量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#5
- 格式:pdf
- 大小:164.66 KB
- 文档页数:4
第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b bTm3109.2 ,×´==-l 。
证明:由普朗克黑体辐射公式:由普朗克黑体辐射公式:n n p nr n nd ec hd kTh 11833-=, 及ln c=、l ln d c d 2-=得1185-=kThcehc l l l p r ,令kT hc x l =,再由0=l r l d d ,得l .所满足的超越方程为所满足的超越方程为15-=x x e xe用图解法求得97.4=x ,即得97.4=kT hc m l ,将数据代入求得C m 109.2 ,03×´==-b b T ml 1.2.在0K 附近,钠的价电子能量约为3eV ,求de Broglie 波长. 解:010A 7.09m 1009.72=´»==-mEh p h l # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。
波长。
解:010A 63.12m 1063.1232=´»===-mkT h mE h p h l其中kg 1066.1003.427-´´=m ,123K J 1038.1--×´=k # 1.4利用玻尔—索末菲量子化条件,求:利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。
)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
)在均匀磁场中作圆周运动的电子的轨道半径。
已知外磁场T 10=B ,玻尔磁子123T J 10923.0--×´=B m ,求动能的量子化间隔E D ,并与K 4=T 及K 100=T 的热运动能量相比较。
的热运动能量相比较。
解:(1)方法1:谐振子的能量222212q p E mw m +=可以化为()12222222=÷÷øöççèæ+mw m E q Ep的平面运动,轨道为椭圆,两半轴分别为22,2mw m Eb E a ==,相空间面积为,相空间面积为,2,1,0,2=====òn nh EE ab pdq nw pp 所以,能量 ,2,1,0,==n nh E n方法2:一维谐振子的运动方程为02=+¢¢q q w ,其解为,其解为()j w +=t A q sin速度为速度为 ()j w w +=¢t A q c o s ,动量为()j w mw m +=¢=t A q p cos ,则相积分为,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=òòò2)cos 1(2cos 220220222mw j w mw j w mw , ,2,1,0=n nmw nh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
力学(第二版)漆安慎习题解答第六章万有引力定律第六章万有引力定律一、基本知识小结⒈ 开普勒定律⑴ 行星沿椭圆轨道绕太阳运行,太阳位于一个焦点上⑵ 行星位矢在相等时间内扫过相等面积⑶ 行星周期平方及半长轴立方成正比 T 2/a 3=C⒉ 万有引力定律 2r mM G f =⒊ 引力势能 r mM p G r E -=)(⒋ 三个宇宙速度环绕速度 s km Rg V /9.71==脱离速度 122V V == 11.2 km/s逃逸速度 V 3 = 16.7 km/s.二、思考题解答6.1卡文迪什在1798年17卷《哲学学报》发表他关于引力常测量时,提到他实验是为测定出地球的密度。
试为什么测出G,就能测出地球的密度?答:设地面物体质量为m,地球质量为M,地球半径为R则二者之间的万有引力约为:由上式可以看出R,g都是可测量量,只要测出G,就能通过上间接测出地球密度。
6.2你有什么办法用至少那些可测量量求出地球质量、太阳质量、及地球太阳之间的距离?答:1)地球质量:设地面物体质量为m,地球质量为M,地球半径为R则二者之间的万有引力约为:因此,只要测出了地球半径R,就能求出地球质量M。
2)地球太阳之间的距离:设地球绕太阳运动的周期为,轨道半径为,太阳系的另一行星(离地球越近越好的周期为,轨道半径为,根据开普勒第三定律有:,即,由于人类早就对行星进行长期观测了, ,为已知,只需测出另一行星的轨道半径(这一距离需用视差法测量,需两个以上的天文台同时测量),便可知地球太阳之间的距离r。
3)太阳的质量:设太阳质量为M,地球质量为m,地球太阳之间的距离r,则二者之间的万有引力约为:,因此只需测得地球太阳之间的距离r,就可求出太阳质量为M。
三、习题解答6.1.1设某行星绕中心天体以公转周期T 沿圆轨道运行,试用开普勒第三定律证明:一个物体由此轨道自静止而自由下落至中心天体所需的时间为π2Tt =.证明:物体自由下落的加速度就是在行星上绕中心天体公转的向心加速度: 2222/41)2(T R RT R R v a ππ=⋅== 由自由落体公式:π2221/2,T a R t at R === (此题原来答案是:24Tt =,这里的更正及解答仅供参考)6.2.1 土星质量为5.7×1026kg ,太阳质量为2.0×1030kg ,两者的平均距离是1.4×1012m.⑴太阳对土星的引力有多大?⑵设土星沿圆轨道运行,求它的轨道速度。