第三讲 机器人的结构设计
- 格式:ppt
- 大小:4.91 MB
- 文档页数:64
机器人的组成结构及原理1.引言机器人是一种可以执行各种任务的自动化设备,由多个组成部分组成。
本文将探讨机器人的组成结构以及其原理。
2.机器人的组成结构2.1机械结构机械结构是机器人的物理结构,它决定了机器人的外形、尺寸和运动方式。
机械结构一般由连杆、齿轮、轴承、电机等组件构成。
连杆用于连接各个部件,齿轮用于传动力,轴承用于减小摩擦,电机用于提供动力。
2.2电子结构电子结构包括机器人的传感器和执行器。
传感器用于获取周围环境的信息,如光线、声音、温度等。
常见的传感器包括摄像头、声音传感器、温度传感器等。
执行器用于使机器人实际执行任务,如电机、液压驱动系统等。
2.3控制系统控制系统是机器人的大脑,负责控制机器人的运动和执行任务。
控制系统通常由微处理器、逻辑电路、软件等组成。
微处理器是机器人的核心处理器,负责处理输入信息并输出指令控制机器人的运动。
逻辑电路用于执行各种判断和决策,如自主导航、避障等。
软件则是机器人控制系统的程序,包括运动控制、任务规划等。
3.机器人的工作原理机器人的工作原理涉及到机械、电子和控制系统的相互协调和配合。
下面将对机器人的工作原理进行简要介绍。
3.1机械原理机器人的机械结构决定了其运动方式和工作范围。
通过控制机械结构中的电机和传动机构,机器人可以实现不同的运动方式,如直线运动、旋转运动等。
机械结构也决定了机器人的可控自由度,即机器人可以同时控制的独立运动轴数目。
3.2传感器原理机器人通过传感器获取周围环境的信息,并将其转化为数字信号,通过输入到控制系统中进行分析和处理。
传感器原理涉及到各种物理传感器的工作原理,如摄像头通过感光元件拍摄图像,声音传感器通过麦克风转化声音信号等。
3.3控制系统原理控制系统原理包括机器人的算法和软件。
控制系统通过输入传感器的信息,并进行决策和规划后,输出指令控制机器人的运动和执行任务。
控制系统原理涉及到机器人运动学和动力学的理论,以及各种控制算法的实现。
机器人的机械结构一、机械臂:机械臂是机器人最重要的部分,它模拟人类的手臂动作,用于实现各种任务。
一般机械臂由几段连杆组成,每个连杆之间通过关节连接。
机械臂的结构决定了机械臂的运动范围和灵活性,常见的机械臂结构有直线运动结构、旋转关节结构、虫轮驱动结构等。
二、关节:关节是机械臂的重要组成部分,它连接两个连杆,使机械臂能够进行转动或弯曲。
常见的关节有旋转关节、滚动关节、剪刀关节等,它们通过电机驱动和传动装置来实现运动,可以实现机械臂的多个自由度运动。
三、传动装置:机器人的运动需要通过传动装置实现,常见的传动装置有齿轮传动、皮带传动、蜗轮传动等。
传动装置可以将电机的转动传递给机械臂,并根据需求进行速度调节和力矩放大,实现机器人的运动控制。
四、传感器与执行器:机器人的机械结构与传感器和执行器紧密相关。
传感器可以感知环境和物体的信息,如光电传感器、触摸传感器、距离传感器等,通过传感器,机器人可以实现对环境的感知和交互。
执行器是机器人运动的驱动器,如电机、气缸等。
它们与机械结构相互配合,使机器人能够具有自主执行任务的能力。
五、框架与支撑结构:机器人的框架和支撑结构起到支撑和保护机器人的作用,使其能够稳定地进行运动。
框架通常是由刚性材料制成,如金属或复合材料,以确保机器人的稳定性和刚性。
支撑结构支持机器人的各个部件,同时还能降低振动和噪音等对机器人性能的不良影响。
六、人机接口和控制系统:机器人的机械结构是人机接口和控制系统的基础,通过人机接口和控制系统,人们可以与机器人进行交互和控制。
人机接口包括各种控制按钮、触摸屏、语音识别等,通过人机接口,人们可以向机器人发出指令和进行交互。
控制系统是机器人的大脑,可以控制机械臂的运动、传感器的数据采集和分析等,实现机器人的智能化运作。
总之,机器人的机械结构是机器人的骨架,是实现机器人运动和任务的基础。
机械结构的设计与制造决定了机器人的功能和性能,可以根据不同的任务需求进行灵活的设计和优化。
工业机器人的结构设计工业机器人是指使用在工厂等工业领域的自动化机器人。
它们具有一定的自主能力,能够根据预定的程序和任务,完成各种物体的处理、运输、装配等工作。
工业机器人的结构设计包括机器人的主要构件、传动系统、执行机构和控制系统等方面。
首先,工业机器人的主要构件包括机械臂、驱动装置和控制系统等。
机械臂是工业机器人中最重要的部件,它是完成工件处理和运输的主要执行器。
机械臂通常采用多关节联动的形式,具有较高的灵活性和自由度。
不同的机器人应用领域对机械臂的结构和数量有不同的要求。
驱动装置主要由电机、减速器和传感器等组成,用于提供动力和信号支持。
控制系统则是机器人的大脑,它接收来自传感器的数据并根据预定的程序和算法,控制机械臂的运动。
其次,工业机器人的传动系统是实现机械臂运动的关键部分。
传动系统通常由电机、减速器、联轴器和传动装置等组成。
电机提供动力,通过减速器和传动装置传递动力,并通过联轴器连接传递到机械臂上。
传动系统的设计要考虑到速度、承载能力和精度等因素。
再次,工业机器人的执行机构是机器人完成各种任务的重要组成部分。
执行机构通常包括夹持装置、工具和传感器等。
夹持装置用于抓取、放置和固定工件,它的设计要考虑到工件形状和重量等因素。
工具则是机器人进行切割、焊接、喷涂等任务所需要的装置。
传感器则用于获取工件和机器人自身状态的信息,如位置、力量、温度等,以便实现机器人的自动化控制。
最后,工业机器人的控制系统是整个机器人系统的核心。
控制系统通过接收传感器反馈的数据,并根据预定的程序和算法,计算并控制机械臂的运动和姿态。
控制系统的设计要考虑到机器人的灵活性、精确性和反应速度等因素。
控制系统还可以与其他工厂自动化设备进行联动,从而实现整个生产线的自动化控制。
综上所述,工业机器人的结构设计是一个综合考虑机械、电气、传感和控制等多个方面的过程。
一台优秀的工业机器人应具备高度的灵活性、精确性和稳定性,能够适应不同的生产环境和任务需求。
第三章机器人机械结构本章主要内容:1.机器人末端执行器2.机器人手腕3.机器人手臂4.机器人基座5.机器人传动重点和难点:机器人的机械结构构成和分类。
课后作业:查阅工业机器人机械结构的常见零部件,论述其特点,图文并茂以小论文形式上交。
机器人机械结构的功能是实现机器人的运动机能,完成规定的各种操作,包含手臂、手腕、手爪和行走机构等部分。
机器人的“身躯”一般是粗大的基座,或称机架。
机器人的“手”则是多节杠杆机械——机械手,用于搬运物品、装卸材料、组装零件等,或握住不同的工具,完成不同的工作,如让机械手握住焊枪,可进行焊接;握住喷枪,可进行喷漆。
使用机械手处理高温、有毒产品的时候,它比人手更能适应工作。
1.机器人末端执行器用在工业上的机器人的手一般称之为末端操作器,它是机器人直接用于抓取和握紧专用工具进行操作的部件。
它具有模仿人手动作的功能,并安装于机器人手臂的前端。
机械手能根据电脑发出的命令执行相应的动作,不仅是一个执行命令的机构,它还应该具有识别的功能,也就是“感觉”。
末端操作器是多种多样的,大致可分为以下几类:(1)夹钳式取料手;(2)吸附式取料手;(3)专用操作器及转换器;(4)仿生多指灵巧手。
(1)夹钳式取料手夹钳式取料手由手指(手爪)和驱动机构、传动机构及连接与支承元件组成,如图所示。
它通过手指的开、合实现对物体的夹持。
1)手指手指是直接与工件接触的部件。
手部松开和夹紧工件,就是通过手指的张开与闭合来实现的。
机器人的手部一般有两个手指,也有三个、四个或五个手指,其结构形式常取决于被夹持工件的形状和特性。
2)传动机构传动机构是向手指传递运动和动力,以实现夹紧和松开动作的机构。
该机构根据手指开合的动作特点分为回转型和平移型。
回转型又分为单支点回转和多支点回转。
根据手爪夹紧是摆动还是平动,又可分为摆动回转型和平动回转型。
斜楔杠杆式手部。
(2)吸附式取料手吸附式取料手靠吸附力取料,根据吸附力的不同分为气吸附和磁吸附两种。
第三讲工业机器人的机械结构工业机器人的机械结构是指由各种零部件组成的机器人的主要机械部分,主要包括机械臂、关节和末端执行器等。
1.机械臂:机械臂是工业机器人的核心部件,通常由多个关节构成,类似于人的手臂。
机械臂的关节可分为旋转关节和滑动关节两种。
旋转关节可使机械臂在水平和垂直方向上进行旋转运动,而滑动关节则使机械臂能够进行伸缩和折叠运动,从而实现更灵活的操作。
机械臂的关节通常通过电机、减速器和传动机构来驱动。
2.关节:关节是机械臂各个部分的连接点,是机械臂关节运动的关键部件。
关节通常由关节轴承、驱动装置和连接机构组成。
关节轴承用于支持和旋转机械臂的部分,使其能够自由地在空间中进行运动。
驱动装置则通过电机或液压系统等方式提供动力,使关节能够实现旋转或伸缩运动。
连接机构则用于将关节与机械臂的其他部分连接在一起。
3.末端执行器:末端执行器是机械臂的“手”,负责和外界物体进行接触或操作。
末端执行器的种类多样,常见的有夹子、夹具和吸盘等。
夹子主要用于抓取和握住物体,夹具则用于固定工件,而吸盘则适用于平面物体的吸附。
除了上述三个主要部分,工业机器人的机械结构还包括连接件、支撑结构和保护装置等。
连接件用于连接各个零部件,常见的连接方式有螺纹连接、焊接和固定连接等。
支撑结构用于支撑机器人的整体重量和保持稳定性,在设计上通常考虑到机器人的负载能力和运动范围等因素。
保护装置用于保护机器人免受外部环境和不良因素的影响,例如防尘罩、防撞装置和安全护栏等。
工业机器人的机械结构在设计上需要考虑机器人的负载能力、运动范围、工作精度和可靠性等因素。
随着技术的不断发展,机械结构也在不断改进,尤其是在机械臂的柔性和精度方面。
近年来,出现了一些新的机械结构设计,如平行机构和柔性臂等,以满足不同的应用需求。
总之,工业机器人的机械结构是机器人的骨架和关键部件,其设计直接影响着机器人的运动和操作能力。
随着技术的进步,机械结构也在不断发展和创新,以满足不同领域的自动化需求。
第三章机器人的机械结构系统3.6机器人传动系统【内容提要】本课主要学习工业机器传动系统。
介绍机器人传动系统的功用、类型;介绍几种常见的传动方式:齿轮链、齿轮齿条、谐波减速器、RV减速器、丝杠传动、连杆传动、带传动、链传动。
知识要点:✓传动系统的功用及类型✓谐波减速器✓RV减速器✓连杆传动✓齿轮齿条✓带传动✓链传动重点:✓传动系统的功用及类型✓谐波减速器✓RV减速器✓连杆传动难点:✓谐波减速器✓RV减速器关键字:✓传动系统、谐波减速器、RV减速器、连杆传动、齿轮齿条、丝杠传动、带传动、链传动【本课内容相关资料】3.6机器人传动系统工业机器人的驱动源通过传动部件来驱动关节的移动或转动,从而实现机身、手臂和手腕的运动。
因此,机器人的传动系统,是将驱动器输出的运动、动力传送到工作单元。
传动部件是构成工业机器人的重要部件。
机器人传动系统主要有以下几个功用:(1)调速。
工作单元往往和驱动器速度不一致,利用传动机构达到改变输出速度的目的。
(2)调转矩。
调整驱动器的转矩使其适合工作单元使用。
(3)改变运动形式。
驱动器的输出轴一般是等速回转运动,而工作单元要求的运动形式则是多种多样的,如直线运动、螺旋运动等,靠传动机构实现运动形式的改变。
(4)动力和运动的传递和分配。
用一台驱动器带动若干个不同速度、不同负载的工作单元。
机器人传动系统有机械传动、流体(液体、气体)传动、电气传动三类;主要的传动形式有齿轮传动、齿条传动、丝杠传动、带传动、链传动、行星齿轮传动、谐波齿轮传动、摆线针轮传动、流体传动、连杆传动、凸轮传动等多种形式。
根据传动类型的不同,传动部件可以分为两大类:直线传动机构和旋转传动机构。
机器人的直线运动包括直角坐标结构的X、Y、Z向运动,圆柱坐标结构的径向运动和垂直升降运动,以及球坐标结构的径向伸缩运动。
常用的直线传动机构可以直接由汽缸或液压缸和活塞产生,也可以采用齿轮齿条、滚珠丝杠螺母等传动元件由旋转运动转换得到。