随机变量序列依概率收敛的几个性质_朱永生
- 格式:pdf
- 大小:99.59 KB
- 文档页数:3
随机变量序列收敛的若干性质
周晓钟
【期刊名称】《高师理科学刊》
【年(卷),期】1995(015)004
【摘要】在概率论中,对R.V序列定义了四种收敛概念,本文讨论并证明了一些有关的分析性质。
【总页数】5页(P1-5)
【作者】周晓钟
【作者单位】无
【正文语种】中文
【中图分类】O211.5
【相关文献】
1.随机变量序列依概率收敛的几个性质 [J], 朱永生
2.ρ-混合随机变量序列加权和的完全收敛性质 [J], 谭希丽;王淼
3.随机变量序列四种收敛的若干性质及其四则运算 [J], 孙飞;
4.随机变量序列依概率收敛一些分析性质的研究 [J], 陈秀波;周立群;韩灵芝
5.φ-混合随机变量序列收敛性质的若干新结果(英文) [J], 沈爱婷
因版权原因,仅展示原文概要,查看原文内容请购买。
概率空间•几乎必然收敛(almost sure convergence)–随机变量序列收敛到,同时}{n X X {li – a.s. 1}{lim ==∞→X X P n n X X =lim XX −→−.s .a 表示为或者n n ∞→n →)}()(lim :{ςςςX X n n =∞→•依概率收敛(convergence in probability)–随机变量序列以及满足对任意}{n X X li ε–p. 0}||{lim=>-∞→εX X P n n X X =lim XX −→−.p 表示为p 或者n n ∞→n →也有可能的数值极大|X X n -|•均方收敛(mean square convergence)–随机变量序列以及满足,同时}{n X X li ∞<}{2nX E –m.s. 0}){(lim2=-∞→X X E n n X X =lim XX −→−m.s.表示为或者n n ∞→n →•均方收敛(mean square convergence)–随机变量序列以及满足,同时}{n X X li ∞<}{2nX E –m.s. 0}){(lim2=-∞→X X E n n X X =lim XX −→−m.s.表示为或者则n n ∞→n →m s •若,则X X n −→−m.s.∞<}{2X E 几乎必然收敛或依概率收敛都不能确保均方收敛•以概率分布收敛(convergence in distribution)–随机变量序列以及满足在任意连续的x}{n X X li )()(limx F x F X X n n =∞→–表示为 d. 或者X X n n =∞→lim XX n −→−d.•依据特征函数判断收敛–XX n −→−d.––)}({)}({X f E X f E n →)t ()t (XX nΦ→Φ.s .a ⇒XX −→−.p(Cauthy criteria)在不知道极限的情况下,判定随机变量序列收敛随机变量序列的收敛特性。
论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。
概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。
主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。
给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。
本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。
关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。
AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is a sequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship.This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows:1. Convergence of random variables the concept of theory;2. the convergence of several random variables between;From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: (4)1 几种收敛性定义 (4)2 依概率收敛与依分布收敛的关系 (5)3 r阶收敛与几乎处处收敛的关系 (11)4 依概率收敛与r阶收敛的关系 (13)5 几乎处处收敛与依概率收敛和依分布收敛的关系 (17)总结 (19)四种收敛性 (19)四种收敛蕴涵关系 (19)致谢 (21)参考文献 (22)引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。
概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。
主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。
给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。
本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。
关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。
AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is a sequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship.This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows:1. Convergence of random variables the concept of theory;2. the convergence of several random variables between;From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: (4)1 几种收敛性定义 (4)2 依概率收敛与依分布收敛的关系 (5)3 r阶收敛与几乎处处收敛的关系 (11)4 依概率收敛与r阶收敛的关系 (13)5 几乎处处收敛与依概率收敛和依分布收敛的关系 (17)总结 (19)四种收敛性 (19)四种收敛蕴涵关系 (19)致谢 (21)参考文献 (22)引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
本科毕业论文题目:随机变量序列的几种收敛性及其关系学院:数学与计算机学院班级:数学与应用数学2008级八班姓名:薛永丽指导教师:丁平仁职称:副教授完成日期:2012 年5月10 日随机变量序列的几种收敛性及其关系摘要:本文主要对随机变量序列的四种收敛性:a.e.收敛、依概率收敛、依分布收敛、r—阶收敛的概念、性质进行阐述;并结合具体实例讨论了它们之间的关系,进一步对概率论中依分布收敛的等价条件和一些依概率收敛的弱大数定律进行了具体的研究.关键字:随机变量序列收敛分布函数目录1.引言 .................................................................... 12.a.e.收敛、依概率收敛、依分布收敛、r —阶收敛的概念、性质以及它们之间的关系.2.1 a.e.收敛的概念及性质 ................................................................................................... 1 2.2 依概率收敛的概念及性质 .............................................................................................. 2 2.3依分布收敛的概念及性质 ............................................................................................... 3 2.4 r —阶收敛的概念及性质 .................................................................................................. 5 3.随机变量序列依分布收敛的等价条件. (6)4.随机变量∑=nk k n 11ξ依概率收敛的一些结果 (9)5.小结. .................................................................. 12 6.参考文献 (12)1.引言:在数学分析和实变函数中“收敛性”极为重要,特别在实变函数中对可测函数列收敛性的讨论。
第24卷哈尔滨师范大学自然科学学报Vol .24,No .22008第2期NAT URAL SC I E NCES JOURNAL OF HARB I N NOR MAL UN I V ERSI TY随机变量序列依概率收敛的几个性质朱永生(哈尔滨师范大学)【摘要】 对随机变量序列依概率收敛的问题进行研究进而得出一些结论.关键词:依概率收敛;随机变量序列;连续函数收稿日期:2007-1-3 笔者在原有随机变量序列依概率收敛性质基础上进一步研究得出几个系统的结论.定义:设有随机变量序列ξ1,ξ2,ξ3,…,若对任意的ε>0,有li m n →∞P (|ξn -ξ|<ε)=1,则称随机变量序列{ξn }依概率收敛于ξ,并记作li m n →∞ξnPξ或ξnPξ(n →∞).引理1 设随机变量序列{ξn }、{ηn }分别依概率收敛于a 与b (其中a 与b 是两个常数),则有①ξn +-×ηnP a +-×b ②ξn ÷ηn Pa ÷b 进一步利用归纳法可证明上述引理在有限次的四则运算下也是成立的,从而可推广如下:定理1 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,并且ξinPa i ,n →∞(i =1,2,…,k ),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (a 1,a 2,…,a k )≠±∞,则有Q (x 1,x 2,…,x k )PQ (a 1,a 2,…,a k ),n →∞成立.为了进一步推广上述定理,下面再给出一个定理.定理2 设随机变量序列{ξn }依概率收敛于ξ,f (x )为直线上的连续函数,则f (ξn )Pf (ξ).证明 ①若f (x )=∑mi =1a i x i是m 次多项式函数,由定理1知f (ξn )Pf (ξ)成立,结论为真.②现在证明一般情形.对任意的ε>0,δ>0,取M 充分大使得有P (|ξ|>M )>δ,又选取N 1充分大,使当n ≥N 1时,有P (|ξ-ξn |>1)<δ,于是有 P (|ξn |>M +1)≤P{(|ξ|>M )∪(|ξ-ξn |>1}<2δ对取定的M ,因为f (x )是连续函数,可以用多项式函数进行任意逼近,且在任意有限区间上是一致收敛的,从而有m 次多项式g m (x ),使有|f (x )-g m (x )|<ε3,x ∈[-(M +1),M +1].对取定的m 次多项式g m (x ),因为g m (ξn )Pg m (ξ),n →∞,故存在N 2,使当n ≥N 2时,有P (|g m (ξ)-g m (ξn )|≥ε3)<δ成立,又P (|f (ξ)-f (ξn )|≥ε)=P{(|f (ξ)-f (ξn )|≥ε)∩(A ∪B )}+P{(|f (ξ)-f (ξn )|≥ε)∩((A ∪B )}=I 1+I 2可以看出(A ∪B )∪(A ∪B )=(A ∪B )∪( A ∩ B )=Ω(A ∪B )∩(A ∪B )=Φ其中(A ∪B )=(|ξ|>M )∪(|ξn |>M +1)(A ∪B )=( A ∩ B )=(|ξ|≤M )∩(|ξn |≤M +1)那么当n ≥m ax {N 1,N 2}时,有I 1≤P (|ξ|>M )+P (|ξn |>M +1)<3δ,又|f (ξ)-f (ξn )|≥ε]|f (ξ)-g m (ξ)+g m (ξ)-g m (ξn )+g m (ξn )-f (ξn )|≥ε]|f (ξ)-g m (ξ)|≥ε3或|g m (ξ)-g m (ξn )|≥ε3或|g m (ξn )-f (ξn )|≥ε3.即(|f (ξ)-f (ξn )|≥ε)<{(|f (ξ)-g m (ξ)|≥ε3)∪(|g m (ξ)-g m (ξn )|≥ε3)∪(|g m (ξn )-f (ξn )|≥ε3)}.然而由上面可知,有下述事实成立P{(|f (ξ)-g m (ξ)|≥ε3)∩ A ∩ B }=P{(|f (ξ)-g m (ξ)|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}=0P{(|g m (ξn )-f (ξn )|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}=0,所以I 2≤P{(|g m (ξ)-g m (ξn )|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}≤P{|g m (ξ)-g m (ξn )|≥ε3)<δ从而有P (|f (ξ)-f (ξn )|≥ε)=I 1+I 2<4δ成立.由ε、δ的任意性即知f (ξn )Pf (ξ)成立.于是结论得证.进而可得定理3如下.定理3 若ξn Pc,则g (ξn )Pg (c ),其中c 是一个常数,g 是一个连续函数.从而可推广前述两个定理如下:定理4 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,g i (x )是一组连续函数,并且{ξin }Pξi ,n →∞(i =1,2,…,k ),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (g 1(ξ1),g 2(ξ2),…,g k (ξk ))≠±∞,则有Q (g 1(ξ1n ),g 2(ξ2n ),…,g k (ξkn ))PQ (g 1(ξ1),g 2(ξ2),…,g k (ξk ))(n →∞).例 若ξnPξ,ηnPη.则有(eξn+sinηn )/(1+e ξn)P(e ξ+sin η)/(1+e ξ)这是因为g 1(x )=e x,g 2(x )=sin x 为连续函数,Q (x,y )=x +y1+x为有理函数,从而易证.从定理3和上述定理4亦不难得出相应的下述定理5.定理5 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,g i (x )是一组连续函数,并且{ξin }Pc i ,n →∞(i =1,2,…,k,c i 为常数),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (g 1(c 1),g 2(c 2),…,g k (c k ))≠±∞,则有Q (g 1(ξ1n ),g 2(ξ2n ),…,g k (ξkn )PQ (g 1(c 1),g 2(c 2),…,g k (c k ))(n →∞).引理2 设ξnPa,ηnPb,又设函数g (x,y )在点(a,b )连续,则g (ξn ,ηn )Pg (a,b )证明 由函数g (x,y )在(a,b )的连续性知,对于任给的ε>0,必存在δ>0,使当|x -a |+|y -b |<δ时,|g (x,y )-g (a,b )|<ε,于是{|g (ξn ,ηn )-g (a,b )|≥ε}<{|ξn -a |+|ηn -b |≥δ}<{|ξn -a |≥δ2}∪{|ηn -b |≥δ2}因此,P{|g (ξn ,ηn )-g (a,b )|≥ε}≤P{|ξn -a |≥δ2}+P{|ηn -b |≥δ2}→0(n →∞)亦即li m n →∞P{|g (ξn ,ηn )-g (a,b )|<ε}=1.进而得出下述定理:定理6 设{ξ1n },{ξ2n },…,{ξkn }与{η1n },{η2n },…,{ηkn }分别是k 个随机变量序列g i (x,y )是一组二元连续函数,并且ξinPa i ,ηinPb i ,n →∞(i =1,2,…,k,a i ,b i 为常数),又Q (x 1,x 2,…,x k )是k 元变量有理函数,并且Q (g 1(a 1,b 1),…,g 2(a 2,b 2),…,g k (a k ,b k ))≠±∞,则有Q (g 1(ξ1n ,η1n ),g 2(ξ2n ,ξ2n ),g k (ξkn ,ηkn ))PQ (g 1(a 1,b 1),g 2(a 2,b 2),…,g k (a k ,b k ))(n →∞).例 若ξnPξ,ηnPη.则有(e ξn+ηn+sin ξnηn )/(1+e ξn ηn )P(eξ+η+sinξη)/(1+e ξη)83哈尔滨师范大学自然科学学报 2008年此例题由上述定理6很容易看出.由上述的引理2还可以推出引理1.分别取g (x,y )为x ±y,xy,xy(y ≠0),则可由引理2推论得到引理1,因此,引理1可以看作是引理2的特例.最后,还应该注意的是,依概率收敛不同于通常意义上的极限,随机变量序列ξnPξ不一定有ξn (ω)→ξ(ω),(ω∈Ω),甚至可能对每一个ω,ξn (ω)ξ(ω),(ω∈Ω).如取Ω=[0,1],R 是包含[0,1]中一切左闭右开区间的事件域,P 是定义在R 上的概率,且对于[a,b )<[0,1],满足P ([a,b ))=b -a,定义随机变量序列如下:η11(ω)≡1,η21(ω)=1,ω∈[0,12);0,ω∈[12,1)η22(ω)=1,ω∈[0,12);0,ω∈[12,1) …一般地,将[0,1)分成K 个等长的区间,定义ηk i (ω)=1,ω∈[i -1K ,iK);0,ω[i -1K ,iK). (i =1,2,…,K;K =1,2,…)显然,对任意ε>0,P (|ηk i |≥ε)≤1K,将ηk i 重新编号,令ξ1=η11,ξ2=η21,ξ3=η22,ξ4=η31,ξ5=η32,…则由上式可知,ξnP0,但对每一个ω∈Ω,由{ξn }的定义知,数列{ξn (ω)}中皆有无穷多个1和无穷多个0,因而{ξn (ω)}不收敛.参 考 文 献[1] 来向荣.简明概率论教程[M ].北京:北京工业大学出版社,2004.[2] 魏宗舒.概率论与数理统计教程[M ].北京:高等教育出版社,1983.[3] 严士健,王隽骧,刘秀芳.概率论基础[M ].北京:科学出版社,1983.[4] 王梓坤.概率论基础及其应用[M ].北京:科学出版社,1979.[5] Laha ,R.G .and Rohatgi ,B.K .Pr obability theory[M ].JohnW iley &s ons,1985.S OM E CONCLUSIONS OF THE CONVERGENTCHARACTER B Y PR OBABIL I T YZhu Yongsheng(Harbin Nor mal University )ABSTRACTA series of conclusi ons are given according t o researching int o the convergent character by p r obability in this paper .Keywords:Convergent character by p r obability;Random variable;Continuity functi on(责任编辑:王丹红)93第2期 随机变量序列依概率收敛的几个性质。