:y=﹣x2+2x+3.(2)由﹣x2+2x+3=0,得B(3,0),设直线BC的解析式为y=kx+b,将点B(3,0),C(0,3)代入得,,解得:,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则D(x,﹣x+3)(0<x<3),∴PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x=.∴当时,PD有最大值.(3)存在.∵,点P在第一象限,∴∠BCP=45°,∵B(3,0),C(0,3),∴OC=OB,∴△BOC是等腰直角三角形,∴∠OBC=∠OCB=45°,∴∠BCP=∠OCB=45°,∴CP∥OB,∴P(2,3),设BQ与y轴交于点G,在△CPB和△CGB中:2,∴△CPB≌△CGB(ASA),∴CG=CP=2,∴OG=1,∴点G(0,1),设直线BQ:y=kx+1,将点B(3,0)代入y=kx+1,∴,∴直线BQ:,联立直线BQ和二次函数解析式,解得:或(舍去),∴Q(,).8.如图,以D为顶点的抛物线y=ax2+2x+c交x轴于点A,B(6,0),交y轴于点C(0,6).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.解:(1)将B(6,0),C(0,6)代入y=ax2+2x+c,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.(2)当y=0时,﹣x2+2x+6=0,解得:x1=﹣2,x2=6,∴点A的坐标为(﹣2,0).∵点B的坐标为(6,0),点C的坐标为(0,6),∴直线BC的解析式为y=﹣x+6.如图1,作O关于BC的对称点O′,则点O′的坐标为(6,6).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+PA的最小值=PO′+PA=AO′═=10.设直线AO′的解析式为y=kx+m,将A(﹣2,0),Q′(6,6)代入y=kx+m,得:,解得:,∴直线AO′的解析式为y=x+.联立直线AO′和直线BC的解析式成方程组,得:,解得:,∴点P的坐标为(,).(3)∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴点D的坐标为(2,8).又∵点C的坐标为(0,6),点B的坐标为(6,0),∴CD=2,BC═=6,BD═=4,∴CD2+BC2=BD2,∴∠BCD=90°.∵点A的坐标(﹣2,0),点C的坐标为(0,6),∴OA=2,OC=6,∴==2,.又∵∠AOC=∠DCB=90°,∴△AOC∽△DCB,∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图2,连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽DCB,∴,即,∴AQ=20,∴点Q的坐标为(18,0).综上所述:当Q的坐标为(0,0)或(18,0)时,以A,C,Q为顶点的三角形与△BCD 相似.9.如图,抛物线L:y=ax2﹣2ax+a+k(a,k为常数且a>0)经过点C(﹣1,0),顶点为M,经过点P(0,a+4)的直线m与x轴平行,且m与L交于点A,B(B在A的右侧),与L的对称轴交于点F,直线n:y=ax+c经过点C.(1)用a表示k及点M的坐标;(2)BP﹣AP的值是否是定值?若是,请求出这个定值;若不是,请说明理由;(3)当直线n经过点B时,求a的值及点A,B的坐标;(4)当a=1时,设△ABC的外心为点N,则:①求点N的坐标;②若点Q在L的对称轴上,其纵坐标为b,且满足∠AQB<∠ACB,直接写出b的取值范围.解:(1)把点C(﹣1,0)代入L,得0=a×(1﹣)2﹣2a×(﹣1)+a+k,∴k=﹣4a.又L:y=ax2﹣2ax+a+k=a(x﹣1)2﹣4a,∴顶点M(1,﹣4a).(2)是定值.根据图象,由抛物线的轴对称性,可知BF=AF,又QL的对称轴为x=1,故PF=1,∴由图象可得,BP﹣AP=(BF+PF)﹣(AF﹣PF),=BF+PF﹣AF+PF=2PF=2.(3)当直线n经过点B时,有ax+a=a(x﹣1)2﹣4a,化简得,ax2﹣3ax﹣4a=0,∵a>0,∴x2﹣3x﹣4=0,解得:x1=﹣1,x2=4,∵B在A的右侧,对称轴为x=1,∴B(4,a+4),A(﹣2,a+4),把点B代入直线n,得a+4=4a+a,解得a=1,∴A(﹣2,5),B(4,5).(4)①根据抛物线的轴对称性可知,L的对称轴x=1就是AB的垂直平分线,故△ABC的外心N就在直线x=1上,则有AN=CN.∴设N(1,c),由(3)可知A(﹣2,5),及C(﹣1,0),∴(﹣2﹣1)2+(5﹣c)2=(﹣1﹣1)2+(0﹣c)2,即32+(5﹣c)2=22+c2,解得c=3.∴N(1,3).②或b.如图,对于点Q(1,b),若∠AQB=∠ACB,根据同弧所对的圆周角相等,可得点Q为x=1与⊙N的交点,由(4)①得,⊙N的半径为r=NC=(﹣1﹣1)2+(0﹣3)2=,则b=﹣(r﹣c)=﹣(﹣3)=3﹣;设点Q关于直线AB的对称点为Q'(1,d),若∠AQ'B=∠ACB,则d=FQ'+5=FQ+5=(5+|3﹣|)+5=+7.综上,若点Q满足∠AQB<∠ACB,则有b或b.10.如图1,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,4),在x轴上有一动点D(m,0)(0<m<4),过点D作x轴的垂线交直线AB于点C,交抛物线于点E,(1)直接写出抛物线和直线AB的函数表达式.(2)当点C是DE的中点时,求出m的值,并判定四边形ODEB的形状(不要求证明).(3)在(2)的条件下,将线段OD绕点O逆时针旋转得到OD′,旋转角为α(0°<a <90°),连接D′A、D′B,求D′A+D′B的最小值.解:(1)将点B、A的坐标代入抛物线y=﹣x2+bx+c得,,解得:,∴抛物线的函数表达式为y=﹣.设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为y=﹣x+4;(2)∵过点D(m,0)(0<m<4)作x轴的垂线交直线AB于点C,交抛物线于点E,∴E(m,),C(m,﹣m+4).∴EC==.∵点C是DE的中点,∴.解得:m=2,m=4(舍去).∴ED=OB=4,∴四边形ODEB为矩形.(3)如图,由(2)可知D(2,0),在y轴上取一点M′使得OM′=1,连接AM′,在AM′上取一点D′使得OD′=OD.∵OD′=2,OM′•OB=1×4=4,∴OD′2=OM′•OB,∴,∵∠BOD′=∠M′OD′,∴△M′OD′∽△D′OB,∴.∴.∴D′A+D′B=D′A+M′D′=AM′,此时D′A+D′B最小(两点间线段最短,A、M′、D′共线时),∴D′A+D′B的最小值=AM′==.11.如图,抛物线y=ax2+bx+c与x轴交于点A和点B,与y轴交于点C,且OA=2,OB=OC =6,点D是抛物线的顶点,过点D作x轴的垂线,垂足为E.(1)求抛物线的解析式及点D的坐标;(2)连接BD,若点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标:(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请求出点Q的坐标.解:(1)∵OA=2,OB=OC=6,∴A(﹣2,0),B(6,0),C(0,6),∴可设抛物线解析式为y=a(x+2)(x﹣6),把C点的坐标代入可得6=﹣12a,解得a=.∴抛物线解析式为y=(x+2)(x﹣6)=﹣x2+2x+6;∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴.∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴,当点F在x轴上方时,有,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,),当点F在x轴下方时,有,解得x=﹣3或x=6(舍去),此时F点的坐标为(﹣3,),综上可知F点的坐标为(﹣1,)或(﹣3,);(3)如图2,设对角线MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,QO′=MO′=PO′=NO′,PQ⊥MN,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6的图象上.∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).12.如图,直线y=x﹣4与x轴,y轴交于点B,C,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,抛物线经过B,C,与x轴交于另一点A.(1)求抛物线的解析式;(2)点E从A点出发,在线段AB上以每秒3个单位的速度向B点运动,同时点F从B 点出发,在线段BC上以每秒1个单位的速度向C点运动,当其中一个点到达终点时,另一个点将停止运动.设△EBF的面积为S,点E运动的时间为t.①求S与t的函数关系式,并求出S有最大值时点F的坐标;②点E,F在运动过程中,若△EBF为直角三角形,求t的值.解:(1)∵直线y=x﹣4与x轴,y轴交于点B,C,∴x=0时,y=﹣4,y=0时,x=4,∴B(4,0),C(0,﹣4).∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,∴A点坐标为(﹣2,0),∴,解得:.∴抛物线的解析式为.(2)由题意得,BF=t,BE=6﹣3t,①作FH⊥x轴,如图,∵B(4,0),C(0,﹣4).∴OB=OC=4,∴,∵FH∥BC,∴△BHF∽△BOC,∴,∴.解得:HF=.∴=.当S有最大值时,t=1,此时点F的坐标为().②∵OB=OC,∴∠OBC=45°,若∠BEF=90°,则cos∠EBF=,解得:t=.若∠EFB=90°,则cos∠EFB=.解得:t=.综合以上可得,若△EBF 为直角三角形,t 的值为或.13.如图,在直角坐标系中,y =ax 2﹣4ax +3a 与x 轴交于A 、B 两点(A 点在B 点左),与y 轴交于C 点.(1)若△ABC 的面积为,求抛物线的解析式;(2)已知点P 为B 点右侧抛物线上一点,连PC ,PB 交y 轴于D 点,若∠BCP =2∠ABC ,求的值;(3)若P 为对称轴右侧抛物线上的动点,PA 交y 轴于E 点,判断的值是否为定值,说明理由.解:(1)∵y =ax 2﹣4ax +3a 与x 轴交于A 、B 两点,∴ax 2+4 ax +3a =0,解得x 1=1,x 2=3,∴A (1,0),B (3,0),当x =0,y =3a ,∴OC =﹣3a ,∵S △ABC =, ∴, 解得a =﹣,∴抛物线的解析式为y =﹣;(2)如图,过B 点作BM ⊥x 轴交CP 于M ,过点C 作CF ⊥BM 于点F ,∵AB∥CF,∴∠ABC=∠BCF,∵∠BCP=2∠ABC,∴∠ABC=∠BCF=∠FCM,∵CF=CF,∴△CBF≌△CMF(ASA),∴BF=FM,∴M(3,6a),又∵C(0,3a),设CP解析式y=mx﹣3m,∴8a=m×2,∴m=4a,∴y=4ax﹣12a,∴,解得:x1=3,x2=5,∴P(5,8a),∴直线BP的解析式为y=4ax﹣12a,∴D(0,﹣12a),∵OC=|3a|,OD=|﹣12a|,∴;(3)∵A(1,0),∴设PA的解析式y=k1x﹣k1,∴∴ax2﹣(4a+k1)x+3a+k1=0,∴(ax﹣3a﹣k1)(x﹣1)=0,解得,x=1或x=,∴x p=3+,∵B(3,0),∴设PB的解析式y=k2x﹣3k2,∴,∴ax2﹣(4a+k2)x+3a+3k2=0,∴(ax﹣a﹣k2)(x﹣3)=0,∴x p=1+.又∵EC=﹣k1﹣3 a,DE=﹣3k2﹣3 a,∴==.14.如图,已知抛物线y=ax2﹣2x+c经过△ABC的三个顶点,其中点点A(0,1)、点B(9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)将A (0,1),B (9,10)代入函数解析式,得, 解得,∴抛物线的解析式y =x 2﹣2x +1;(2)∵AC ∥x 轴,A (0,1), ∴x 2﹣2x +1=1,解得x 1=6,x 2=0(舍),即C 点坐标为(6,1),∵点A (0,1),点B (9,10),∴直线AB 的解析式为y =x +1,设P (m ,m 2﹣2m +1),∴E (m ,m +1),∴PE =m +1﹣(m 2﹣2m +1)=﹣m 2+3m .∵AC ⊥PE ,AC =6,∴S 四边形AECP =S △AEC +S △APC =AC •EF +AC •PF =AC •(EF +PF )=AC •EP =×6×(﹣m 2+3m )=﹣m 2+9m =﹣(m ﹣)2+,∵0<m <6,∴当m =时,四边形AECP 的面积最大,此时P (,﹣);(3)∵y =x 2﹣2x +1=(x ﹣3)2﹣2,∴P (3,﹣2).∴PF=y F﹣y p=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件得点Q,设Q(t,1)且AB=9,AC=6,CP=3,∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,,即,解得t=4,∴Q(4,1);②当△CQP∽△ABC时,,即,解得t=﹣3,∴Q(﹣3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,Q点的坐标为(4,1)或(﹣3,1).15.已知抛物线y=ax2+bx+3与x轴交于点A(3,0),B(1,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图1,若点P为抛物线的对称轴上一点,连接BP,CP,当四边形BOCP的周长最小时,求点P的坐标;(3)如图2,点D为抛物线的顶点,在线段CD上是否存在点M(不与点C重合),使得△AMO与△ABC相似?若存在,请求出点M的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+3与x轴交于点A(3,0),B(1,0),∴,解得:,∴抛物线的解析式为y=x2﹣4x+3;(2)∵抛物线的解析式为y=x2﹣4x+3,∴令x=0,y=3,∴C(0,3).∴OC+OB=3+1=4,∴当四边形BOCP的周长最小时,则CP+BP最小,如图1,连接AC,与对称轴的交点即为所求的点P,设直线AC的解析式为y=kx+b,∴,解得:.∴直线AC的解析式为y=﹣x+3,∵抛物线的对称轴为x==2,∴x=2时,y=﹣2+3=1,∴P(2,1).(3)∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点D的坐标为(2,﹣1),又∵C(0,3),∴直线CD为y=﹣2x+3,OC=3,∵A(3,0),∴AB=2,∠BAC=∠OCA=45°,∴AC=3,∴.∵∠ABC=90°+∠OCB,∴∠ABC为钝角,若△AMO与△ABC相似,显然∠ABC=∠OMA,则在线段CD上存在点M使得以M,A,O为顶点的三角形与△ABC相似,则有两种情况,①若点M在x轴上方时,如图2,当∠AOM=∠CAB=45°时,△ABC∽△OMA,设M(a,﹣2a+3),∴a=﹣2a+3,解得a=1,∴M(1,1).此时OM=,OA=3,∴,∴.则△ABC∽△OMA.②若点M在x轴下方,如图3,∵M在线段CD上,∴∠AOM≠45°,∴∠OAM=∠BAC=45°,∴M(2,﹣1),此时点M与点D重合,AM=,OA=3,∴.则△ABC∽△AMO.综合以上可得,在线段CD上存在点M(不与点C重合),使得△AMO与△ABC相似,此时点M的坐标为(1,1)或(2,﹣1).16.如图,一次函数y=﹣x+2的图象与坐标轴交于A、B两点,点C的坐标为(﹣1,0),二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)求二次函数的解析式;(2)如图1,已知点D(1,n)在抛物线上,作射线BD,点Q为线段AB上一点,过点Q 作QM⊥y轴于点M,作QN⊥BD于点M,过Q作QP∥y轴交抛物线于点P,当QM与QN的积最大时,求线段PG的长;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求S.△OBE解:(1)一次函数y=﹣x+2的图象与坐标轴交于A、B两点,则点A、B的坐标分别为:(0,2)、(4,0),则抛物线的表达式为:y=a(x﹣4)(x+1)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,则抛物线的表达式为:y=﹣x2+x+2;(2)点D(1,3),点B(4,0),则BD所在的函数表达式为:y=﹣x+4;即直线BD的倾斜角为45°,则∠QGN=45°,QN=QG,设点Q(m,﹣m+2),则点G(m,﹣m+4),QM•QN=m×(﹣m+4+m﹣2)=(﹣m2+2m),当m=2时,QM与QN的积最大,则点P(2,3);(3)设:∠APE=∠ABO=∠α,则tan;①当PE在AP下方时,如图1,由点A(0,2)、P(2,3)知,AP=,设AP与y轴的夹角为β,则tanβ=2,过点H作MH⊥PA交PA的延长线于点M,设:MA=x,则MH=2x,tan∠APH===tanα=,解得:x=,则AH=x=,则点H(0,),设直线PH的表达式为:y=kx+b,∴,解得:,∴直线PH的解析式为y=x+,联立抛物线的解析式和直线的解析式:,解得:x=2(舍去)或﹣,∴点E(﹣,﹣),∴==.②当PE在AP上方时,如图2,过点P作PM⊥y轴交于点M,交抛物线于点E,∵tan∠APM=.tan∠ABO=,∴∠APM=∠ABO,∵PE∥x轴,∴E点的纵坐标为3,将y=3代入抛物线解析式求得x=1,∴E(1,3),∴=6.综上可得△OBE的面积为或6.17.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM与△BQC相似?如果存在,求出点M的坐标;如果不存在,请说明理由.解:(1)∵A(﹣1,0),B(3,0).代入y=﹣x2+bx+c,得,解得b=2,c=3.∴抛物线对应二次函数的表达式为:y=﹣x2+2x+3;(2)如图1,设直线CD切⊙P于点E.连结PE、PA,作CF⊥DQ于点F.∴PE⊥CD,PE=PA.由y=﹣x2+2x+3,得对称轴为直线x=1,C(0,3)、D(1,4).∴DF=4﹣3=1,CF=1,∴DF=CF,∴△DCF为等腰直角三角形.∴∠CDF=45°,∴∠EDP=∠EPD=45°,∴DE=EP,∴△DEP为等腰三角形.设P(1,m),∴EP2=(4﹣m)2.在△APQ中,∠PQA=90°,∴AP2=AQ2+PQ2=[1﹣(﹣1)]2+m2∴(4﹣m)2=[1﹣(﹣1)]2+m2.整理,得m2+8m﹣8=0解得,m=﹣4±2.∴点P的坐标为(1,﹣4+2)或(1,﹣4﹣2).(3)存在点M,使得△DCM∽△BQC.如图2,连结CQ、CB、CM,∵C(0,3),OB=3,∠COB=90°,∴△COB为等腰直角三角形,∴∠CBQ=45°,BC=3.由(2)可知,∠CDM=45°,CD=,∴∠CBQ=∠CDM.∴△DCM与△BQC相似有两种情况.当时,∴,解得DM=.∴QM=DQ﹣DM=4﹣=.∴M(1,).1当时,∴,解得DM=3,∴QM=DQ﹣DM=4﹣3=1.∴M(1,1).2综上,点M的坐标为或(1,1).18.如图,抛物线y=﹣x2+bx+c与x轴交于点A(1,0)、B(3,0)(点A在点B的左边),与y轴交于点C,过点C作CD∥x轴,交抛物线于点D,过点D作DE∥y轴,交直线BC 于点E,点P在抛物线上,过点P作PQ∥y轴交直线CE于点Q,连结PB,设点P的横坐标为m,PQ的长为d.(1)求抛物线对应的函数表达式;(2)求直线BC的函数表达式;(3)当0<m<4时,求d关于m的函数关系式;(4)当△PQB是等腰三角形时,直接写出m的值.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(1,0)、B(3,0),∴解得:∴抛物线解析式为:y=﹣x2+4x﹣3;(2)∵抛物线y=﹣x2+4x﹣3与y轴交于点C,∴点C(0,﹣3)设直线BC解析式为:y=kx﹣3,∴0=3k﹣3∴k=1,∴直线BC解析式为:y=x﹣3;(3)∵设点P的横坐标为m,PQ∥y轴,∴点P(m,﹣m2+4m﹣3),点Q(m,m﹣3),当0<m<3时,PQ=d=﹣m2+4m﹣3﹣(m﹣3)=﹣m2+3m,当3≤m<4时,PQ=d=(m﹣3)﹣(﹣m2+4m﹣3)=m2﹣3m;(4)B(3,0),点C(0,﹣3),∴OB=OC=3,∴∠OCB=∠OBC=45°,∵PQ∥OC,∴∠PQB=45°,若BP=PQ,∴∠PQB=∠PBQ=45°,∴∠BPQ=90°,即点P与点A重合,∴m=1,若BP=QB,∴∠BQP=∠BPQ=45°,∴∠QBP=90°,∴BP解析式为:y=﹣x+3,∴解得:,∴点P(2,1)∴m=2;若PQ=QB,∴(3﹣m)2+(m﹣3﹣0)2=(﹣m2+3m)2,或(3﹣m)2+(m﹣3﹣0)2=(m2﹣3m)2,∴m=±,综上所述:m=1或2或±.19.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y 轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点P为直线BD上方抛物线上一点,若S=3,请求出点P的坐标.△PBD(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+n,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD =S△PQD+S△PQB,∴S△PBD=×PQ×(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△ABD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).20.如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过B、C两点,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使△EDC的周长最小,求符合条件的E点坐标;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,请说明理由.解:(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3,(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,此时EC+ED为最小,则△EDC的周长最小,抛物线的顶点D坐标为(1,4),点C′(0,﹣3),将C′、D的坐标代入一次函数表达式并解得:∴直线C′D的表达式为:y=7x﹣3,当y=0时,x=,故点E(,0),(3)①当点P在x轴上方时,如图2,∵OB=OC=3,则∠OCB=45°=∠APB,过点B作BH⊥AP于点H,设PH=BH=a,则PB=PA=a,由勾股定理得:AB2=AH2+BH2,16=a2+(a﹣a)2,解得:a2=8+4,则PB2=2a2=16+8.②当点P在x轴下方时,同理可得.综合以上可得,PB2的值为16+8.。
2020年中考数学冲刺复习资料:二次函数压轴题面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.3.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).4.(2013•菏泽)如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=x+3的图象与y轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.(1)试求b,c的值,并写出该二次函数表达式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P 运动到何处时,有PQ⊥AC?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?解:(1)由y=﹣x+3,令x=0,得y=3,所以点A(0,3);令y=0,得x=4,所以点C(4,0),∵△ABC是以BC为底边的等腰三角形,∴B点坐标为(﹣4,0),又∵四边形ABCD是平行四边形,∴D点坐标为(8,3),将点B(﹣4,0)、点D(8,3)代入二次函数y=x2+bx+c,可得,解得:,故该二次函数解析式为:y=x2﹣x﹣3.(2)①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,∵PQ⊥AC,∴△APQ∽△CAO,∴=,即=,解得:t=.即当点P运动到距离A点个单位长度处,有PQ⊥AC.②∵S四边形PDCQ+S△APQ=S△ACD,且S△ACD=×8×3=12,∴当△APQ的面积最大时,四边形PDCQ的面积最小,当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽CAO可得:=,解得:h=(5﹣t),∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+,∴当t=时,S△APQ达到最大值,此时S四边形PDCQ=12﹣=,故当点P运动到距离点A个单位处时,四边形PDCQ面积最小,最小值为.等腰三角形类10. (2012江苏扬州12分)已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.【答案】解:(1)∵A(-1,0)、B(3,0)经过抛物线y=ax2+bx+c,∴可设抛物线为y=a(x+1)(x-3)。
教育部2020年中考数学必考压轴题及答案教育部2020年中考数学必考压轴题及答案一、函数与几何综合的压轴题1.如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D且AD与B相交于E点.已知:A(-2,-6),C(1,-3)求证:E点在y轴上;如果有一抛物线经过A,E,C三点,求此抛物线方程.如果AB位置不变,再将DC水平向右移动k(k>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于k的函数解析式.[解](1)(本小题介绍二种方法,供参考)方法一:过E作EO′⊥x轴,垂足O′∴AB∥EO′∥DC∴又∵DO′+BO′=DB∴∵AB=6,DC=3,∴EO′=2又∵,∴∴DO′=DO,即O′与O重合,E在y轴上方法二:由D(1,0),A(-2,-6),得DA直线方程:y=2x-2①再由B(-2,0),C(1,-3),得BC直线方程:y=-x-2②联立①②得∴E点坐标(0,-2),即E点在y轴上(2)设抛物线的方程y=ax2+bx+c(a≠0)过A(-2,-6),C(1,-3)E(0,-2)三点,得方程组解得a=-1,b=0,c=-2∴抛物线方程y=-x2-2(3)(本小题给出三种方法,供参考)由(1)当DC水平向右平移k后,过AD与BC的交点E′作E′F⊥x 轴垂足为F。
同(1)可得:得:E′F=2方法一:又∵E′F∥AB,∴S△AE′C=S△ADC-S△E′DC===DB=3+kS=3+k为所求函数解析式方法二:∵BA∥DC,∴S△BCA=S△BDA∴S△AE′C=S△BDE′∴S=3+k为所求函数解析式.证法三:S△DE′C∶S△AE′C=DE′∶AE′=DC∶AB=1∶2同理:S△DE′C∶S△DE′B=1∶2,又∵S△DE′C∶S△ABE′=DC2∶AB2=1∶4∴∴S=3+k为所求函数解析式.2.已知:如图,在直线坐标系中,以点M(1,0)为圆心、直径AC为的圆与y轴交于A、D两点.求点A的坐标;设过点A的直线y=x+b与x轴交于点B.探究:直线AB是否⊙M 的切线?并对你的结论加以证明;连接BC,记△ABC的外接圆面积为S1、⊙M面积为S2,若,抛物线y=ax2+bx+c经过B、M两点,且它的顶点到轴的距离为.求这条抛物线的解析式.解:由已知AM=,OM=1,在Rt△AOM中,AO=,∴点A的坐标为A(0,1)证:∵直线y=x+b过点A(0,1)∴1=0+b即b=1∴y=x+1令y=0则x=-1∴B(—1,0),AB=在△ABM中,AB=,AM=,BM=2∴△ABM是直角三角形,∠BAM=90°∴直线AB是⊙M的切线解法一:由⑵得∠BAC=90°,AB=,AC =2,∴BC=∵∠BAC=90°∴△ABC的外接圆的直径为BC,∴而,设经过点B(—1,0)、M(1,0)的抛物线的解析式为:y=a(+1)(x-1),(a≠0)即y=ax2-a,∴-a=±5,∴a =±5∴抛物线的解析式为y=5x2-5或y=-5x2+5解法二:(接上)求得∴h=5由已知所求抛物线经过点B(—1,0)、M(1、0),则抛物线的对称轴是y轴,由题意得抛物线的顶点坐标为(0,±5)∴抛物线的解析式为y=a(x-0)2±5又B(-1,0)、M(1,0)在抛物线上,∴a±5=0,a=±5∴抛物线的解析式为y=5x2-5或y=-5x2+5解法三:(接上)求得∴h=5因为抛物线的方程为y=ax2+bx+c(a≠0)由已知得∴抛物线的解析式为y=5x2-5或y=-5x2+5.3.如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线过点A、B,且顶点C在⊙P上.(1)求⊙P上劣弧的长;(2)求抛物线的解析式;(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由如图,连结PB,过P 作PM⊥x轴,垂足为M.在Rt△PMB中,PB=2,PM=1,∴∠MPB=60°,∴∠APB=120°的长=(2)在Rt△PMB中,PB=2,PM=1,则MB=MA=.又OM=1,∴A(1-,0),B(1+,0),由抛物线及圆的对称性得知点C在直线PM上,则C(1,-3).点A、B、C在抛物线上,则解之得抛物线解析式为(3)假设存在点D,使OC与PD互相平分,则四边形OPCD为平行四边形,且PC∥OD.又PC∥y轴,∴点D在y轴上,∴OD=2,即D(0,-2).又点D(0,-2)在抛物线上,故存在点D(0,-2),使线段OC与PD互相平分.如图,在平面直角坐标系内,Rt△ABC的直角顶点C(0,)在轴的正半轴上,A、B是轴上是两点,且OA∶OB=3∶1,以OA、OB为直径的圆分别交AC于点E,交BC于点F.直线EF交OC于点Q.求过A、B、C三点的抛物线的解析式;请猜想:直线EF与两圆有怎样的位置关系?并证明你的猜想.在△AOC中,设点M是AC边上的一个动点,过M作MN∥AB交OC于点N.试问:在轴上是否存在点P,使得△PMN是一个以MN为一直角边的等腰直角三角形?若存在,求出P点坐标;若.[解](1)在Rt△AB C中,OC⊥AB,∴△AOC≌△COB.∴OC2=OA·OB.∵OA∶OB=3∶1,C(0,),∴∴OB=1.∴OA=3.∴A(-3,0),B(1,0).设抛物线的解析式为则解之,得∴经过A、B、C三点的抛物线的解析式为(2)EF与⊙O1、⊙O2都相切.证明:连结O1E、OE、OF.∵∠ECF=∠AEO=∠BFO=90°,∴四边形EOFC为矩形.∴QE=QO.∴∠1=∠2.∵∠3=∠4,∠2+∠4=90°,∴EF与⊙O1相切.同理:EF理⊙O2相切.(3)作MP⊥OA于P,设MN=a,由题意可得MP=MN=a.∵MN∥OA,∴△CMN∽△CAO.∴∴解之,得此时,四边形OPMN是正方形.∴∴考虑到四边形PMNO此时为正方形,∴点P在原点时仍可满足△PNN是以MN为一直角边的等腰直角三角形.故轴上存在点P使得△PMN是一个以MN为一直角边的等腰直角三角形且或5.如图,已知点A(0,1)、C(4,3)、E(,),P是以AC为对角线的矩形ABCD内部(不在各边上)的—个动点,点D在y轴,抛物线y =ax2+bx+1以P为顶点.(1)说明点A、C、E在一条条直线上;(2)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由;(3)设抛物线y=ax2+bx+1与x轴有交点F、G(F在G的左侧),△GAO与△FAO的面积差为3,且这条抛物线与线段AE有两个不同的交点.这时能确定a、b的值吗?若能,请求出a、b的值;若不能,请确定a、b的取值范围.(本题图形仅供分析参考用)x+1.将点E的坐标E(,)代入y=x+1中,左边=,右边=×+1=,∵左边=右边,∴点E在直线y=x+1上,即点A、C、E在一条直线上.(2)解法一:由于动点P在矩形ABCD内部,∴点P的纵坐标大于点A的纵坐标,而点A与点P都在抛物线上,且P为顶点,∴这条抛物线有最高点,抛物线的开口向下解法二:∵抛物线y=ax2+bx+c的顶点P的纵坐标为,且P在矩形ABCD内部,∴1<<3,由1<1—得—>0,∴a<0,∴抛物线的开口向下.(3)连接GA、FA,∵S△GAO—S△FAO=3∴GO·AO—FO·AO=3∵OA=1,∴GO—FO=6.设F(x1,0)、G(x2,0),则x1、x2为方程ax2+bx+c=0的两个根,且x1<x2,又∵a<0,∴x1·x2=<0,∴x1<0<x2,∴GO=x2,FO=—x1,∴x2—(—x1)=6,即x2+x1=6,∵x2+x1=—∴—=6,∴b=—6a,∴抛物线解析式为:y=ax2—6ax+1,其顶点P的坐标为(3,1—9a),∵顶点P在矩形ABCD内部,∴1<1—9a<3,∴—<a<0.∴x=0或x==6+.当x=0时,即抛物线与线段AE交于点A,而这条抛物线与线段AE有两个不同的交点,则有:0<6+≤,解得:—≤a<—综合得:—<a<—∵b=—6a,∴<b<6.已知两点O(0,0)、B(0,2),⊙A过点B且与x轴分别相交于点O、C,⊙A被y轴分成段两圆弧,其弧长之比为3∶1,直线l与⊙A切于点O,抛物线的顶点在直线l上运动.求⊙A的半径;若抛物线经过O、C两点,求抛物线的解析式;过l上一点P的直线与⊙A交于C、E两点,且PC=CE,求点E的坐标;若抛物线与x轴分别相交于C、F两点,其顶点P的横坐标为m,求△PEC的面积关于m的函数解析式.(1)由弧长之比为3∶1,可得∠BAO=90o再由AB=AO=r,且OB=2,得r=(2)⊙A的切线l过原点,可设l为y=kx任取l上一点(b,kb),由l与y轴夹角为45o可得:b=-kb或b=kb,得k=-1或k=1,∴直线l的解析式为y=-x或y=x又由r=,易得C(2,0)或C(-2,0)由此可设抛物线解析式为y=ax(x-2)或y=ax(x+2)再把顶点坐标代入l的解析式中得a=1∴抛物线为y=x2-2x或y=x2+2x ……6分(3)当l的解析式为y=-x时,由P在l上,可设P(m,-m)(m >0)过P作PP′⊥x轴于P′,∴OP′=|m|,PP′=|-m|,∴OP=2m2,又由切割线定理可得:OP2=PC.PE,且PC=CE,得PC=PE=m=PP′7分∴C与P′为同一点,即PE⊥x轴于C,∴m=-2,E(-2,2) (8)分同理,当l的解析式为y=x时,m=-2,E(-2,2)(4)若C(2,0),此时l为y=-x,∵P与点O、点C不重合,∴m≠0且m≠2,当m<0时,FC=2(2-m),高为|yp|即为-m,∴S =同理当0<m<2时,S=-m2+2m;当m>2时,S=m2-2m;∴S=又若C(-2,0),此时l为y=x,同理可得;S=.如图,直线与函数的交于A、B两点,且与x、y轴分别交于C、D两点.(1)若的面积的倍,求与之间的函数关系式;(2)在(1)的条件下,是否存在和,使得以为直径的圆经过点.若存在,求出和的值;若不存在,请说明理由.[解](1)设,(其中),由,得∴··(····),,又,∴,即,由可得,代入可得①∴,,∴,即.又方程①的判别式,∴所求的函数关系式为.(2)假设存在,,使得以为直径的圆经过点.则,过、分别作轴的垂线,垂足分别为、.∵与都与互余,∴.∴Rt∽Rt,∴.∴,∴,∴,即②由(1)知,,代入②得,∴或,又,∴或,∴存在,,使得以为直径的圆经过点,且或.8.已知抛物线与x轴交于两点、,与y轴交于点C,且AB=6.(1)求抛物线和直线BC的解析式.(2)在给定的直角坐标系中,画抛物线和直线BC.(3)若过A、B、C三点,求的半径.(4)抛物线上是否存在点M,过点M作轴于点N,使被直线BC 分成面积比为1)由题意得:解得经检验m=1,∴抛物线的解析式为:或:由得,或抛物线的解析式为由得∴A(-50),B(1,0),C(0,-5.设直线BC的解析式为则∴直线BC的解析式为(2)图象略.(3)法一:在中,.又∴的半径法二:由题意,圆心P在AB的中垂线上,即在抛物线的对称轴直线上,设P(-2-hh>0),连结PB、PC,则,由,即,解得h=2.的半径.法三:延长CP交于点F.为的直径,又又的半径为(4)设MN交直线BC于点E,点M的坐标为则点E的坐标为若则解得(不合题意舍去),若则解得(不合题意舍去),存在点M,点M的坐标为或(15,280).9.如图,⊙M与x轴交于A、B两点,其坐标分别为、,直径CD⊥x轴于N,直线CE切⊙M于点C,直线FG切⊙M于点F,交CE于G,已知点G的横坐标为3.若抛物线经过A、B、D三点,求m的值及点D的坐标.求直线DF的解析式.是否存在过点G的直线,使它与(1)中抛物线的两个交点的横坐标之和等于4?若存在,请求出满足条件的直线的解析式;若不存在,请说明理由.[解](1)∵抛物线过A、B两点,∴,m=3.∴抛物线为.又抛物线过点D,由圆的对称性知点D为抛物线的顶点. ∴D点坐标为.(2)由题意知:AB=4.∵CD⊥x轴,∴NA=NB=2.∴ON=1.由相交弦定理得:NA·NB=ND·NC,∴NC×4=2×2.∴NC=1.∴C点坐标为.设直线DF交CE于P,连结CF,则∠CFP=90°.∴∠2+∠3=∠1+∠4=90°.∵GC、GF是切线,∴GC=GF.∴∠3=∠4.∴∠1=∠2.∴GF=GP.∴GC=GP.可得CP=8.∴P点坐标为设直线DF的解析式为则解得∴直线DF的解析式为:(3)假设存在过点G的直线为,则,∴.由方程组得由题意得,∴.当时,,∴方程无实数根,方程组无实数解.∴满足条件的直线不存在.10.已知二次函数的图象经过点A(-3,6),并与x轴交于点B (-1,0)和点C,顶点为P.求这个二次函数的解析式,并在下面的坐标系中画出该二次函数的图象;设D为线段OC上的一点,满足∠DPC=∠BAC,求点D的坐标;在x轴上是否存在一点M,使以M为圆心的圆与AC、PC所在的直线及y轴都相切?如果存在,请求出点M的坐标;若不存在,请说明理由.(1)解:∵二次函数的图象过点A(-3,6),B(-1,0)得解得∴这个二次函数的解析式为:由解析式可求P(1,-2),C(3,0)画出二次函数的(2)解法一:易证:∠ACB=∠PCD=45°又已知:∠DPC=∠BAC∴△DPC∽△BAC∴易求∴∴∴解法二:过A作AE⊥x轴,垂足为E.设抛物线的对称轴交x轴于F.亦可证△AEB∽△PFD、∴.易求:AE=6,EB=2,PF=2∴∴∴(3)存在.(1°)过M作MH⊥AC,MG⊥PC垂足分别为H、G,设AC交y轴于S,CP的延长线交y轴于T∵△SCT是等腰直角三角形,M是△SCT的内切圆圆心,∴MG=MH=OM又∵且OM+MC=OC∴∴(2°)在x轴的负半轴上,存在一点M′同理OM′+OC=M′C,得∴M′即在x轴上存在满足条件的两个点.在平面直角坐标系中,A(-1,0),B(3,0).(1)若抛物线过A,B两点,且与y轴交于点(0,-3),求此抛物线的顶点坐标;(2)如图,小敏发现所有过A,B两点的抛物线如果与y轴负半轴交于点C,M为抛物线的顶点,那么△ACM与△ACB的面积比不变,请你求出这个比值;(3)若对称轴是AB的中垂线l的抛物线与x轴交于点E,F,与y轴交于点C,过C作CP∥x轴交l于点P,M为此抛物线的顶点.若四边形PEMF是有一个内角为60°的菱形,求次抛物线的解析式.(1),顶点坐标为(1,-4).(2)由题意,设y=a(x+1)(x-3),即y=ax2-2ax-3a,∴A(-1,0),B(3,0),C(0,-3a),M(1,-4a),∴S△ACB=×4×=6,而a>0,∴S△ACB=6A、作MD⊥x轴于D,又S△ACM=S△ACO+SOCMD-S△AMD=·1·3a+(3a+4a)-·2·4a=a,∴S△ACM:S△ACB=1:6.(3)①当抛物线开口向上时,设y=a(x-1)2+k,即y=ax2-2ax+a+k,有菱形可知=,a+k>0,k<0,∴k=,∴y=ax2-2ax+,∴.记l与x轴交点为D,若∠PEM=60°,则∠FEM=30°,MD=DE·tan30°=,∴k=-,a=,∴抛物线的解析式为.若∠PEM=120°,则∠FEM=60°,MD=DE·tan60°=,∴k=-,a=,∴抛物线的解析式为.②当抛物线开口向下时,同理可得,.已知:在平面直角坐标系xOy中,一次函数的图象与x轴交于点A,抛物线经过O、A两点。
2020年数学中考压轴题专项训练:一次函数的综合1如图,在平面内,点Q为线段AB上任意一点,对于该平面内任意的点P,若满足PQ小于等于AB,则称点P为线段AB的“限距点”(1)在平面直角坐标系Xoy中,若点A (- 1, 0), B( 1, 0).①在的点C(0, 2), D(- 2, - 2), E(0,-一 -:)中,是线段AB的“限距点”的是E②点P是直线y = x+'上一点,若点P是线段AB的“限距点”,请求出点P横坐标3 3X P的取值范围.存在线段AB的“限距点”,请直接写出t的取值范围Λ Q B∙∙∙ C不是线段AB的“限距点”;当D(-2, - 2)时,D到AB的最短距离2, T AB= 2 ,∙D不是线段AB的“限距点”;当E (0,--;)时,E到AB的最短距离「: , T AB= 2 ,∙E是线段AB的“限距点”;故答案为E;②如图:以(1 , 0)为圆心,2为半径做圆,以(-两圆与直线(2)如图,以A (t , 1)为圆心,2为半径做圆,以B (t, - 1两圆与直线(2)在平面直角坐标系XOy 中,若点A (t , 1), B (t, - 1).若直线y=解:(1)①当C (0, 2)时, C到AB的最短距离2, T AB= 2 ,1 , 0)为圆心,2为半径做圆,为圆心,2为半径做圆,上y=b"χ+±i的交点为P22.如图,已知过点 B (1, 0)的直线I i 与直线l 2: y = 2x +4相交于点 P ( - 1, a ), I i 与y 轴交于点 C, I 2与X 轴交于点 A(1) 求a 的值及直线I i 的解析式.(2) 求四边形PAoC 勺面积.(3) 在X 轴上方有一动直线平行于 X 轴,分别与I i ,丨2交于点M N 且点M 在点N 的右 侧,X轴上是否存在点 Q 使厶MN(为等腰直角三角形?若存在,请直接写出满足条件的点Q 的坐标;若不存在,请说明理由.解:(1)τ y = 2x +4 过点 P (- 1,a ),.∙. a= 2,•••直线 I 1 过点 B (1,0)和点 P (- 1,2),设线段BP 所表示的函数表达式 y = kx +b 并解得: 函数的表达式y =- x +1;(2) 过点P 作PEIOA 于点E,作PF ⊥y 轴交y 轴于点F ,Il 5(3) 如图,M( 1 - a ,a ),点 N^~,小,HI a -4l-⅛-∙∙∙ MN= NQ 则3.在平面直角坐标系中,直线 I 仁y =- 2x +6与坐标轴交于 A, B 两点,直线12: y = kx +2(k > 0)与坐标轴交于点 C, D,直线∣1,丨2与相交于点 E(1) 当k = 2时,求两条直线与 X 轴围成的厶BDB 的面积;(2) 点P (a, b )在直线12: y Q kx +2 (k > 0)上,且点 P 在第二象限.当四边形 OBEC23的面积为=时.① 求k 的值;② 若m= a+b ,求m 的取值范围.%C\ .r 3\ X O B \ k X备丿 胭解:(1)τ直线l I : y =- 2x +6与坐标轴交于 A B 两点,.∙.当 Xy= O 时,得 X = 3,当 X = 0 时,y = 6;综上,点Q 的坐标为:(-匸,0)或(- 0)或( ,0) •③当 MQ NQ 寸,*∙∙∙ A (O, 6) B (3, 0);当k = 2 时,直线12: y= 2x+2 ( k≠ 0),∙ C (0, 2), D(- 1, 0)I' y=-2x÷6' K=I解F 得,,[y=2x+2 ,y=4∙ E (1, 4),•••△ BDE的面积=丄× 4× 4= 8.2(2)①连接OE设E ( n,- 2n+6),T S 四边形OBEe= S A EO+S^EOB∙—x 2× n+二× 3 ×(- 2n+6 )=二,2解得n=—,•E⅛,和14把点E 的人y= kx+2 中,丁 = p^k+2 ,解得k= 4.②T直线y= 4k+2交X轴于D,•D(-「O),τ P (a, b)在第二象限,在线段CD上,1 C∙- —V a v 0 ,•b= 4a+2 ,•m= a+b= 5a+2 ,1 C•- --v mv 2.(2)函数y =--x +b 的图象与X 轴交于点D,点E 从点D 出发沿DA 方向,以每秒2个单 位长度匀速运动到点 A (到A 停止运动).设点E 的运动时间为t 秒.①当△ ACE 的面积为12时,求t 的值;②在点E 运动过程中,是否存在 t 的值,使△ ACE 为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.解:(1)∙.∙点 C(- 2, m 在直线 y =- x +2上,.∙. m =-(- 2) +2= 2+2 = 4, •••点 C( - 2, 4), ∙.∙函数y =二χ+b 的图象过点 C (- 2, 4),--×(- 2) +b ,得 b =即m 的值是4, b 的值是一一;(2)①T 函数y =- x +2的图象与X 轴,y 轴分别交于点 A , B ,•点 A (2, 0),点 B (0 , 2),T 函数y = -χ+丄的图象与X 轴交于点D•点D 的坐标为(-14 , 0),∙∙∙ AD= 16,由题意可得,DE= 2t ,则AE= 16-2t ,y =- x +2的图象与X 轴,y 轴分别交于点 A , B,与函y=-3t+2,得≈--2f 1 14V=— XH - I g 3I l y=4则点C的坐标为(-2, 4),∙∙∙△ ACE的面积为12,∙QA盘)X 4 12•• : =12,解得,t = 5即当△ ACE的面积为12时,t的值是5;②当t = 4或t = 6时,△ ACE是直角三角形,理由:当∠ ACE= 90° 时,ACLCE •/点A (2, 0),点B( 0 , 2),点C(- 2 , 4),点D(- 14, 0), •OA= OB AC= 4 J ,∙∠BAO 45° , ∙∠CAE= 45° ,∙∠CEA= 45° ,•CA= CE= ,∙AE= 8 , ∙∙∙AE= 16- 2t ,•8 = 16- 2t ,解得,t =4;当∠ CEA 90° 时,T AC= 4 .「, ∠ CAE= 45•AE= 4 ,∙∙∙AE= 16- 2t , • 4 = 16- 2t ,解得,t =6;由上可得,当t = 4或t = 6时,△ ACE是直角三角形.5•如图1已知线段 AB 与点P ,若在线段 AB 上存在点 Q 满足P(≤ AB 则称点P 为线段(1)如图2,在平面直角坐标系 xθy (2)中,若点 A (- 1, 0), B( 1, 0)① 在 C(0, 2) 2, D(- 2, - 2), -√3) 中,是线段AB 的“限距点”的是C, E ; ② 点P 是直线y = x +1上一点,若点P 是线段AB 的“限距点”,请求出点P 横坐标XP 的取 值范围.围. 解:(1)①T 点 A (- 1, 0), B (1, 0),∙∙∙ AB= 2,T 点C 到线段AB 的最短距离是 2≤AB∙点C 是线段AB 的“限距点”,T 点D 到线段AB 的最短距离=j ∙f 「八2= ∏>AB∙点D 不是线段AB 的“限距点”(2)在平面直角坐标系XOy 中,点 A( t , 1), B(t , - 1),直线y =半沙2近与X 轴 交于点M 与y 轴交于点N 若线段MN 上存在线段AB 的“限距点”,请求出t 的取值范AB 的“限距•••点E到线段AB的最短距离是_ [≤ AB•••点E是线段AB的“限距点”,故答案为:C, E;②•••点A (- 1, 0), B (1, 0)•点P为线段AB的“限距点”的范围是平行于AB且到AB距离为2两条线段」和以点A, 点B为圆心,2为半径的两个半圆围成的封闭式图形,如图所示:如图3,直线y= x+1与该封闭式图形的交点为M N•点M坐标(1, 2)设点N (X, x+1)•( x+1) 2+ (x+1 - 0) 2= 4•X =- 1 - "< /•匚iy ¥AV F MOA V E MN•••点P 横坐标X P 的取值范围为;(2)•••直线y = ^^工卜趴卮与X 轴交于点 M 与y 轴交于点N•点 N (0, 2 品,点 M(— 6, 0)如图3,线段AB 的“限距点”的范围所形成的图形与线段MN 交于点M•••点M 是线段AB 的“限距点”,∙∙∙- 6-t = 2,∙ t = - 8,若线段AB 的“限距点”的范围所形成的图形与线段 MN 相切于点F ,延长BA '交MNF E,∙∙∙ t的取值范围为-8≤ t ≤ -:- 2.6.如图(1),在平面直角坐标系中,直线y =-2 x+4交坐标轴于A、B两点,过点C( - 4,(2)确定直线CD解析式,求出点D坐标;(3)如图2,点M是线段CE上一动点(不与点C E重合),0N⊥Oh交AB于点N,连接MN①点M移动过程中,线段OM与ON数量关系是否不变,并证明;②当△ OMr面积最小时,求点M的坐标和厶OM面积.4 、一解:(1)τ直线y ----- x+4交坐标轴于A B两点,d∙当y= 0 时,X= 3,当X = 0 时,y = 4,∙点A的坐标为(3, 0),点B的坐标为(0, 4),∙OA= 3;故答案为:(0, 4), 3;(2 )•••过点C (- 4, 0)作CD交AB于D,交y轴于点已且厶CO B^ BOA∙OC= 4 , OC= OB OE= OA•••点A (3 , 0),∙OA= 3 ,∙OE= 3 ,•点E的坐标为(0, 3),设过点C (- 4 , 0),点E ( 0 , 3)的直线解析式为y = kx+b ,.∙.直线CE 的解析式为y = x +3,4即直线CD 的解析式为y = x +3,4 12■■-,2?(3)①线段OM 与ON 数量关系是Oh =ON 保持不变,证明:•••△ CO B^ BoA∙∙∙ OE= OA ∠ OEI =∠ OAN ∙∙∙∠ Bo =90°, ONLOMl∙∠ MO = ∠ BOA= 90°,∙∠ MO +∠ EO =∠ EON ∠ NOA∙∠ MO = ∠ NOA在厶 MO^ NOA 中,r ZMOE=ZNOA〈OE=OA ,LZOEK=ZOAN •••△ IMO B △ NOA( SAS ,• OM= ON即线段OMl 与ON 数量关系是OM= ON 保持不变;②由①知OM= ON•当OM ,∙∙∙OC= 4 , OE= 3, ∠ COE= 90° , ∙∙∙CE= 5 ,•••当OML CE 时,OM 取得最小值,f-⅛+b=0 lb=3 ,得即点D 的坐标为 12 25 84 25); ∙∙∙ OML ON• △ OM 面积OH-ONOK 2 2 212 v 2 亍 当AOM 取得最小值时,设此时点M 的坐标为(a ,二a +3),4解得,a =-∙τa+3=故 A (4, 0);当 X = 0 时,y =— 3, 故 B (0,- 3);2 ^ 2 恥5 4×3 2 _ 2 解得,OMk125 7225^,⅛+3)Ξ 12_.S•••△OM 面积取得最小值是: •点M 的坐标为__ ), 由上可得,当△36 48 OMN 面积最小时,点 M 的坐标是(=ς?,石孑)和厶OMN 面积 25 ' 25积是 72 7.如图,一次函数「V 的图象分别与X 轴、y 轴交于点A B ,以线段AB 为边在第四象限内作等腰直角厶 ABC 且∠ BAC= 90°.(1)试写出点A B 的坐标:A ( 4 , 0 ) , B ( 0 , - 3 );(2)求点C 的坐标;解得:X = 4,故答案为:(4, 0), (0,- 3);(2)过点C作CDL X轴,垂足为点D,∙∙∙∠ BAC= 90°,∙∙∙∠OAB∠ DAC= 90 ° ,又∙∙∙∠DCA∠ DAC= 90°,∙∠ACD=∠ OAB在厶AOBm CDA中r ZBOA=ZATC•Z0A&=ZACDl AB=AC•••△ AOB^△ CDA( AAS,•AD= OB= 3, CD= OA= 4,•OD= 7,• C ( 7,- 4);(3)设直线BC的函数表达式为y = kx+b 把B (0,- 3), C (乙-4)代入上式:解之得:* 7 ,,b=~3•直线BC的函数表达式为y =今鼻-3・&如图1所示,在A、B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程yι, y2 (千米)与行驶时间X (小时)之间的函数关系图象.圉I ≡2(1)填空:A, B两地相距600千米;货车的速度是40千米/时;(2)求三小时后,货车离C站的路程y2与行驶时间X之间的函数表达式;(3)试求客车与货两车何时相距40千米?解:(1)由函数图象可得, A B两地相距:480+120 = 600 ( k∏),货车的速度是:120 ÷ 3 = 40 ( km(h)∙故答案为:600; 40 ;(2)y= 40 (X- 3) = 40x - 120 (X> 3);(3)分两种情况:①相遇前:80x+40x = 600 - 4014解之得X = -y…(8分)②相遇后:80x+40x = 600+40解之得X =千综上所述:当行驶时间为学小时或二小时,两车相遇40千米.9.如图1,在平面直角坐标系XOy中,点A (2, 0),点B( - 4, 3).(1)求直线AB的函数表达式;(2)点P是线段AB上的一点,当S∖AO P S^ AOB=2: 3时,求点P的坐标;(3)如图2,在(2)的条;件下,将线段AB绕点A顺时针旋转120°,点B落在点C处,连结CP求厶APC的面积,并直接写出点C的坐标.图1 解:(1)设直线AB 的函数表达式为•/点 A (2,0),点 B (- 4, 3),.卩沙bo V ⅛+b=3,1 解得:* ■ L b = I•••直线AB 的函数表达式为 y =-—x +1;(2)过B 作BEl X 轴于E ,过P 作PDL X 轴于D,• PD// BE• S ^AO P S ^ AO = 2 :AP 2 AB 3,•点 B (- 4, 3),• BE= 3,• PD// BE• △ APDo ^ ABEPD PD 2 BE3 3,• PD= 2,当 y = 2 时,X =- 2,• P (- 2, 2);A Xy = . kx +b ,(3)点A (2, 0)、点B (- 4, 3),点P (- 2, 2),则AP= 2 U AB= CA= 3 匚,过点P作HPL AC交AC的延长线于点H,△ APC的面积=二:ACX PH=--× 3. □× . 口 =二•;2 二2设点C (X, y),则PC= P H+H C= 15+( i. ,+3 :■) 2= 95 =( x+2) 2+ (y - 2) 2…①,CA= 45 =( X - 2) 2+y2…②,联立①②并解得:X y=∙..,故点1). 〜10.如图,平面直角坐标系中,直线AB y = kx+3 ( k≠ 0)交X轴于点A (4, 0),交y轴正半轴于点B,过点C( 0, 2)作y轴的垂线CD交AB于点E,点P从E出发,沿着射线ED 向右运动,设PE= n.(1)求直线AB的表达式;(2)当厶ABP为等腰三角形时,求n的值;(3)若以点P为直角顶点,PB为直角边在直线CD的上方作等腰Rt △ BPM试问随着点P的运动,点M是否也在直线上运动?如果在直线上运动,求出该直线的解析式;如果不在直线上运动,请说明理由.解:将点A 的坐标代入直线 AB y = kx +3并解得:k =-丁, 故AB 的表达式为:y =-工x +3;4而点A B 坐标分别为:(4, 0)、(0, 3),当AP= AB 时,同理可得: n = _ +「(不合题意值已舍去);当AB= BP 时,同理可得: n =-—+2「;⅞-)(3)在直线上,理由:如图,过点M 作MDL CD 于点H,∙∙∙∠ CPB=∠ MPH BP= PM ∠ MH =∠ PCB= 90°∙∙∙ MH △^^ PCB( AAS ,故点M 在直线y = x +1上.11.小聪和小慧去某风景区游览,两人在景点古刹处碰面,相约一起去游览景点飞瀑, 骑自行车先行出发,小慧乘电动车出发,途径草甸游玩后,再乘电动’车去飞瀑,人同时到达飞瀑.图中线段 OA 和折线B- C- D- A 表示小聪、小慧离古刹的路程(2)当 y = 2 时,X = ,故点E (■ ,2),则点 P (n +二,2),≡ A P =(壬+n - 4) 2+4 ; BP =( n2+1, AB = 25, 当 AP = BP 时,(2+ n - 4) +4=( n +")2+1,解得:n =-二6BC=1 = PH7故点M( n +—,n+∙10小聪 结果两y (米)O,∠ BPG ∠ MP = 90°,则 CP= MHb n与小聪的骑行时间X (分)的函数关系的图象,根据图中所给信息,解答下列问题:(1) 小聪的速度是多少米/分?从古刹到飞瀑的路程是多少米? (2) 当小慧第一次与小聪相遇时,小慧离草甸还有多少米? (3) 在电动车行驶速度不变的条件下,求小慧在草甸游玩的时间.U≡0.αrι解: (1) Y 小职-禺厂丄创(米/分).古刹到飞瀑的路程=180 × 50= 9000 (米).答:小聪的速度是180米/分,从古刹到飞瀑的路程是 9000米;10k+b=0.∙. Y = 450x - 4500当 X = 20, Y = 45004500 - 3000= 1500 米 答:小慧与小聪第一次相遇时,离草甸还有1500米.(3) 9000- 4500= 4500 (米) 4500 ÷ 450 = 10 (分钟). 50- 10- 10 - 10= 20 (分钟) 答:20分钟.12.对于平面直角坐标系 XOY 中,已知点 A (- 2, 0)和点B(3, 0),线段AB 和线段AB 外的一点P,给出如下定义:若 45°≤∠ APB≡ 90 °时,则称点 P 为线段AB 的可视点, 且当PA= PB 时,称点P 为线段AB 的正可视点. (1)①如图1 ,在点P 1(3, 6), P 2 (- 2, - 5) ,P 3 (2,2)(2)设 Y = kx +b , 解得⅛=450 Ib='450C则k-⅛-3000中,线段AB的可视点是P2,2-4Γ备用團解:(1)①如图1,以AB 为直径作圆 G 贝U 点P 在圆上,则∠ APB= 90°,若点P 在圆内, 则∠ APB>90°,5 — 4 —*-C/ Fr■ - **■■■ *-I70 G 1b_ Ib r ・.■-3-D—■以C (勺",女)为圆心,AC 为半径作圆,在点 P 优弧如B 上时,∠ APB= 45° ,点P 在优 弧」内,圆G 外时,45°v∠ AP 欢90°;,-—)为圆心,AD 为半径作圆,在点 P 优弧TE 上时,∠ APB= 45°,点P 在优弧」■内,圆G 外时,45°v∠ APB≤ 90°;②若点P 在y 轴正半轴上,写出一个满足条件的点 P 的坐标: P( 0,3)(答案不唯一)(2)在直线y = x +b 上存在线段 AB 的可视点,求 b 的取值范围;(3)在直线y =- x +m 上存在线段 AB 的正可视点,直接写出 m 的取值范围.Ai ■ i 占 id 斗亠3亠2 -1 O3-2-10-1-4Γ•••点P ( 3, 6), P2 (- 2,- 5), P (2, 2)∙∙∙ P I C=^4〉M= AC 则点P i在圆C外,则∠ ARB< 45°,■: ■■:P2D= ' = AC 则点P2在圆D上,则∠ APB= 45 ° ,2RG=層=BG 点P a在圆G上,则∠ APB= 90°,∙线段AB的可视点是P2, P a,故答案为:B, P a;②由图1可得,点P的坐标:P(0, 3)(答案不唯一,纵坐标y范围:∣l≤ y p≤ 6).(2)如图2,设直线y=x+b与圆C相切于点H交X轴于点N连接BH∙∙∙∠ HN=∠ HBN= 45° ,∙NH= BH ∠ NH= 90°,且NH是切线,∙BH是直径,∙BH= 5,∙BN= 10 ,∙ON= 7 ,∙点N ( - 7 , 0)∙0 =- 7+b , ∙b= 7 ,当直线y = x+b与圆D相切同理可求:b =- 88≤ b ≤ 7(3)如图3,作AB 的中垂线,交Θ C 于点Q 交Θ D 于点 W--⅛,, Xg.亠 ・■■T 直线y =- x +m 上存在线段 AB 的正可视点,.线段CC 和线段DWt 的点为线段 AB 的正可视点.别代入解析式可得:匕的函数关系如图所示:(2) 求甲、乙两车相遇后y 与X 之间的函数关系式,并写出相应的自变量 X 的取值范围.T 点 CL-,=-),点 D (-^-5√2 2.m = 3, m = .m 的取值范围:^√+3,m =-2,m =-—.「- X.二冷._ 或]13.已知 A 、B 两地之间有一条 270千米的公路, 甲、乙两车同时出发,甲车以每小时 60千米/时的速度沿此公路从 A 地匀速开往B 地, 乙车从B 地沿此公路匀速开往A 地, 两车分别到达目的地后停止甲、乙两车相距的路程y (千米)与甲车的行驶时间X (时) 之间(1)乙年的速度为75 千米/时,a = 3.6 ,b =4.5 ;⅛41),点Q),点÷ 2= 75千米/时,故答案为:75; 3.6 ; 4.5 ;(2) 60× 3.6 = 216 (千米),故A (2, O), B( 3.6 , 216) , C (4.5 , 270) 当2 V x≤ 3.6时,设y = k1x+b1,根据题意得:2k1+b 1=06k1+b1^21⅛解得∙∙∙ y = 135x - 270 (2 V x≤ 3.6 );当 3.6 V X≤ 4.5 时,设y= k2x+b2,贝U3.6k2+b Ξ=2164,解得∙当3.6 V X≤ 4.5 时,y = 60x,r135χ-270(2<x<3.6)y(60讥£代κj≤4∙5)14.已知:在平面直角坐标系中,直线x+4与X轴交于点A,与y轴交于点B,点C是X轴正半轴上一点,AB= AC 连接BC(1)如图1 ,求直线BC解析式;(2)如图2,点P Q分别是线段AB BC上的点,且AF=J BQ连接PQ若点Q的横坐标为t , △ BPC 的面积为S ,求S 关于t 的函数关系式,并写出自变量取值范围; (3) 如图3,在(2)的条件下,点 E 是线段OA 上一点,连接 BE 将厶ABE 沿BE 翻折, 使翻折后的点 A 落在y 轴上的点H 处,点F 在y 轴上点H 上方EH= FH 连接EF 并延长交BC 于点G 若B 'AR 连接PE 连接P G 交BE 于点「求BT 长.≡1鈕解:(1)由已知可得 A (- 3 , 0), B(0, 4),∙∙∙ OA= 3, OB= 4,∙∙∙ A B=常丁吐;CF 丛=•二 I = 5,∙∙∙ AB= AC∙ AC= 5,∙C ( 2, 0), 设BC 的直线解析式为 y = kx +b , 将点B 与点C 代入,得(O-Ξk+b U=b , r ⅛=-2∙ BC 的直线解析式为 y =- 2x +4;(2)过点Q 作MQ y 轴,与y 轴交于点 M 过点Q 作QEL AB 过点C 作CF ⊥ABS34图2τ Q 点横坐标是t ,∙°∙ MQ= t ,T Ma OC…典厶/5∙ BQ= ∏t ,∙.∙ AP = BQ∙ AP= F ,T AA 5,∙ PB- 5 -凤.∣t ,在等腰三角形 ABC 中, AC= AB= 5, BC= 2 一二,1 11V--ABX CF=T-ACX OB∙ CF = OB^ 4, T EQ/ CFES -√5t•— L ∙ EQ= 2t ,∙ S =丄 L-×( 5- Γt )=-.匸—t (0≤ t ≤ 2); (3)如图3,8CH≡3EH)23 占 八3 4)BG=54E 、0O E =丄OiAE =( 4 - AE ) 2+12•••将厶ABE 沿BE 翻折,使翻折后的点 A 落在y 轴上的点H 处,∙∙∙ AH= AB= 5,∙∙∙ OH= BH- ∙∙∙ EH =O+H,∙点 E (- -二,∙点 F (0,4 3∙∙∙ EH= FH= ⅛ ∙直线EF 解析式为y=—x+—, 直线BE 的解析式为: y = 3x +4,∙ X ∙- 2x +4= ―X• X =- 1,•点 T (- 1, 1)• B T =:厂 Iuj . T J = '115.如图,在平面直角坐标系中,点A (4, 0)、点B (0, 4),过原点的直线l 交直线AB 于点P * X\P 丿(1 )∠ BAQ 的度数为 45 °,△ AoB 的面积为 8(2) 当直线l 的解析式为y = 3X 时,求△ AOP 勺面积;1(3) 当时,求直线I 的解析式. Li AEOF J解:(1)τ点 A (4, 0)、点 B (0, 4),• OA= OB∙∙∙∠ AO = 90°,• △ AOB 是等腰直角三角形,∙∙∙ BG=主丄AP ∙∙∙ AP= 1, •••点 P (- 12 4 T ,百 •直线PG 的解析式为:•/ BAO= 45°,A AOB的面积=f-× 4 × 4= 8;故答案为:45, 8;(2)设直线AB 的解析式为:y = kx +b ,•••直线AB 的解析式为:y =- x +4, •••直线l 的解析式为y =3x ,解苗得Dl• P (1, 3),• △ AoP 勺面积=⅛× 4× 3= 6;(3)如图,过 P 作 PC ⊥OA 于 C, 贝y PC// OB S AAOP^ABOFAP- LPB = 3PAL •屈=1?∙∙∙ PC// OBPC AC PA OB OA AB'• PC= 1, AC= 1, ∙ OC= 3, • P (3,1), .∙.∙=直线I 的解析式为y =二χ∙把点A (4, 0)、点B(0, 4)代入得 '4fc+b=0 L b =4 解得: t b=4。
2020年中考数学压轴题精选精练5一、选择题1.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m2.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP =QO,则的值为()A.B.C.D.3.如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为()A.12 B.14 C.24 D.214.如图,AB是半圆O的直径,且AB=12,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是()A.4πB.5πC.6πD.8π5.如图,△ABC和△DCE都是边长为8的等边三角形,点B,C,E在同一条直线上接BD,AE,则四边形FGCH的面积为()A.B.C.D.6.如图,△ABC内接于⊙O,∠A=60°,BC=4,当点P在上由B点运动到C点时,弦AP的中点E运动的路径长为()A.πB.πC.πD.2二、填空题1.如图,四边形ABCD中,已知AB=AD,∠BAD=60°,∠BCD=120°,若四边形ABCD 的面积为4,则AC=.第1题第2题2.如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为.3.如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN 长度的最小值是.第3题第4题4.如图,AB为⊙O的直径,点C、D分别是半圆AB的三等分点,AB=4,点P自A点出发,沿弧ABC向C点运动,T为△P AC的内心.当点P运动到使BT最短时就停止运动,点T运动的路径长为5.如图,在四边形ABCD中,∠ADC=90°,∠BAD=60°,对角线AC平分∠BAD,且AB=AC=4,点E、F分别是AC、BC的中点,连接DE、EF、DF,则DF的长为.第3题第4题6.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题1.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB、直线AC于M、N两点.以点D为中心旋转∠MDN(∠MDN的度数不变),当DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,当DM与AB不垂直,点M在边AB上,点N在边AC上时,BM+CN=BD是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,当DM与AB不垂直,点M在边AB上,点N在边AC的延长线上时,BM+CN =BD是否仍然成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.2.如图,抛物线23(0)y ax ax c a =-+≠与x 轴交于A ,B 两点,交y 轴于点C ,其中A (-1,0),C (0,3). (1) 求抛物线的解析式(2) 点P 是线段BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PD ⊥x 轴,垂足为D ,交BC 于点E ,作PF ⊥直线BC 于点F ,设点P 的横坐标为x ,△PEF 的周长记为l ,求l 关于x 的函数关系式,并求出l 的最大值及此时点P 的坐标(3) 点H 是直线AC 上一点,该抛物线的对称轴上一动点G ,连接OG ,GH ,则两线段OG ,GH 的长度之和的最小值等于______,此时点G 的坐标为_____(直接写出答案。
2020年中考数学二次函数压轴题专题复习1.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.3.如图,二次函数错误!未找到引用源。
的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b= ,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.4.综合与探究:如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c 经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA上一个动点,过点M垂直于x轴直线与直线AC和抛物线分别交于点P、N.①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.5.已知抛物线y=0.5x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE= ;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.7.如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C(1)求抛物线的解析式;(2)点P从点A出发,以每秒错误!未找到引用源。
2020年中考数学压轴题一、选择题1.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.第1题第2题2.如图,在平面直角坐标系xOy中,A(﹣3,0),B(3,0),若在直线y=﹣x+m上存在点P满足∠APB=60°,则m的取值范围是()A.≤m≤B.﹣﹣5≤m≤+5C.﹣2≤m≤+2D.﹣﹣2≤m≤+2二、填空题18.如图,点G是矩形ABCD的对角线BD上一点,过点G作EF∥AB交AD于E,交BC 于F,若EG=5,BF=2,则图中阴影部分的面积为.第3题第4题24.如图为二次函数y=ax2+bx+c图象,直线y=t(t>0)与抛物线交于A,B两点,A,B 两点横坐标分别为m,n.根据函数图象信息有下列结论:①abc>0;②若对于t>0的任意值都有m<﹣1,则a≥1;③m+n=1;④m<﹣1;⑤当t为定值时,若a变大,则线段AB变长.其中,正确的结论有(写出所有正确结论的序号)三、解答题5.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)若F为CD上一动点,求出当△DEF与△COD相似时点F的坐标;(2)过E作x轴的垂线l,在直线l上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.【答案与解析】一、选择题1.【分析】根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.【解答】A.∵EF∥AB,∴=,故本选项正确,B.∵DE∥BC,∴=,∵EF∥AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵EF∥AB,∴=,∵CF≠DE,∴≠,故本选项错误,D.∵EF∥AB,∴=,∴=,故本选项正确,故选:C.2.【分析】作等边三角形ABE,然后作外接圆,求得直线y=﹣x+m与外接圆相切时的m的值,即可求得m的取值范围.【解答】解:如图,作等边三角形ABE,∵A(﹣3,0),B(3,0),∴OA=OB=3,∴E在y轴上,当E在AB上方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P1重合时m的值最大,当P与P1重合时,连接QP1,则QP1⊥直线y=﹣x+m,∵OA=3,∴OE=3,设⊙Q的半径为x,则x2=32+(3﹣x)2,解得x=2,∴EQ=AQ=PQ=2,∴OQ=,由直线y=﹣x+m可知OD=OC=m,∴DQ=m﹣,CD=m,∵∠ODC=∠P1DQ,∠COD=∠QP1D,∴△QP1D∽△COD,∴=,即=,解得m=+2,当E在AB下方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P2重合时m的值最小,当P与P2重合时,同理证得m=﹣﹣2,∴m的取值范围是﹣﹣2≤m≤+2,故选:D.二、填空题3.【分析】由矩形的性质可证明S矩形AEGM=S矩形CFGN=2×5=10,即可求解.【解答】解:作GM⊥AB于M,延长MG交CD于N.则有四边形AEGM,四边形DEGN,四边形CFGN,四边形BMGF都是矩形,∴AE=BF=2,S△ADB=S△DBC,S△BGM=S△BGF,S△DEG=S△DNG,∴S矩形AEGM=S矩形CFGN=2×5=10,∴S阴=S矩形CFGN=5,故答案为:5.4.【分析】由图象分别求出a>0,c=﹣2,b=﹣a<0,则函数解析式为y=ax2﹣ax﹣2,则对称轴x=,由开口向上的函数的图象开口与a的关系可得:当a变大,函数y=ax2﹣ax﹣2的开口变小,依据这个性质判断m的取值情况.【解答】解:由图象可知,a>0,c=﹣2,∵对称轴x=﹣=,∴b=﹣a<0,∴abc>0;∴①正确;A、B两点关于x=对称,∴m+n=1,∴③正确;a>0时,当a变大,函数y=ax2﹣ax﹣2的开口变小,则AB的距离变小,∴⑤不正确;若m<﹣1,n>2,由图象可知n>1,∴④不正确;当a=1时,对于t>0的任意值都有m<﹣1,当a>1时,函数开口变小,则有m>﹣1的时候,∴②不正确;故答案①③.三、解答题5.【分析】(1)当△DEF∽△COD时,=,DF=DE cos∠CDO=,据此求出EF的长度和点F的坐标即可;(2)首先以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=;然后求出点P的坐标是多少;设Q(﹣1,a),则()2+(a﹣)2=,据此求出a的值是多少,进而求出Q点坐标是多少即可.【解答】解:(1)∵A(1,0),B(0,3),∴OA=1,OB=3,∵将△AOB绕点O逆时针旋转90°,得到△COD,∴OC=1,OD=3,∴C(0,1),D(﹣3,0),如图1,当△DEF∽△COD时,=∴EF=,∴F(﹣1,);当△DEF∽△COD时,DF=DE cos∠CDO=,作FK⊥OD于K,则FK=DF sin∠CDO=,DK=DF cos∠CDO=,∴F(﹣,);(2)如图2,以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=,又∵P为CD中点,P(﹣,),设Q(﹣1,a),则()2+(a﹣)2=,解得a=2或﹣1,∴Q(﹣1,2)或(﹣1,﹣1).6.【分析】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF∥BO交AB于点F,证△PFD∽△OBD,得比例线段,则PF取最大值时,求得的最大值;(3)(i)点F在y轴上时,P在第一象限或第二象限,如图2,3,过点P作PH⊥x轴于H,根据正方形的性质可证明△CPH≌△FCO,根据全等三角形对应边相等可得PH=CO=2,然后利用二次函数解析式求解即可;(ii)点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,可得PS=PK,则P点的横纵坐标互为相反数,可求出P点坐标;点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,可得PN=PM,则P点的横纵坐标相等,可求出P点坐标.由此即可解决问题.【解答】解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,若P在第二象限,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,x=﹣1+(舍去).∴,如图3,点F在y轴上时,若P在第一象限,同理可得点P的纵坐标为2,此时P2点坐标为(﹣1+,2)(ii)如图4,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图5,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.。
2020年中考数学压轴题每日一练(4.29)一、选择题1.如图,四边形ABCD的顶点都在坐标轴上,若AB〃CD, AABD与△ACZ)的面积分别为3和6,若双曲线 >='恰好经过的中点E,则左的值为()x2.如图,正方形ABCD中,E、F分别为BC、CD的中点,AF与DE交于点G.则下列结论中:®AF±DE;@AD=BG;③GE+GF=J^GC;④S AAGB=2S四边形ECFG.其中正确的是()A. 1个B. 2个C. 3个D. 4个二、填空题3.如图所示,四边形ABCD的顶点都在坐标轴上,若AD//BC,△ACD与△BCQ的面积分别为20和40,若双曲线>=凶恰好经过边业的四等分点E(BE<AE),则k的值为.第3题第4题4.如图,已知在周长为20的菱形ABCD中,ZC=45° ,点E是线段BC1.一点,将△ABE 沿AE所在直线翻折,使点B落在B'上,则在点E沿B-Cf运动的过程中,点8' 运动的路径长是.三、解答题5.如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1, 0), (7, 0).(1)对于坐标平面内的一点P,给出如下定义:如果ZAPB=45°,则称点P为线段AB 的“等角点”.显然,线段AB的“等角点”有无数个,且A、B、P三点共圆.①设A、B、P三点所在圆的圆心为C,直接写出点C的坐标和OC的半径;②y轴正半轴上是否有线段仙的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由;(2)当点P在y轴正半轴上运动时,ZAPB是否有最大值?如果有,说明此时ZAPB 最大的理由,并求出点F的坐标;如果没有请说明理由.6.如图,抛物线尸履+况-3与x轴交于A ( - 1, 0), 3两点(点A在点3左侧),与〉轴交于点C,且对称轴为x=l,点。
为顶点,连结BD, CD,抛物线的对称轴与x轴交于点E.(1)求抛物线的解析式及点D的坐标;(2)若对称轴右侧抛物线上一点M,过点M作MNLCD,交直线CD于点N,使ZCMN =ZBDE,求点M的坐标;(3)连接BC交DE于点P,点Q是线段3。
几何压轴题型类型一动点探究型在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图①,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是________,CE与AD的位置关系是________;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图②,图③中的一种情况予以证明或说理);(3)如图④,当点P在线段BD的延长线上时,连接BE,若AB=23,BE=219,求四边形ADPE的面积.【分析】 (1)要求BP与CE的数量关系,连接AC,由菱形和等边三角形的性质根据SAS可证明△ABP≌△ACE,从而证得BP=CE,且∠ACE=30°,延长CE交AD于点F,可得∠AFC=90°,所以CE⊥AD;(2)无论选择图②还是图③,结论不变,思路和方法与(1)一致;(3)要求四边形ADPE的面积,观察发现不是特殊四边形,想到割补法,分成钝角△ADP和正△APE,分别求三角形的面积,相加即可.【自主解答】解:(1)BP=CE;CE⊥AD;(2)选图②,仍然成立,证明如下:如解图①,连接AC交BD于点O,设CE交AD于点H.在菱形ABCD中,∠ABC=60°,BA=BC,例1题解图①∴△ABC为等边三角形,∴BA=CA.∵△APE为等边三角形,∴AP=AE,∠PAE=∠BAC=60°,∴∠BAP=∠CAE.在△BAP和△CAE中,例1题解图②∴△BAP≌△CAE(SAS),∴BP=CE,∠ACE=∠ABP=30°.∵AC和BD为菱形的对角线,∴∠CA D=60°,∴∠AHC=90°,即CE⊥AD.选图③,仍然成立,证明如下:如解图②,连接AC交BD于点O,设CE交AD于点H,同理得△BAP≌△CAE(SAS),BP=CE,CE⊥AD.(3)如解图③,连接AC交BD于点O,连接CE交AD于点H,由(2)可知,CE⊥AD,CE=BP.在菱形ABCD中,AD∥BC,∴EC⊥BC.∵BC=AB=23,BE=219,∴在Rt△BCE中,CE=(219)2-(23)2=8,例1题解图③∴BP=CE =8.∵AC 与BD 是菱形的对角线, ∴∠ABD=12∠ABC=30°,AC⊥BD,∴BD=2BO =2AB·cos 30°=6, AO =12AB =3,∴DP=BP -BD =8-6=2, ∴OP=OD +DP =5.在Rt△AOP 中,AP =AO 2+OP 2=27, ∴S 四边形ADPE =S △ADP +S △APE =12DP·AO+34·AP 2 =12×2×3+34×(27)2 =8 3.【难点突破】 本题的难点:一是如何找到全等的三角形,根据含60°内角菱形的特点,连接AC 是解决问题的关键;二是点P 是动点,当它运动到菱形的外部时,在其运动过程中由“手拉手”模型找全等三角形;三是求不规则四边形的面积,要想到运用割补法,将四边形分解成两个三角形求解.点拔几何压轴题中的“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质.1.已知,△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时:①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其他条件不变时,∠BDE的度数是____________________;(用含α的代数式表示)(3)若△ABC是等边三角形,AB=33,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.2.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长;第2题图②若DG=GF,求BC的长;(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.类型二新定义型我们定义:如图①,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1)在图②,图③中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图②,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD =________BC ; ②如图③,当∠BAC=90°,BC =8时,则AD 长为________. 猜想论证(2)在图①中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用(3)如图④,在四边形ABCD 中,∠C=90°,∠D=150°,BC =12,CD =23,DA =6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.【分析】 (1)①证明△ADB′是含有30°角的直角三角形,则可得AD =12AB′=12BC ;②先证明△BAC≌△B′AC′,根据直角三角形斜边上的中线等于斜边的一半即可;(2)结论:AD =12BC.如解图①中,延长AD 到点M ,使得AD =DM ,连接B′M ,C′M,先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M ,即可解决问题; (3)存在.如解图②中,延长AD 交BC 的延长线于点M ,作BE⊥AD 于点E ,作线段BC 的垂直平分线交BE 于点P ,交BC 于点F ,连接PA ,PD ,PC ,作△PCD 的中线PN ,连接DF 交PC 于点O.先证明PA =PD ,PB =PC ,再证明∠APD+∠BPC =180°即可. 【自主解答】 解:(1)①12;【解法提示】 ∵△ABC 是等边三角形, ∴AB =BC =AB =AB′=AC′. ∵DB′=DC′, ∴AD⊥B′C′.∵α+β=180°,∴∠BAC+∠B′AC′=180°, ∵∠BAC=60°, ∴∠B′AC′=120°, ∴∠B′=∠C′=30°, ∴AD=12AB′=12BC.②4;【解法提示】 ∵α+β=180°, ∴∠BAC+∠B′AC′=180°. ∵∠BAC=90°,∴∠B′AC′=∠BAC=90°.∵AB=AB′,AC =AC′, ∴△BAC≌△B′AC′(SAS), ∴BC=B′C′. ∵B′D=DC′, ∴AD=12B′C′=12BC =4.(2)结论:AD =12BC.证明:如解图①中,延长AD 到点M ,使得AD =DM ,连接B′M,C′M.例2题解图①∵B′D=DC′,AD =DM ,∴四边形AC′MB′是平行四边形, ∴AC′=B′M=AC. ∵α+β=180°,∴∠BAC+∠B′AC′=180°. ∵∠B′AC′+∠AB′M=180°, ∴∠BAC=∠MB′A. ∵AB=AB′,∴△BAC≌△AB′M(SAS), ∴BC=AM ,∴AD=12BC.(3)存在.证明:如解图②中,延长AD 交BC 的延长线于点M ,作BE⊥AD 于点E ,作线段BC 的垂直平分线交BE 于点P ,交BC 于点F ,连接PA ,PD ,PC ,作△PCD 的中线PN ,连接DF 交PC 于点O.例2题解图②∵∠ADC=150°, ∴∠MDC=30°, 在Rt△DCM 中,∵CD=23,∠DCM=90°,∠MDC=30°, ∴CM=2,DM =4,∠M=60°. 在Rt△BEM 中,∵∠BEM=90°,BM =14,∠MBE=30°, ∴EM=12BM =7,∴DE=EM -DM =3. ∵AD=6,∴AE=DE. ∵BE⊥AD, ∴PA=PD. ∵PF 垂直平分BC ,∴PB=PC.在Rt△CDF中,∵CD=23,CF=6,∴tan∠CDF=3,∴∠CDF=60°=∠CPF.易证△FCP≌△CFD,∴CD=PF.∵CD∥PF,∴四边形CDPF是平行四边形.∵∠DCF=90°.∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC-∠CDP=60°,∴△ADP是等边三角形.∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”.在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=DN2+PD2=(3)2+62=39.【难点突破】第(3)问根据新定义判断点P的存在性是本题难点,但运用“直角三角形中30°的角所对的直角边是斜边的一半”的性质以及三角形全等添加合适辅助线即可求解.点拔解决这类问题,首先要理解新定义的含义及实质;其次要注意,在证明线段、角度相等或某个特殊图形时,主要应用全等,在计算线段的长或图形的周长、面积时,常注意运用相似、勾股定理及图形面积公式等.1.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心. 举例:如图①,若PA =PB ,则点P 为△ABC 的准外心.求解:(1)如图②,CD 为等边△ABC 的高,准外心P 在高CD 上,且PD =12AB ,求∠APB 的度数;(2)已知△ABC 为直角三角形,斜边BC =5,AB =3,准外心P 在AC 边上,求PA 的长.2.如图①,在△ABC中,过顶点A作直线与对边BC相交于点D,两交点之间的线段把这个三角形分成两个图形.若其中有一个图形与原三角形相似,则把这条线段叫做这个三角形的“顶似线”.(1)等腰直角三角形的“顶似线”的条数为______;(2)如图②,在△ABC中,AB=AC,∠A=36°,BD是∠ABC的角平分线,求证:BD是△ABC的“顶似线”;(3)如图③,在△ABC中,AB=4,AC=3,BC=6,求△ABC的“顶似线”的长.3.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这条边上的“奇特三角形”,这条边称为“奇特边”.(1)如图①,已知△ABC是“奇特三角形”,AC>BC,且∠C=90°.①△ABC的“奇特边”是________;②设BC=a,AC=b,AB=c,求a∶b∶c;(2)如图②,AM是△ABC的中线,若△ABC是BC边上的“奇特三角形”,找出BC2与AB2+AC2之间的关系;(3)如图③,在四边形ABCD中,∠B=90°(AB<BC),BC=27,对角线AC把它分成了两个“奇特三角形”,且△ACD是以AC为腰的等腰三角形,求等腰△ACD 的底边长.4.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=__________;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.类型三操作探究型【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=__________.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC =120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD =5,AD=kAB(k为常数),求BD的长(用含k的式子表示).【分析】【操作发现】(1)先找到点B,C的对应点B′,C′,再连接构成三角形即可;(2)求∠AB′B的度数可先判断△AB′B是等腰直角三角形,再求角度;【问题解决】根据两种不同的想法,选择其中一个进行证明;【灵活运用】需将△ABD绕点A旋转得到△ACG,再证明∠CDG=90°即可.【自主解答】解:【操作发现】(1)如解图①所示,△AB′C′即为所求;(2)45°.【解法提示】连接BB′.∵△AB′C′是由△ABC绕点A按顺时针方向旋转90°得到的,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°.【问题解决】如解图②,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C,∴△APP′是等边三角形,∠AP′C=∠APB=360°-90°-120°=150°,∴PP′=AP ,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°, ∴PP′=32PC ,即AP =32PC.∵∠APC=90°,∴AP 2+PC 2=AC 2,即(32PC)2+PC 2=72,∴PC=27,∴AP=21,∴S △APC =12AP·PC=73;【灵活运用】如解图③,连接AC.∵AE⊥BC,BE =EC ,∴AB=AC ,将△ABD 绕点A 逆时针旋转使得AB 与AC 重合,点D 的对应点为G ,连接DG.则BD =CG.例3题解图③∵∠BAD=∠CAG,∴∠BAC=∠DAG.∵AB=AC ,AD =AG ,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG.∴DG=kBC=4k.∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG=DG2+CD2=16k2+25.∴BD=CG=16k2+25.【难点突破】在【灵活运用】一问中,要确定BD与k的数量关系,关键在于旋转△ABD,使得AB与AC重合,从而证明∠CDG=90°,构造直角三角形是解决本题的难点,也是解决问题的突破口.点拔对于操作探究问题,首先掌握图形变换的性质,如图形的折叠:折痕为对称轴,有折痕就有角平分线,有折痕就有垂直平分等;图形的平移:有平移就有平行;图形的旋转:旋转前后图形全等,对应边相等,对应角相等;对应点与旋转中心的连线所成的角为旋转角,有旋转就有等腰三角形;其次注意运用全等证明线段相等,利用勾股定理或相似求线段的长.1.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图①,请直接写出AE与DF的数量关系______________;②将△EBF绕点B逆时针旋转到图②所示的位置,连接AE,DF,猜想AE与DF 的数量关系,并说明理由.(2)若四边形ABCD为矩形,BC=mAB,其他条件都不变.①如图③,猜想AE与DF的数量关系,并说明理由;②将△EBF绕点B逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图④中画出草图,并直接写出AE′和DF′的数量关系.2.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC 的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是______________;位置关系是______________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其他条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其他条件不变,试判断△GMN的形状,并给予证明.3.如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合),DE∥AB交AC于点F,CE∥AM,连接AE.(1)如图①,当点D与点M重合时,求证:四边形ABDE是平行四边形;(2)如图②,当点D不与点M重合时,(1)中的结论还成立吗?请说明理由.(3)如图③,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=3,DM=4时,求DH的长.参考答案类型一1.解:(1)①∵CA=CB,BN=AM,∴CB-BN=CA-AM,∴CN=CM,∵∠ACB=∠ACB,BC=CA,∴△BCM≌△ACN.②解:∵△BCM≌△ACN,∴∠MBC=∠NAC.∵EA=ED,∴∠EAD=∠EDA.∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°-90°=90°;∴∠BDE=90°.(2)α或180°-α;(3)43或3 2.2.解:(1)①在正方形ACDE中,DG=GE=6,在Rt△AEG中,AG=AE2+EG2=6 5.∵EG∥AC,∴△ACF∽△GEF,∴FGAF=EGAC=12,∴FG=13AG=2 5.第2题解图①②如解图①,在正方形ACDE中,AE=ED,∠AEF=∠DEF=45°.∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x.∵AE∥BC,∴∠B=∠1=x.∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC=ACtan 30°=12 3.(2)在Rt△ABC中,AB=AC2+BC2=122+92=15,如解图②,当点D在线段BC上时,此时只有GF=GD.第2题解图②∵DG∥AC,∴△BDG∽△BCA,∴BDDG=BCAC=34,∴设BD=3x,则DG=4x,BG=5x,AE=CD=9-3x,∴GF=GD=4x,则AF=15-9x.∵AE∥CB,∴△AEF∽△BCF,∴AEBC=AFBF,∴9-3x9=15-9x9x,整理得x2-6x+5=0,解得x=1或5(舍去),∴腰长GD为4.如解图③,当点D在线段BC的延长线上,且直线AB,CE的交点在AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,第2题解图③∴FG=DG =12+4x.∵AE∥BC,∴△AEF∽△BCF, ∴AE BC =AF BF , ∴3x 9=9x +129x +27, 解得x =2或-2(舍去), ∴腰长DG 为20.如解图④,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点在BD 下方时,此时只有DF =DG ,过点D 作DH⊥FG 于点H.第2题解图④设AE =3x ,则EG =4x ,AG =5x ,DG =4x +12, ∴FH=GH =DG·cos∠DGB=(4x +12)×45=16x +485,∴GF=2GH =32x +965,∴AF=GF -AG =7x +965.∵AC∥DG,∴△ACF∽△GEF, ∴AC EG =AF FG ,∴124x =7x +96532x +965, 解得x =12147或-12147(舍去),∴腰长GD 为84+48147,如解图⑤,当点D 在线段CB 的延长线上时,此时只有DF =DG ,过点D 作DH⊥AG 于点H.设AE =3x ,则EG =4x ,AG =5x ,DG =4x -12, ∴FH=GH =DG·cos∠DGB=16x -485,第2题解图⑤∴FG=2FH =32x -965,∴AF=AG -FG =96-7x5.∵AC∥EG,∴△ACF∽△GEF, ∴AC EG =AF FG ,∴124x =96-7x 532x -965, 解得x =12147或-12147(舍去),∴腰长DG 为-84+48147.综上所述,等腰三角形△DFG 的腰长为4或20或84+48147或-84+48147.类型二1.解:(1)①如解图①,若PB =PC ,连接PB ,则∠PCB=∠PBC. ∵CD 为等边三角形的高,∴AD=BD ,∠PCB=30°, ∴∠PBD=∠PBC=30°,∴PD=33DB =36AB , 与已知PD =12AB 矛盾,∴PB≠PC;②若PA =PC ,连接PA ,同理可得PA≠PC; ③若PA =PB ,由PD =12AB ,得PD =AD ,∴∠APD=45°,故∠APB=90°. (2)∵BC=5,AB =3,∠BAC=90°, ∴AC=BC 2-AB 2=52-32=4.①若PB =PC ,设PA =x ,则PC =PB =4-x , ∴x 2+32=(4-x)2,∴x=78,即PA =78;②若PA =PC ,则PA =2;③若PA =PB ,由解图②知,在Rt△PAB 中,不可能存在. 综上所述,PA 的长为2或78.2.(1)解:1.(2)证明: ∵AB=AC ,∠A=36°,∴∠ABC=∠ACB=72°. ∵BD 是∠ABC 的角平分线,∴∠ABD=∠DBC=36°,∴∠A=∠CBD. 又∵∠C=∠C,∴△ABC∽△BDC, ∴BD 是△ABC 的“顶似线”.(3)解:①如解图①,当△ADC∽△BAC 时,AD 为△ABC 的“顶似线”, 则AD AB =AC BC ,即AD 4=36,∴AD=2; ②如解图②,当△ADC∽△ACB 时,CD 为△ABC 的“顶似线”,则CD CB =AC AB ,即CD 6=34,∴CD=92; ③过顶点B 的“顶似线”不存在.综上所述,△ABC 的“顶似线”的长为2或92.3.解:(1)①AC;②如解图①,过点B 作AC 边上的中线BE ,则BE =AC =b ,CE =AE =12b.在Rt△ABC 中,a 2+b 2=c 2, 在Rt△BCE 中,a 2+(12b)2=b 2.解得a =32b ,c =72b.∴a∶b∶c=3∶2∶7.(2)如解图②,过点A 作AF⊥BC 于点F ,则∠AFB=∠AFC=90°. 设AM =BC =a ,AF =h ,MF =x ,则BM =CM =12a.在Rt△ABF 中,AB 2=BF 2+AF 2=(a2+x)2+h 2,在Rt△ACF 中,AC 2=CF 2+AF 2=(a2-x)2+h 2,∴AB 2+AC 2=a22+2x 2+2h 2.在Rt△AMF 中,AM 2=MF 2+AF 2,即a 2=x 2+h 2.∴AB 2+AC 2=5a 22=52BC 2.(3)∵∠B=90°,BC >AB ,∴BC 为△ABC 的“奇特边”. ∵BC=27,∴由(1)②知AB =32BC =21,AC =72BC =7.设等腰△ACD 的底边长为y ,由(2)中结论知:①当腰为“奇特边”时,有72+y 2=52×72,解得y =726(负值已舍去).②当底边为“奇特边”时,有72+72=52×y 2,解得y =1455(负值已舍去).∴等腰△ACD 的底边长为726或145 5.4.解:(1)∵∠C>90°,∠A=60°, ∴β=60°,α=15°,∴∠B=15°.(2)若存在一点E ,使得△ABE 也是“准互余三角形”, 则2∠EBA+∠EAB=90°.如解图①,作射线BF ,使得∠FBE=∠ABE ,延长AE 交BF 于点F ,则∠BFE=90°.即BE 为∠FBA 的角平分线,过点E 作EG⊥AB 于点G , 则EG =EF ,可得△BEF≌△BEG. 又∵△BEG∽△BAC,∴△BEF∽△BAC, ∴BF BC =EF AC ,∴BF 5=EF4①. 又∵△BEF∽△AEC,∴EF CE =BF AC ,∴EF 5-BE =BF 4②,由①②可得,BE =1.8.(3)如解图②,将△BCD 沿BC 翻折得△BCE,则CE =CD =12,∠ABD=2∠BC D =∠DCE,∠DCE+∠DBE=180°,即∠ABD+∠DBE=180°,∴点A ,B ,E 共线,易知2∠ACB+∠BAC=90°不成立,存在2∠BAC+∠ACB=90°,易证得△ECB∽△EAC,∴EC AE =BE EC ,即127+BE =BE 12,解得BE =9(负值已舍去),∴AE=16,在Rt△AEC 中,利用勾股定理得,AC =AE 2+CE 2=20.类型三1.解:(1)①DF=2AE ; ②DF=2AE ;理由:∵∠EBF=∠ABD=45°,∴∠ABE =∠FBD.∵BE BF =AB BD ,∴△ABE∽△DBF,∴AE DF =AB BD =22,∴DF=2AE.(2)①如解图①,过点F 作FG⊥AD 于点G ,则四边形AEFG 是矩形,∴GF=AE. ∵tan∠FDG=BAAD =GFDG ,AD =BC =mAB ,∴DG=mGF ,在Rt△DGF 中,由勾股定理得DF =GF 2+DG 2=1+m 2GF ,∴DF=1+m 2AE.②画出草图如解图②,DF′=1+m2AE′.2.解:(1)GM=GN;GM⊥GN.【解法提示】如解图①,连接BE,CD相交于点H.∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE.∵点M,G分别是BD,BC的中点,∴MG 12 CD.同理:NG 12BE,∴MG=NG,MG⊥NG.(2)小明发现的上述结论成立.理由:如解图②,连接CD ,BE 相交于点H. ∵∠DAB=∠CAE=90°,∴∠DAC=∠BAE.∵DA=BA ,CA =EA ,∴△DAC≌△BAE(SAS),∴∠FBH=∠ADF,DC =BE.∵M 是BD 的中点,G 是BC 的中点,∴MG=12DC , 同理NG =12BE ,∴MG=NG. 设CD 交AB 于点F ,则∠FHB=180°-(∠FBH+∠BFH)=180°-(∠ADF+∠AFD)=90°,∴CD⊥BE,∴MG⊥NG;(3)△GMN 为等腰直角三角形.证明:如解图③,连接EB ,DC ,延长线相交于点H ,同(1)的方法得,MG =NG ,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH +∠ECH =∠AEH -∠AEC +180°-∠ACD -∠ACE =∠ACD -45°+180°-∠ACD-45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG.3.(1)证明: ∵DE∥AB,∴∠EDC=∠ABM.∵CE∥AM,∴∠ECD=∠ADB.∵AM 是△A BC 的中线,且点D 与点M 重合,∴BD=DC ,∴△ABD≌△EDC(ASA),∴AB=ED.∵AB∥ED,∴四边形ABDE 是平行四边形.(2)解:结论成立.理由如下:第3题解图①如解图①,过点M作MG∥DE交CE于点G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM.∵AB∥DE,∴AB∥GM,∴∠ABM=∠GMC.∵AM∥CE,∴∠AMB=∠GCM.∵AM为△ABC的中线,∴BM=MC.∴△ABM≌△GMC(ASA),∴AB=GM,∴AB=DE.∵AB∥DE,∴四边形ABDE是平行四边形.(3)解:①如解图②,取线段HC的中点I,连接MI,第3题解图②∵BM=MC,∴MI 是△BHC 的中位线,∴MI∥BH,MI =12BH. ∵BH⊥AC,且BH =AM.∴MI=12AM ,MI⊥AC, ∴∠CAM=30°.②设DH =x ,则AH =3x ,AD =2x , ∴AM=4+2x ,∴BH=4+2x.∵四边形ABDE 是平行四边形,∴DF∥AB, ∴HF HA =HD HB ,∴33x =x 4+2x , 解得x =1+5或x =1-5(舍去), ∴DH=1+ 5.。