随机变量序列依概率收敛的几个性质_朱永生
- 格式:pdf
- 大小:99.59 KB
- 文档页数:3
随机变量序列收敛的若干性质
周晓钟
【期刊名称】《高师理科学刊》
【年(卷),期】1995(015)004
【摘要】在概率论中,对R.V序列定义了四种收敛概念,本文讨论并证明了一些有关的分析性质。
【总页数】5页(P1-5)
【作者】周晓钟
【作者单位】无
【正文语种】中文
【中图分类】O211.5
【相关文献】
1.随机变量序列依概率收敛的几个性质 [J], 朱永生
2.ρ-混合随机变量序列加权和的完全收敛性质 [J], 谭希丽;王淼
3.随机变量序列四种收敛的若干性质及其四则运算 [J], 孙飞;
4.随机变量序列依概率收敛一些分析性质的研究 [J], 陈秀波;周立群;韩灵芝
5.φ-混合随机变量序列收敛性质的若干新结果(英文) [J], 沈爱婷
因版权原因,仅展示原文概要,查看原文内容请购买。
概率空间•几乎必然收敛(almost sure convergence)–随机变量序列收敛到,同时}{n X X {li – a.s. 1}{lim ==∞→X X P n n X X =lim XX −→−.s .a 表示为或者n n ∞→n →)}()(lim :{ςςςX X n n =∞→•依概率收敛(convergence in probability)–随机变量序列以及满足对任意}{n X X li ε–p. 0}||{lim=>-∞→εX X P n n X X =lim XX −→−.p 表示为p 或者n n ∞→n →也有可能的数值极大|X X n -|•均方收敛(mean square convergence)–随机变量序列以及满足,同时}{n X X li ∞<}{2nX E –m.s. 0}){(lim2=-∞→X X E n n X X =lim XX −→−m.s.表示为或者n n ∞→n →•均方收敛(mean square convergence)–随机变量序列以及满足,同时}{n X X li ∞<}{2nX E –m.s. 0}){(lim2=-∞→X X E n n X X =lim XX −→−m.s.表示为或者则n n ∞→n →m s •若,则X X n −→−m.s.∞<}{2X E 几乎必然收敛或依概率收敛都不能确保均方收敛•以概率分布收敛(convergence in distribution)–随机变量序列以及满足在任意连续的x}{n X X li )()(limx F x F X X n n =∞→–表示为 d. 或者X X n n =∞→lim XX n −→−d.•依据特征函数判断收敛–XX n −→−d.––)}({)}({X f E X f E n →)t ()t (XX nΦ→Φ.s .a ⇒XX −→−.p(Cauthy criteria)在不知道极限的情况下,判定随机变量序列收敛随机变量序列的收敛特性。
论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。
概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。
主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。
给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。
本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。
关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。
AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is a sequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship.This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows:1. Convergence of random variables the concept of theory;2. the convergence of several random variables between;From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: (4)1 几种收敛性定义 (4)2 依概率收敛与依分布收敛的关系 (5)3 r阶收敛与几乎处处收敛的关系 (11)4 依概率收敛与r阶收敛的关系 (13)5 几乎处处收敛与依概率收敛和依分布收敛的关系 (17)总结 (19)四种收敛性 (19)四种收敛蕴涵关系 (19)致谢 (21)参考文献 (22)引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。
概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。
主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。
给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。
本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。
关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。
AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is a sequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship.This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows:1. Convergence of random variables the concept of theory;2. the convergence of several random variables between;From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: (4)1 几种收敛性定义 (4)2 依概率收敛与依分布收敛的关系 (5)3 r阶收敛与几乎处处收敛的关系 (11)4 依概率收敛与r阶收敛的关系 (13)5 几乎处处收敛与依概率收敛和依分布收敛的关系 (17)总结 (19)四种收敛性 (19)四种收敛蕴涵关系 (19)致谢 (21)参考文献 (22)引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
本科毕业论文题目:随机变量序列的几种收敛性及其关系学院:数学与计算机学院班级:数学与应用数学2008级八班姓名:薛永丽指导教师:丁平仁职称:副教授完成日期:2012 年5月10 日随机变量序列的几种收敛性及其关系摘要:本文主要对随机变量序列的四种收敛性:a.e.收敛、依概率收敛、依分布收敛、r—阶收敛的概念、性质进行阐述;并结合具体实例讨论了它们之间的关系,进一步对概率论中依分布收敛的等价条件和一些依概率收敛的弱大数定律进行了具体的研究.关键字:随机变量序列收敛分布函数目录1.引言 .................................................................... 12.a.e.收敛、依概率收敛、依分布收敛、r —阶收敛的概念、性质以及它们之间的关系.2.1 a.e.收敛的概念及性质 ................................................................................................... 1 2.2 依概率收敛的概念及性质 .............................................................................................. 2 2.3依分布收敛的概念及性质 ............................................................................................... 3 2.4 r —阶收敛的概念及性质 .................................................................................................. 5 3.随机变量序列依分布收敛的等价条件. (6)4.随机变量∑=nk k n 11ξ依概率收敛的一些结果 (9)5.小结. .................................................................. 12 6.参考文献 (12)1.引言:在数学分析和实变函数中“收敛性”极为重要,特别在实变函数中对可测函数列收敛性的讨论。
第24卷哈尔滨师范大学自然科学学报Vol .24,No .22008第2期NAT URAL SC I E NCES JOURNAL OF HARB I N NOR MAL UN I V ERSI TY随机变量序列依概率收敛的几个性质朱永生(哈尔滨师范大学)【摘要】 对随机变量序列依概率收敛的问题进行研究进而得出一些结论.关键词:依概率收敛;随机变量序列;连续函数收稿日期:2007-1-3 笔者在原有随机变量序列依概率收敛性质基础上进一步研究得出几个系统的结论.定义:设有随机变量序列ξ1,ξ2,ξ3,…,若对任意的ε>0,有li m n →∞P (|ξn -ξ|<ε)=1,则称随机变量序列{ξn }依概率收敛于ξ,并记作li m n →∞ξnPξ或ξnPξ(n →∞).引理1 设随机变量序列{ξn }、{ηn }分别依概率收敛于a 与b (其中a 与b 是两个常数),则有①ξn +-×ηnP a +-×b ②ξn ÷ηn Pa ÷b 进一步利用归纳法可证明上述引理在有限次的四则运算下也是成立的,从而可推广如下:定理1 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,并且ξinPa i ,n →∞(i =1,2,…,k ),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (a 1,a 2,…,a k )≠±∞,则有Q (x 1,x 2,…,x k )PQ (a 1,a 2,…,a k ),n →∞成立.为了进一步推广上述定理,下面再给出一个定理.定理2 设随机变量序列{ξn }依概率收敛于ξ,f (x )为直线上的连续函数,则f (ξn )Pf (ξ).证明 ①若f (x )=∑mi =1a i x i是m 次多项式函数,由定理1知f (ξn )Pf (ξ)成立,结论为真.②现在证明一般情形.对任意的ε>0,δ>0,取M 充分大使得有P (|ξ|>M )>δ,又选取N 1充分大,使当n ≥N 1时,有P (|ξ-ξn |>1)<δ,于是有 P (|ξn |>M +1)≤P{(|ξ|>M )∪(|ξ-ξn |>1}<2δ对取定的M ,因为f (x )是连续函数,可以用多项式函数进行任意逼近,且在任意有限区间上是一致收敛的,从而有m 次多项式g m (x ),使有|f (x )-g m (x )|<ε3,x ∈[-(M +1),M +1].对取定的m 次多项式g m (x ),因为g m (ξn )Pg m (ξ),n →∞,故存在N 2,使当n ≥N 2时,有P (|g m (ξ)-g m (ξn )|≥ε3)<δ成立,又P (|f (ξ)-f (ξn )|≥ε)=P{(|f (ξ)-f (ξn )|≥ε)∩(A ∪B )}+P{(|f (ξ)-f (ξn )|≥ε)∩((A ∪B )}=I 1+I 2可以看出(A ∪B )∪(A ∪B )=(A ∪B )∪( A ∩ B )=Ω(A ∪B )∩(A ∪B )=Φ其中(A ∪B )=(|ξ|>M )∪(|ξn |>M +1)(A ∪B )=( A ∩ B )=(|ξ|≤M )∩(|ξn |≤M +1)那么当n ≥m ax {N 1,N 2}时,有I 1≤P (|ξ|>M )+P (|ξn |>M +1)<3δ,又|f (ξ)-f (ξn )|≥ε]|f (ξ)-g m (ξ)+g m (ξ)-g m (ξn )+g m (ξn )-f (ξn )|≥ε]|f (ξ)-g m (ξ)|≥ε3或|g m (ξ)-g m (ξn )|≥ε3或|g m (ξn )-f (ξn )|≥ε3.即(|f (ξ)-f (ξn )|≥ε)<{(|f (ξ)-g m (ξ)|≥ε3)∪(|g m (ξ)-g m (ξn )|≥ε3)∪(|g m (ξn )-f (ξn )|≥ε3)}.然而由上面可知,有下述事实成立P{(|f (ξ)-g m (ξ)|≥ε3)∩ A ∩ B }=P{(|f (ξ)-g m (ξ)|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}=0P{(|g m (ξn )-f (ξn )|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}=0,所以I 2≤P{(|g m (ξ)-g m (ξn )|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}≤P{|g m (ξ)-g m (ξn )|≥ε3)<δ从而有P (|f (ξ)-f (ξn )|≥ε)=I 1+I 2<4δ成立.由ε、δ的任意性即知f (ξn )Pf (ξ)成立.于是结论得证.进而可得定理3如下.定理3 若ξn Pc,则g (ξn )Pg (c ),其中c 是一个常数,g 是一个连续函数.从而可推广前述两个定理如下:定理4 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,g i (x )是一组连续函数,并且{ξin }Pξi ,n →∞(i =1,2,…,k ),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (g 1(ξ1),g 2(ξ2),…,g k (ξk ))≠±∞,则有Q (g 1(ξ1n ),g 2(ξ2n ),…,g k (ξkn ))PQ (g 1(ξ1),g 2(ξ2),…,g k (ξk ))(n →∞).例 若ξnPξ,ηnPη.则有(eξn+sinηn )/(1+e ξn)P(e ξ+sin η)/(1+e ξ)这是因为g 1(x )=e x,g 2(x )=sin x 为连续函数,Q (x,y )=x +y1+x为有理函数,从而易证.从定理3和上述定理4亦不难得出相应的下述定理5.定理5 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,g i (x )是一组连续函数,并且{ξin }Pc i ,n →∞(i =1,2,…,k,c i 为常数),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (g 1(c 1),g 2(c 2),…,g k (c k ))≠±∞,则有Q (g 1(ξ1n ),g 2(ξ2n ),…,g k (ξkn )PQ (g 1(c 1),g 2(c 2),…,g k (c k ))(n →∞).引理2 设ξnPa,ηnPb,又设函数g (x,y )在点(a,b )连续,则g (ξn ,ηn )Pg (a,b )证明 由函数g (x,y )在(a,b )的连续性知,对于任给的ε>0,必存在δ>0,使当|x -a |+|y -b |<δ时,|g (x,y )-g (a,b )|<ε,于是{|g (ξn ,ηn )-g (a,b )|≥ε}<{|ξn -a |+|ηn -b |≥δ}<{|ξn -a |≥δ2}∪{|ηn -b |≥δ2}因此,P{|g (ξn ,ηn )-g (a,b )|≥ε}≤P{|ξn -a |≥δ2}+P{|ηn -b |≥δ2}→0(n →∞)亦即li m n →∞P{|g (ξn ,ηn )-g (a,b )|<ε}=1.进而得出下述定理:定理6 设{ξ1n },{ξ2n },…,{ξkn }与{η1n },{η2n },…,{ηkn }分别是k 个随机变量序列g i (x,y )是一组二元连续函数,并且ξinPa i ,ηinPb i ,n →∞(i =1,2,…,k,a i ,b i 为常数),又Q (x 1,x 2,…,x k )是k 元变量有理函数,并且Q (g 1(a 1,b 1),…,g 2(a 2,b 2),…,g k (a k ,b k ))≠±∞,则有Q (g 1(ξ1n ,η1n ),g 2(ξ2n ,ξ2n ),g k (ξkn ,ηkn ))PQ (g 1(a 1,b 1),g 2(a 2,b 2),…,g k (a k ,b k ))(n →∞).例 若ξnPξ,ηnPη.则有(e ξn+ηn+sin ξnηn )/(1+e ξn ηn )P(eξ+η+sinξη)/(1+e ξη)83哈尔滨师范大学自然科学学报 2008年此例题由上述定理6很容易看出.由上述的引理2还可以推出引理1.分别取g (x,y )为x ±y,xy,xy(y ≠0),则可由引理2推论得到引理1,因此,引理1可以看作是引理2的特例.最后,还应该注意的是,依概率收敛不同于通常意义上的极限,随机变量序列ξnPξ不一定有ξn (ω)→ξ(ω),(ω∈Ω),甚至可能对每一个ω,ξn (ω)ξ(ω),(ω∈Ω).如取Ω=[0,1],R 是包含[0,1]中一切左闭右开区间的事件域,P 是定义在R 上的概率,且对于[a,b )<[0,1],满足P ([a,b ))=b -a,定义随机变量序列如下:η11(ω)≡1,η21(ω)=1,ω∈[0,12);0,ω∈[12,1)η22(ω)=1,ω∈[0,12);0,ω∈[12,1) …一般地,将[0,1)分成K 个等长的区间,定义ηk i (ω)=1,ω∈[i -1K ,iK);0,ω[i -1K ,iK). (i =1,2,…,K;K =1,2,…)显然,对任意ε>0,P (|ηk i |≥ε)≤1K,将ηk i 重新编号,令ξ1=η11,ξ2=η21,ξ3=η22,ξ4=η31,ξ5=η32,…则由上式可知,ξnP0,但对每一个ω∈Ω,由{ξn }的定义知,数列{ξn (ω)}中皆有无穷多个1和无穷多个0,因而{ξn (ω)}不收敛.参 考 文 献[1] 来向荣.简明概率论教程[M ].北京:北京工业大学出版社,2004.[2] 魏宗舒.概率论与数理统计教程[M ].北京:高等教育出版社,1983.[3] 严士健,王隽骧,刘秀芳.概率论基础[M ].北京:科学出版社,1983.[4] 王梓坤.概率论基础及其应用[M ].北京:科学出版社,1979.[5] Laha ,R.G .and Rohatgi ,B.K .Pr obability theory[M ].JohnW iley &s ons,1985.S OM E CONCLUSIONS OF THE CONVERGENTCHARACTER B Y PR OBABIL I T YZhu Yongsheng(Harbin Nor mal University )ABSTRACTA series of conclusi ons are given according t o researching int o the convergent character by p r obability in this paper .Keywords:Convergent character by p r obability;Random variable;Continuity functi on(责任编辑:王丹红)93第2期 随机变量序列依概率收敛的几个性质。
Several properties and of four arithmetic operations of four convergences of the random variable
sequence
作者: 孙飞
作者机构: 马鞍山师范高等专科学校,安徽马鞍山243041
出版物刊名: 新余学院学报
页码: 119-121页
年卷期: 2016年 第4期
主题词: 依概率收敛 几乎处处收敛 r-阶收敛 依分布收敛
摘要:以数列收敛的一些性质为依托,证明了随机变量序列的依概率收敛、几乎处处收敛、
r-阶收敛及依分布收敛这四种收敛的极限存在的充分必要条件、存在准则,并得出:依概率收敛
和几乎处处收敛与数列收敛性质一样,可以进行四则运算,而r-阶收敛只能进行加减运算,依分布收敛则不能进行四则运算。
随即变量序列两种收敛方式教程一:背景与定义 1、背景2、依概率收敛定义,随机变量序列 ,,,1n X X ,如果对于任何0>ε,()0||−−→−≥-∞→n nX XP ε,记X X n −→−Pr,等价于:对于任何0>ε,()0||−−→−>-∞→n n X X P ε,称随机变量序列 ,,,1n X X 依概率收敛于X 。
3、性质(1)b a Y X b Y a X Pn n P n P n +−→−+⇒−→−−→−,:证明{}{}⎭⎬⎫⎩⎨⎧≥-⎭⎬⎫⎩⎨⎧≥-⊂≥-+-⊂≥+-+2||2|)(||||)(||)()(|εεεεb Y a X b Y a X b a Y X n n n n n n()02||2|)(|2||2|)(||)()(|−−→−⎪⎪⎭⎫ ⎝⎛⎭⎬⎫⎩⎨⎧≥-+⎪⎪⎭⎫⎝⎛⎭⎬⎫⎩⎨⎧≥-≤⎪⎪⎭⎫⎝⎛⎭⎬⎫⎩⎨⎧≥-⎭⎬⎫⎩⎨⎧≥-≤≥+-+∞→n n nn n n n b Y P a XP b Y a X P b a Y X P εεεεε因此()0|)()(|−−→−≥+-+∞→n n nb a Y X P εba Y X Pn n +−→−+,同样可以证明(2)b a Y X b Y a X Pn n P n P n -−→−-⇒−→−−→−, (3)ab Y X b Y a X P n n P n P n −→−⇒−→−−→−, (4)b a Y X b b Y a X P n n P n P n //0,,−→−⇒≠−→−−→−4、,a X P n −→−函数()x g 在a 连续,则()()a g X g P n −→−. 证明:()x g 在a 连续,故,对于任何0>ε,存在0>δ,当δ≤-a x 时,一定有ε≤-)()(a g x g ,()()()()()()εδεδ≤-≤≤-⇒≤-⇒≤-a g X g P a X P a g X g a X n n n n ,现在,a X Pn −→−因此,对于任何0>δ ()1−−→−≤-∞→n n a X P δ,因此,∞→n 时()()()()11−−→−≤-≥≤-≥∞→n n n a X P a g X g P δε,()()()1−−→−≤-∞→n n a g X g P ε,()()()0−−→−>-∞→n n a g X g P ε,()()a g Xg Pn−→−二、切贝谢夫大数律n X X ,,1独立同分布,2)(,d X Var a EX i i ==,则anXX Pn−→−++ 1证明:特殊情况:贝努里大数律n X X ,,1独立同分布,()()p X P p X P i i ==-==1,10,则01−−→−⎪⎪⎭⎫ ⎝⎛>-++∞→n n p n X X P ε三、依分布收敛 1:背景和定义对于随机变量序列{},...2,1,=i X i 和某个随机变量X ,假定X 的cdf 为()x F ,若,对于()x F 得任何连续点x ,都成立()()x X P x X P ni ≤−−→−≤∞→,即 ()()x F x F n i −−→−∞→,则称随机变量序列{},...2,1,=i X i 依分布收敛到随机变量X。
依概率收敛性质的推广16牡丹江师范学院(自然科学~)2oo4.4依概率收敛性质的推广水朱永生崔继贤林立军.(?3哈师大呼兰学院数学系呼兰~5o5oo)(齐齐哈尔大学理学院齐齐哈尔161006) 摘要对依概率收敛的问题进行了研究,得出了几个系统结论.关键词随机变量;依概率收敛;连续函数有关依概率收敛的性质和依概率收敛的许多问题是研究随机现象统计规律性的基础理论,是研究随机变量序列最基本而又是非常重要的两种类型的根限定理——大数定律和中心极限定理不可缺少的重要工具.为此,我们对依概率收敛的性质进行了研究,得出了一些系统的结论.引理1设随机变量序列{,{}分别依概率收敛于随机变量与田,则i)+叼——+;ii)~r/——×.引理2设随机变量序列上a,a≠0是一个常数,且≠o,则一.na由上述结论可以推出下述定理:定理1设随机变量序列},{}分别依概率收敛于a与b(其中口与b是两个常数),则'一++①一—+a—b;—a+b.利用归纳法可证明定理1在有限次的四则运算下也是成立的,从而可推广如下定理:定理2设},{},…,}是k个随机变量序列,并且—P—cti,n—o.(i=1,2,…,),又Q(,,…,钆)是k元变量的有理函数,并且Q(a』,a2,…,cO,)≠±o.,则有Q(』,,…,)—Q(a』,a2,…,co,),no.成立.为进一步推广定理1和定理2,再引出下面一个引理.引理3设随机变量序列}依概率收敛于,)为直线上的连续函数,则,J).三.证明(1)若)=哦是m次多项式函数,由定理1知髑成立,结论为真.(2)证明一般情形.对任意的e>0,6>D,取M充分大,使得有Jp(If>)<6,又选取^,充分大,使当n≥Ⅳ时,有尸(I一f>1),于是有.P({lI>+1)≤P{(1l>)u(I一I>1)}<2收稿日期:2004-06—30对取定的,因为)是连续函数,可以用多项式函数进行任意逼近,且在任意有限区间上是一致收敛的,从而有肌次多项式),使))f<要一,∈[一(+1),M+1].对取定的肌次多项式),因为—,no.故存在Ⅳ2,使当n≥Ⅳ2时,有Jp(1呜l≥)J成立,又/9(一)f≥)=P{(L,(一)l≥)n(AuB)}+(一f≥)n(Au)}:,+,2.可以看出.(AuB)u()=(ALJB)U(A~f')Q, (Aun()='|).其中(I4uB)=(ff>)u(ff>+1), ()=(n百)==({f≤)f-)(II≤朋_+1) 当n≥max{N,Ⅳ2}时,有,l≤Jp(If>)+P(ff>+1)<36, 又一/f≥j—+—-Jq~JI≥jI.fie)-am(C)l≥5-或I)一l≥或I)一,㈥f≥.即()一f㈥f≥)c{(一(I≥)u(I一gI≥孚)u(f-A~JI≥5--)}.由上可知,有下述事实成立P{(I/)j≥孚)nn百)J=P{(一(f≥)n(fI≤坳n(I£I)}=o,J(I)一熊)I≥孚)n(IIn(I≤/)}=0,J所以,2≤P{(f㈣一gm㈥f≥孚)f"l(II≤)f"l(自然科学版)2004.4牡丹江师范学院(JJ≤朋r+1)J≤P{J岛,(J≥}J<J从而有J≥占)=11+12<46成立.由占,6的任意性即知/㈥艄成立,结论得证.进而可得推论1若&c,则g㈥gc),其中c是一个常数,g是一个连续函数.定理3设{J,{},…,fJ是k个随机变量序列,)是一组连续函数,并且己.毒,凡一∞(=l,2,…,),又Q(,,…,札)是k元变量的有理函数,并且Q(gl),g22),…,))≠±∞,则有Q(gl(1.),g2),…,g'(靠))Q(gl-),&),…,))(凡一∞).由定理3和推论1不难得出推论2设{l,1.l,…,{}是k个随机变量序列.g,ix)是一组连续函数,并且矗"凡一∞(=1,2,…,,C为常数),又Q(,一,瓢)是k元变量的有理函数,并且Q(gc),g2(C),…, (c))≠±∞,则有Q(gJ(.),gz(),…,gk(缸))三Q(gl(C1),g2(c2),'.-,(c))(_+∞).引理4设,,又设函数g,y)在点(6)连续,则g,)6).证明由函数y)在6)的连续性知,对于任给的e>O,必存在6>0,当J一口J+Jy-bJ<6时,J,y)-g(a,b)J<占,于是{lg,叩)一6)l≥)C{l一nl+l,7一6l?≥6Jc{I一口I≥孚Ju{I一bI≥}J,因此P(1,)—6)l≥占J≤P{I一nI≥下6l+P{I'r'/n-bI≥孚}一0,(n一∞)即limP(1,)_g,b)l<J=1.从而得出定理4设{},{},…,{靠}与{J,{r/2.J,…,{)分别是k个随机变量序列,,y)是一组二元连续函数,并且矗ai,‰一jb,凡一∞(1,2,…,,,bi为常数),又Q(j,:,…,)是k元变量有理函数,并且Q(g-,61),,62),…,g^(,6'))≠±∞,则有Q(g(,),g2(,),…,((缸,'))—Q(g1@,b,g2,6'j,…,(,b))(凡∞).若分别取g(x,y)为x+-y,xy,旦(y≠D),则由引理4可得到定理1,定理1可以看作是引理4的特例.应该注意的是,依概率收敛不同于通常意义上的极限,随机变量序列£不一定有()一(),(∈),甚至可能对每一个,()十(),(∈).参考文献l魏宗舒等.概率论与数理统计教程[MI.北京:高等教育出版社,19832M?费史【波兰伸率论与数理统计【M1.王福保译.上海:同济大学出版社,1978《参考例题》证法补充丰孙林之(牡丹江师范学院牡丹江157012)摘要数学全国制普通高中教科书(试验修订本?必修)(2o02年l2月第2版;2004年4月黑龙江第三次印刷)第六章第27页例1给出了3种证法,本文又给出了补充证法l5种,另有l6种证法由读者类似地给出.关键词证法补充;单位圆;向量积原题已知b,C,d都是实数,且Ⅱ2+62==,,c+d,求证:lac+bdl~<1.证法1(三角代换)由已知aZ+b=.c+,收稿El期:2004—05-26编辑:李志敏令a:COS,b=sinor,C=COS,d=sin/3,则lac+bdl=lcosOtcos/3+sinOtsin/31=[COSI≤1.。
§2 依概率收敛与弱大数定律一、依概率收敛 二、弱大数定律一、依概率收敛尽管分布函数完全反映了随机变量取值的分布规律, 但是两个不同的随机变量可以有相同的分布函数. 例如, 向区间[0,1]上随机等可能投点,ω表示落点的位置,定义ξω(),,=⎧⎨⎩10 ωω∈∈[,.](.,]005051ηω(),,=⎧⎨⎩01 ωω∈∈[,.](.,]005051. (1) 则ξ和η具有相同的分布函数F(x)=⎪⎩⎪⎨⎧,1,2/1,0 .1,10,0≥<≤<x x x(2)如果定义ξξn =, n ≥1, 则ξηn d−→−, 但||ξηn -≡1. 这表明分布函数收敛性并不能反映随机变量序列取值之间的接近程度. 为此需要引入另外的收敛性.定义1 设ξ和ξn 是定义在同一概率空间 (Ω,F, P)上的随机变量序列. 如果对任意ε>0,lim (||)n n P →∞-≥ξξε=0, (3)或lim (||)n n P →∞-<ξξε=1,')3(则称ξn 依概率收敛(convergence in probability)于ξ,记作ξn P−→−ξ. 注 定义1要求所有ξ和ξn 的定义域相同.ξn P−→−ξ可直观地理解为:除去极小的可能性,只要n 充分大,ξn 与ξ的取值就可以任意接近.从上面例子可以看出, 由ξn d −→−ξ并不能导出ξn P−→−ξ. 关于这两种收敛性之间的关系,我们有下面的定理.定理1 设ξ和ξn 是定义在概率空间 (Ω,F, P)上的随机变量序列.1. 如果ξn P −→−ξ, 则 ξn d−→−ξ. 2. 如果ξn dc −→−, c 为常数,则ξn Pc −→−. 证 1. 设F 和F n 分别是ξ和ξn 的分布函数,x 表示F 的连续点. 任意给定ε>0,(ξεξεξξεξ≤-=≤-≤≤->x x x x x n n )(,)(,)⊆≤-≥()()ξξξεn n x ,因此F(x -≤+-≥εξξε)()()F x P n n .令n →∞, 由于ξn P−→−ξ, 故P P n n ()(||)ξξεξξε-≥≤-≥→0, 从而 F(x-≤→∞ε)lim ()n n F x . (4)类似地()(,)(,)ξξξεξξεn n n x x x x x ≤=≤≤+≤>+⊆≤+-≥()()ξεξξεx n ,从而F x F x P n n ()()()≤++-≥εξξε.令n →∞, 得lim ()()n n F x F x →∞≤+ε. (5)连接(4) (5)两式,对任意ε>0, 有F(x-≤→∞ε)lim ()n n F x ≤lim ()()n n F x F x →∞≤+ε.由于F 在x 点连续,令ε→0, 就得lim ()()n n F x F x →∞=, 即ξn d−→−ξ. 2. 如果ξn dc −→−,则 lim (),,n n F x →∞=⎧⎨⎩01 x cx c <≥.因此对任意ε>0,有)()(1)()()|(|εξεξεξεξεξ-≤++<-=-≤++≥=≥-c P c P c P c P c P n n n n n=1-+-+-→F c F c n n ()(),εε00 (n →∞).定理证毕.例1 设{ξn }独立同分布,都为[0, a]上的均匀分布, ηξξξn n =max{,,,}12 .求证ηn Pa −→−.证 由定理1, 只须证明ηn 的分布函数G x D x a n W()()−→−-, 其中D(x-a)是在a 点的退化分布函数.从第二章知道:若ξk 的分布函数为F(x), 则ηn 的分布函数为G x F x n n ()[()]=. 现在ξk 的分布函数为F(x)=⎪⎩⎪⎨⎧,1,/,0a x .,0,0a x a x x ≥<≤<故G x x a n n (),(/),,=⎧⎨⎪⎩⎪01 x x a x a <≤<≥00 → D(x-a)=01,,⎧⎨⎩x ax a <≥(n →∞).证毕.依概率收敛有许多性质类似于微积分中数列极限的性质, 下面仅举两个例子说明这类问题的证题方法. 大部分性质放在习题中留给读者自己证明.例2 设ξ和ξn 是定义在概率空间 (Ω,F, P)上的随机变量序列. 求证:1. 若ξn P −→−ξ,ξn P−→−η, 则P(ξ=η)=1. 2. 若ξn P −→−ξ, f 是 (-∞, ∞) 上的连续函数,则f (ξn )Pf −→−()ξ. 证 1. 任意给定ε>0,我们有(|ξηεξξεξηε-≥⊆-≥-≥|)(||/)(||/)n n 22 ,从而P(|ξηεξξεξηε-≥≤-≥+-≥|)(||/)(||/)P P n n 22.由ξn P −→−ξ,ξn P−→−η, 并注意到上式左方与n 无关, 得P(|ξηε-≥|)=0. 进一步, P(|ξηξηξη->=-≥≤-≥=∞=∞∑|)((||/))(||/)01111P n P n n n =0,即P(ξ=η)=1.2. 任意给定εε,'>0,存在M>0, 使得P(|ξ|≥≤M)P(|ξ|≥<'M /)/24ε.(6)由于ξn P−→−ξ, 故存在N 11≥, 当n ≥N 1时, P (||/)/ξξεn M -≥<'24, 因此2/4/4/)2/|(|)2/|(|)|(|εεεξξξξ'='+'<≥+≥-≤≥M P M P M P n n (7)又因f (x) 在 (-∞,∞)上连续,从而在[-M, M]上一致连续. 对给定的ε>0, 存在δ>0, 当|x-y|<δ时,|f (x)-f (y)|<ε. 这样P(|()()|)(||)(||)(||)f f P P M P M n n n ξξεξξδξξ-≥≤-≥+≥+≥. (8)对上面的δ, 存在N 21≥, 当n ≥N 2时,P (||)/ξξδεn -≥<'4.(9)结合(6) (7) (8) (9)式, 当n ≥max(,)N N 12时,P(|f f n ()()|)///ξξεεεεε-≥<'+'+'='424,从而 f (ξn )Pf −→−()ξ. 为了进一步讨论依概率收敛的条件,我们给出下列切比雪夫不等式(第三章§2)的推广. 定理2 (马尔科夫不等式) 设ξ是定义在概率空间 (Ω, F, P)上的随机变量,f (x)是[0, ∞) 上非负单调不减函数,则对任意x >0,P(|ξ| > x)≤Ef f x (||)()ξ.(10)证 当Ef(|ξ|)=∞时,(10)式显然成立. 设Ef(|ξ|)<∞,ξ的分布函数为F(x). 因f (x) 单调不减,故 |y| >x 时, f(|y f x |)()≥,从而⎰⎰>>≤=>xy xy y dF x f y f y dF x P ||||)()(|)(|)()|(|ξ⎰+∞∞-≤)(|)(|)(1y dF y f x f)(|)(|x f Ef ξ=.定理3 ξn P−→−ξ 当且仅当 E ||||ξξξξn n -+-221→0. 证 充分性:注意到f (x)=x x 221+在[0, ∞]上非负单调不减, 对任意ε>0, 由定理2P(|ξξεεεξξξξn n n E ->≤+-+-|)||||112222→0,即ξnP−→−ξ.必要性:设ξn-ξ的分布函数是F xn(). 对任意ε>0,)(1)(1)(1||1||||22||222222xdFxxxdFxxxdFxxEnxnxnnn⎰⎰⎰≥<∞∞-+++=+=-+-εεξξξξ≤++≥⎰εεε221dF xnx()|\=εεξξε221++-≥Pn(||). (11)由于ξnP−→−ξ, 在(11)式两边先令n→∞, 再让ε→0,即得证E||||ξξξξnn-+-221→0.二、弱大数定律考虑随机试验E中的事件A,假设其发生的概率为p (0 < p <1), 现在独立重复地做试验n次——n重贝努里试验. 令ξi =⎧⎨⎩1,,次试验中不出现在第次试验中出现在第iAiA, 1≤≤i n.则P(ξi=1)=p, P(ξi=0)=1-p. S n iin==∑ξ1是做试验E n次后A发生的次数,可能值0,1,2,…,n, 视试验结果而定. 熟知E Snn=p. 在第一章§1中曾经指出: 当∞→n时频率nSn"稳定到"(在某种意义下收敛于)概率p. 我们想知道Snn与p之间的差究竟有多大.首先应该意识到不可能期望对任意给定的0<ε<1, 当n充分大时, |Snn-p|≤ε对所有试验结果成立. 事实上,当0 < p <1,P(Snn=1)=P(ξ1=1,…,ξn=1)=pn,P(Snn=0)=P(ξ1=0,…,ξn=0)=(1-pn),它们都不为零. 而在第一种情况,取ε<1-p,不论n多大,|Snn-p|=1-p >ε; 在第二种情况,取ε<p, 则有|Snn-p|= p >ε.然而,当n充分大后,事件{Snn=1}和{Snn=0}发生的可能性都很小. 一般来说,自然地希望当n充分大以后,出现{|Snn-p|≥ε}的可能性可以任意地小. 这一事实最早由贝努里发现.定理4 (贝努里大数定律) 设{ξn }是一列独立同分布的随机变量,P(ξn =1)=p, P(ξn =0)=1-p,0 < p <1, 记S n ii n==∑ξ1, 则S nnP p −→−. 继贝努里之后,人们一直试图对一般的随机变量建立类似的结果.定义2 设{ξn }是定义在概率空间 (Ω, F, P)上的随机变量序列,如果存在常数列{a n }和{b n }使得101a b n k n Pk n ξ-−→−=∑, (n →∞),(12)则称{ξn }服从弱大数定律( weak law of large numbers), 简称{ξn }服从大数定律.定理5 (切比雪夫大数定律) 设{ξn }是定义在概率空间 (Ω,F, P)上的独立随机变量序列,E ξn =μn , Var ξn =σn 2. 如果10221n k k n σ=∑→,则{ξn }服从弱大数定律,即11011n n k k n k Pk n ξμ-−→−==∑∑.证 考察随机变量11n k k n ξ=∑, 因E(11n k k n ξ=∑)=11n k k n μ=∑, Var(11n k k nξ=∑)=1221n kk n σ=∑,用第三章§2的切比雪夫不等式,得P(|11n k k k n ()|ξμ-=∑≥ε)≤12εVar(11n k k nξ=∑)=12ε(1221n k k n σ=∑)→0.此即所证.注1 贝努里大数定律是切比雪夫大数定律的特例.注2 如果条件“{ξn }独立”被“{ξn }两两不相关”所代替,定理5依然成立. 更一般地, 由该定理的证明容易看出:如果取消条件“{ξn }独立”,但条件“1221n k k n σ=∑→0”改为“12n Var(ξk k n =∑1)→0”, 则定理5的结论仍然成立, 称为“马尔科夫大数定律”.如果{ξn }不仅独立,而且同分布,则可以改进定理5如下:定理6(辛钦大数定律) 设{ξn }是定义在概率空间 (Ω, F, P)上的独立同分布随机变量序列,E|ξ1|<∞. 记E ξ1=μ,S n kk n==∑ξ1, 则{ξn }服从弱大数定律,即 S n n P−→−μ.证 分别令)(t f 与)(t f n 为ξ1与S n / n 的特征函数. 既然{ξn }相互独立同分布,那么)(t f n =n n t f ))/((. 另外, E 1ξ=μ, 所以由泰勒展开式知)(t f =1+i )(t o t +μ,t →0.(13)对每个t ∈R,)/(n t f =1+i )/1(/n o n t +μ, n →∞,(14))(t f n =(1+i )/1(/n o n t +μ)n i t e →μ, n →∞.由于ei tμ恰好是集中单点μ的退化分布的特征函数,运用第一节的逆极限定理即可知道S n n d /−→−μ. 再根据定理1得S n n P/−→−μ. 定理证毕.例2 设ξk 有分布列k k s s -⎛⎝ ⎫⎭⎪0505.., s<1 /2为常数,且{ξk }相互独立. 试证{ξk }服从弱大数定律. 证 已知ξk 有分布列k k s s -⎛⎝ ⎫⎭⎪0505..,所以E ξk =0, Var ξk =k s 2. 当s<1/ 2时, 121n Var k k n ξ=∑=11022221211n k n n n s sk n s k n <=→=-=∑∑.另外, {ξk }又是相互独立的,所以{ξk }服从切比雪夫大数定律,即11n k k nξ=∑P−→−0. 例3 设{ξk }相互独立, 密度都为 p(x)=20113/,,x x x ⎧⎨⎩≥<,求证{ξk }服从大数定律.证 {ξk }独立同分布, E ξk =xp x dx()-∞∞⎰=2, 所以{ξk }服从辛钦大数定律.例4 设{ξk }独立同分布, E ξk =μ, Var ξk =σ2. 令ξξn k k n n ==∑11, S n n k n k n 2211=-=∑()ξξ.求证: S n P22−→−σ. 证S n nk n k n 2211=-=∑()ξξ=121n k n k n (()())ξμξμ---=∑=---=∑1221n k n k n()()ξμξμ.(15)由辛钦大数定律知 ξμn P −→−,从而()ξμn P -−→−20. 再因{(ξμk -)2)独立同分布,E(ξμk -)2=Var ξk =σ2, 故{(ξμk -)2)也服从辛钦大数定律,即∑μ-ξ=n 1k 2k )(n 12P σ−→−. 由(15)式与依概率收敛的性质(习题18),S n P 22−→−σ.注 在数理统计中,ξn 称为样本均值,nn S n -12称为样本方差. 辛钦大数定律表明样本均值依概率收敛于总体均值. 上述例子则表明样本方差依概率收敛于总体方差.最后,给出随机变量序列的另一种收敛性概念.定义3 设ξ和n ξ, n ≥1, 是定义在同一概率空间(Ω,F, P)上的随机变量序列,E ||ξr<∞, E||ξn r<∞, n ≥1, 0 < r <∞. 如果 E ||ξξn r-→0,(16)则称{ξn } r-阶平均收敛(convergence in the mean of order r)于ξ,记作ξξn Lr−→−. 如果存在0< r <∞, ξξn L r −→−, 令rx x f ||)(=,并对ξξn -应用马尔科夫不等式,可推出ξξn P−→−. 然而下例说明其逆不成立. 例5 定义P(ξn =n) =13log()n +,P(ξn =0) =1-13log()n +, n=1,2,…. 易知,ξn P −→−0, 但对任何 0 < r<∞,E ||log()ξn rrn n =+→∞3, (n →∞).即0−→−rLn ξ不成立.。
概率论依概率收敛
依概率收敛,别称随机收敛,应用于概率论与数理统计。
依概率收敛在概率论中,依概率收敛是随机变量收敛的方式之一。
一个随机变量序列
依概率收敛到某一个随机变量X,指的是Xn和X之间存在一定
差距的可能性将会随着n的增大而趋向于零。
依概率收敛是测度论中的依测度收敛概念在概率论中的特例。
依概率收敛概念:
1、依概率收敛是一种常见的收敛性质。
依概率收敛比依分布收
敛更强,比平均收敛则要弱。
2、如果一个随机变量序列依概率收敛到某一个随机变量,则它
们也一定依分布收敛到这个随机变量。
反过来则不然:只有当一个随机变量序列依分布收敛到一个常数的时候,才能够推出它们也依概率收敛到这个常数。
第24卷哈尔滨师范大学自然科学学报Vol .24,No .22008第2期NAT URAL SC I E NCES JOURNAL OF HARB I N NOR MAL UN I V ERSI TY随机变量序列依概率收敛的几个性质朱永生(哈尔滨师范大学)【摘要】 对随机变量序列依概率收敛的问题进行研究进而得出一些结论.关键词:依概率收敛;随机变量序列;连续函数收稿日期:2007-1-3 笔者在原有随机变量序列依概率收敛性质基础上进一步研究得出几个系统的结论.定义:设有随机变量序列ξ1,ξ2,ξ3,…,若对任意的ε>0,有li m n →∞P (|ξn -ξ|<ε)=1,则称随机变量序列{ξn }依概率收敛于ξ,并记作li m n →∞ξnPξ或ξnPξ(n →∞).引理1 设随机变量序列{ξn }、{ηn }分别依概率收敛于a 与b (其中a 与b 是两个常数),则有①ξn +-×ηnP a +-×b ②ξn ÷ηn Pa ÷b 进一步利用归纳法可证明上述引理在有限次的四则运算下也是成立的,从而可推广如下:定理1 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,并且ξinPa i ,n →∞(i =1,2,…,k ),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (a 1,a 2,…,a k )≠±∞,则有Q (x 1,x 2,…,x k )PQ (a 1,a 2,…,a k ),n →∞成立.为了进一步推广上述定理,下面再给出一个定理.定理2 设随机变量序列{ξn }依概率收敛于ξ,f (x )为直线上的连续函数,则f (ξn )Pf (ξ).证明 ①若f (x )=∑mi =1a i x i是m 次多项式函数,由定理1知f (ξn )Pf (ξ)成立,结论为真.②现在证明一般情形.对任意的ε>0,δ>0,取M 充分大使得有P (|ξ|>M )>δ,又选取N 1充分大,使当n ≥N 1时,有P (|ξ-ξn |>1)<δ,于是有 P (|ξn |>M +1)≤P{(|ξ|>M )∪(|ξ-ξn |>1}<2δ对取定的M ,因为f (x )是连续函数,可以用多项式函数进行任意逼近,且在任意有限区间上是一致收敛的,从而有m 次多项式g m (x ),使有|f (x )-g m (x )|<ε3,x ∈[-(M +1),M +1].对取定的m 次多项式g m (x ),因为g m (ξn )Pg m (ξ),n →∞,故存在N 2,使当n ≥N 2时,有P (|g m (ξ)-g m (ξn )|≥ε3)<δ成立,又P (|f (ξ)-f (ξn )|≥ε)=P{(|f (ξ)-f (ξn )|≥ε)∩(A ∪B )}+P{(|f (ξ)-f (ξn )|≥ε)∩((A ∪B )}=I 1+I 2可以看出(A ∪B )∪(A ∪B )=(A ∪B )∪( A ∩ B )=Ω(A ∪B )∩(A ∪B )=Φ其中(A ∪B )=(|ξ|>M )∪(|ξn |>M +1)(A ∪B )=( A ∩ B )=(|ξ|≤M )∩(|ξn |≤M +1)那么当n ≥m ax {N 1,N 2}时,有I 1≤P (|ξ|>M )+P (|ξn |>M +1)<3δ,又|f (ξ)-f (ξn )|≥ε]|f (ξ)-g m (ξ)+g m (ξ)-g m (ξn )+g m (ξn )-f (ξn )|≥ε]|f (ξ)-g m (ξ)|≥ε3或|g m (ξ)-g m (ξn )|≥ε3或|g m (ξn )-f (ξn )|≥ε3.即(|f (ξ)-f (ξn )|≥ε)<{(|f (ξ)-g m (ξ)|≥ε3)∪(|g m (ξ)-g m (ξn )|≥ε3)∪(|g m (ξn )-f (ξn )|≥ε3)}.然而由上面可知,有下述事实成立P{(|f (ξ)-g m (ξ)|≥ε3)∩ A ∩ B }=P{(|f (ξ)-g m (ξ)|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}=0P{(|g m (ξn )-f (ξn )|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}=0,所以I 2≤P{(|g m (ξ)-g m (ξn )|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}≤P{|g m (ξ)-g m (ξn )|≥ε3)<δ从而有P (|f (ξ)-f (ξn )|≥ε)=I 1+I 2<4δ成立.由ε、δ的任意性即知f (ξn )Pf (ξ)成立.于是结论得证.进而可得定理3如下.定理3 若ξn Pc,则g (ξn )Pg (c ),其中c 是一个常数,g 是一个连续函数.从而可推广前述两个定理如下:定理4 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,g i (x )是一组连续函数,并且{ξin }Pξi ,n →∞(i =1,2,…,k ),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (g 1(ξ1),g 2(ξ2),…,g k (ξk ))≠±∞,则有Q (g 1(ξ1n ),g 2(ξ2n ),…,g k (ξkn ))PQ (g 1(ξ1),g 2(ξ2),…,g k (ξk ))(n →∞).例 若ξnPξ,ηnPη.则有(eξn+sinηn )/(1+e ξn)P(e ξ+sin η)/(1+e ξ)这是因为g 1(x )=e x,g 2(x )=sin x 为连续函数,Q (x,y )=x +y1+x为有理函数,从而易证.从定理3和上述定理4亦不难得出相应的下述定理5.定理5 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,g i (x )是一组连续函数,并且{ξin }Pc i ,n →∞(i =1,2,…,k,c i 为常数),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (g 1(c 1),g 2(c 2),…,g k (c k ))≠±∞,则有Q (g 1(ξ1n ),g 2(ξ2n ),…,g k (ξkn )PQ (g 1(c 1),g 2(c 2),…,g k (c k ))(n →∞).引理2 设ξnPa,ηnPb,又设函数g (x,y )在点(a,b )连续,则g (ξn ,ηn )Pg (a,b )证明 由函数g (x,y )在(a,b )的连续性知,对于任给的ε>0,必存在δ>0,使当|x -a |+|y -b |<δ时,|g (x,y )-g (a,b )|<ε,于是{|g (ξn ,ηn )-g (a,b )|≥ε}<{|ξn -a |+|ηn -b |≥δ}<{|ξn -a |≥δ2}∪{|ηn -b |≥δ2}因此,P{|g (ξn ,ηn )-g (a,b )|≥ε}≤P{|ξn -a |≥δ2}+P{|ηn -b |≥δ2}→0(n →∞)亦即li m n →∞P{|g (ξn ,ηn )-g (a,b )|<ε}=1.进而得出下述定理:定理6 设{ξ1n },{ξ2n },…,{ξkn }与{η1n },{η2n },…,{ηkn }分别是k 个随机变量序列g i (x,y )是一组二元连续函数,并且ξinPa i ,ηinPb i ,n →∞(i =1,2,…,k,a i ,b i 为常数),又Q (x 1,x 2,…,x k )是k 元变量有理函数,并且Q (g 1(a 1,b 1),…,g 2(a 2,b 2),…,g k (a k ,b k ))≠±∞,则有Q (g 1(ξ1n ,η1n ),g 2(ξ2n ,ξ2n ),g k (ξkn ,ηkn ))PQ (g 1(a 1,b 1),g 2(a 2,b 2),…,g k (a k ,b k ))(n →∞).例 若ξnPξ,ηnPη.则有(e ξn+ηn+sin ξnηn )/(1+e ξn ηn )P(eξ+η+sinξη)/(1+e ξη)83哈尔滨师范大学自然科学学报 2008年此例题由上述定理6很容易看出.由上述的引理2还可以推出引理1.分别取g (x,y )为x ±y,xy,xy(y ≠0),则可由引理2推论得到引理1,因此,引理1可以看作是引理2的特例.最后,还应该注意的是,依概率收敛不同于通常意义上的极限,随机变量序列ξnPξ不一定有ξn (ω)→ξ(ω),(ω∈Ω),甚至可能对每一个ω,ξn (ω)ξ(ω),(ω∈Ω).如取Ω=[0,1],R 是包含[0,1]中一切左闭右开区间的事件域,P 是定义在R 上的概率,且对于[a,b )<[0,1],满足P ([a,b ))=b -a,定义随机变量序列如下:η11(ω)≡1,η21(ω)=1,ω∈[0,12);0,ω∈[12,1)η22(ω)=1,ω∈[0,12);0,ω∈[12,1) …一般地,将[0,1)分成K 个等长的区间,定义ηk i (ω)=1,ω∈[i -1K ,iK);0,ω[i -1K ,iK). (i =1,2,…,K;K =1,2,…)显然,对任意ε>0,P (|ηk i |≥ε)≤1K,将ηk i 重新编号,令ξ1=η11,ξ2=η21,ξ3=η22,ξ4=η31,ξ5=η32,…则由上式可知,ξnP0,但对每一个ω∈Ω,由{ξn }的定义知,数列{ξn (ω)}中皆有无穷多个1和无穷多个0,因而{ξn (ω)}不收敛.参 考 文 献[1] 来向荣.简明概率论教程[M ].北京:北京工业大学出版社,2004.[2] 魏宗舒.概率论与数理统计教程[M ].北京:高等教育出版社,1983.[3] 严士健,王隽骧,刘秀芳.概率论基础[M ].北京:科学出版社,1983.[4] 王梓坤.概率论基础及其应用[M ].北京:科学出版社,1979.[5] Laha ,R.G .and Rohatgi ,B.K .Pr obability theory[M ].JohnW iley &s ons,1985.S OM E CONCLUSIONS OF THE CONVERGENTCHARACTER B Y PR OBABIL I T YZhu Yongsheng(Harbin Nor mal University )ABSTRACTA series of conclusi ons are given according t o researching int o the convergent character by p r obability in this paper .Keywords:Convergent character by p r obability;Random variable;Continuity functi on(责任编辑:王丹红)93第2期 随机变量序列依概率收敛的几个性质。