履带式机器人结构设计
- 格式:doc
- 大小:2.15 MB
- 文档页数:57
JIANGXI AGRICULTURAL UNIVERSITY 本科毕业论文(设计)题目:履带式机器人结构设计学院:工学院*名:**学号: ********专业:农业机械化及其自动化年级:农机1001指导教师:肖丽萍职称:副教授2014年 5 月摘要在微小型履带机器人方面美国走在了世界的前列,代表机器人有Packbot机器人,Talon机器人,NUGV等。
我国微小型机器人的研究和开发晚于西方的一些发达国家,我国是从20世纪80年代开始机器人领域的研究的。
其中具有代表性的有中国科学院研制的复合移动机器人“灵晰-B”型排爆机器人,“龙卫士Dragon Guard X3B 反恐机器人”,“JW-901 排爆机器人”等。
此设计的目的设计结构新颖,能实现过坑、越障等动作。
通过在机器人机架上加装其他功能的模块来实现不同的使用功能,本研究的意义是为机器人提供一个动力输出平台,为开发各种功能的机器人提供基础平台。
此设计移动方案的选择是采用了履带式驱动结构。
结构整体使用模块化设计,以便后续拆卸维修,可以适应于各种复杂的路面,并可主动控制前后两侧摇臂的转动来调节机器人的运动姿态,从而达到辅助过坑、越障等动作。
经过合理的设计后机器人将具有很好的环境适应能力、机动能力并能承受一定的掉落冲击,此设计的移动机构主要由四部分组成:主动轮减速机构、翼板转动机构、自适应路面执行机构、履带及履带轮运动机构。
关键词:履带机器人;履带移动机构;模块化设计AbstractIn terms of micro small crawler robots walk in the forefront of the world in the United States, on behalf of the robot has disposal robot, Talon robot, NUGV, etc. Miniature robot research and development in our country later than some developed western countries, our country from the 1980 s began to research in the field of robot. One of the typical composite mobile robot developed by the Chinese academy of sciences \"norm of spirit - B\" type eod robots, \"Dragon Guard Dragon Guard X3B anti-terrorism robot\", \"JW - 901 eod robot\", etc.The design is novel, the purpose of this design can achieve pit, surmounting obstacles. Through in the robot arm with other function modules to realize different use function, the significance of this study is to provide a power output for robot platform, provides the basis for the development of all sorts of function of robot platform.This design is the choice of mobile solutions adopted crawler drive structure. Structure of the overall use of modular design, in order to follow-up maintenance, removal can be adapted to various complicated road, and can turn on either side of the rocker arm before and after active control to regulate the robot's motion, so as to achieve auxiliary pit, surmounting obstacles. After reasonable design robots will have good environmental adaptability, mobility and can absorb a certain amount of drop impact, this design of the mobile mechanism is mainly composed of four parts: the driving wheel deceleration institutions, wing rotating mechanism, adaptive pavement actuators, track and track wheel motion mechanism.Keywords: tracked robot; tracked mobile mechanism;the modular design目录摘要 (2)1 引言 (5)2 履带机器人的现状及发展 (6)3 履带机器人的运动特性 (9)4 本研究采用的行走机构 (12)4.1 行走机构的选择 (12)4.2 履带机器人的功能、性能指标与设计 (13)4.3 主要机构的工作原理 (14)5 机器人越障分析 (15)5.1 跨越台阶 (15)5.2 跨越沟槽 (16)5.3 斜坡运动分析 (17)6 机器人移动平台主履带电机的选择 (19)6.1 机器人在平直的路上行驶 (19)6.2 机器人在30°坡上匀速行驶 (20)6.3 机器人的多姿态越阶 (21)7 移动机构的分析及其选择 (23)7.1 典型移动机构分析 (23)7.2 本研究采用的移动机构 (27)8 履带部分设计 (28)8.1 履带的选择 (28)8.2 确定主从动轮直径 (31)8.5 功率验算 (38)8.6 同步带的物理机械性能 (38)8.7 履带主从动轮设计 (39)8.8 副履带部分设计 (42)9履带翼板部分设计 (47)9.1 履带翼板的作用 (47)9.2 履带翼板设计 (47)10 计算履带装置的重心及其各部件重心 (49)10.1 主履带的重心计算 (49)10.2 副履带的重心计算 (54)10.3 主履带及其摇臂也就是副履带总部分的重心计算 (55)总结 (56)致谢 (57)参考文献 (57)1 引言随着社会的发展,我们面临的自身能力、能量的局限越来越多,所以我们创造了各种类型的机器人来辅助或代替我们完成任务。
履带式越障机器人系统设计王枭;王超星;刘淑晶【摘要】针对复杂地形环境的巡检作业,设计了一种履带式越障机器人.分析了复杂地形特点,确定了履带式越障机器人的系统方案,进而利用组件对机器人及越障机构进行了设计,并搭建了履带式越障机器人机械本体结构.基于BASRA主控板搭建了履带式越障机器人控制系统,并采用模块化的设计思想编写控制系统程序,进行了履带式越障机器人的越障性能试验.试验结果表明,履带式越障机器人可以顺利爬越2层台阶障碍物,为能够在复杂地形下进行巡检作业的机器人研究提供理论依据.【期刊名称】《新技术新工艺》【年(卷),期】2018(000)012【总页数】5页(P17-21)【关键词】履带式越障机器人;系统方案;机械本体结构;越障机构;控制系统;性能试验【作者】王枭;王超星;刘淑晶【作者单位】北京市大兴区第一中学,北京102600;三河市职教中心,河北三河065200;北京石油化工学院机械工程学院,北京102617【正文语种】中文【中图分类】TP242.2随着机器人技术的发展,机器人除了广泛应用于工业制造领域外,还应用于资源勘探、抢险救灾、医疗服务、军事和巡检等其他领域。
巡检机器人作为一种特种设备,可以代替人工在复杂的作业环境下完成巡检作业任务。
目前,主流的巡检机器人有履带式、轮式和混合式等,其中以履带式为主[1]。
从20世纪80年代起,国外就对小型履带式机器人展开了系统性研究,比较有影响的是美国的PackBot[2]机器人,URBOT、NUGV和TALON [3]机器人,其中,TALON系列机器人是一种传统的小型双履带式机器人,该机器人可根据任务的不同安装不同的任务模块,主要应用于执行侦察、危险品操作和救援等领域。
此外,英国研制的Supper Wheelbarrow排爆机器人、加拿大布鲁克大学研制的AZMUT机器人[4]、日本的Helios V机器人[5]都属于履带式机器人。
日本东京工业大学的T.Kamegawa等提出了一种搜救机器人,该机器人由多节双履带式模块车连接而成,能够进入狭窄的空间,相邻模块之间由2个主动自由度关节连接或3个随动自由度关节连接,所以该机器人结构形式具有很好的地面适应能力和越障能力[6]。
履带吸盘式爬壁机器人结构原理的研究与开发学士学位论文 论文题目:履带吸盘式爬壁机器人结构原理的 研究与开发分类号:密 级:单位代码:学院:专业:机械设计制造及其自动化年级:注:设计(论文)成绩=指导教师评定成绩(30%)+评阅人评定成绩(30%)+答辩成绩(40%)目录摘要 (I)Abstract (III)第1章绪论 (1)1.1 爬壁机器人结构原理研究与开发的价值 (1)1.2 爬壁机器人结构原理研究与开发的现状及趋势 (2)1.2.1 爬壁机器人结构原理研究的现状 (2)1.2.2 爬壁机器人结构原理研究的发展趋势 (3)1.3 几种爬壁机器人结构原理分析与对比 (4)1.3.1 车轮式磁吸附爬壁机器人 (5)1.3.2 多吸盘单链爬壁机器人Cleanbot – IV (5)1.3.3 履带式磁吸附爬壁机器人 (6)1.4 履带吸盘式爬壁机器人结构原理的研究特色与价值 (7)1.4.1 履带吸盘式爬壁机器人结构原理的研究特色 (7)1.4.2 履带吸盘式爬壁机器人结构原理的研究价值 (8)1.5本章小结 (9)第2章履带吸盘式爬壁机器人结构方案研究 (11)2.1 履带吸盘式爬壁机器人的功能要求 (11)2.1.1 爬壁机器人的工作过程 (11)2.1.2 爬壁机器人的基本功能 (11)2.1.3 爬壁机器人的主要设计参数 (12)2.2 爬壁机器人移动机构方案设计 (13)2.2.1 履带的结构形式 (13)2.2.2 履带与履带轮的联结 (14)2.2.3 履带吸盘式爬壁机器人壁面适应能力分析 (15)2.3 爬壁机器人吸附机构方案设计 (17)2.3.1 吸盘式吸附机构方案设计 (17)2.3.2 吸盘机构设计 (18)2.3.3 吸盘式爬壁机器人吸附安全性研究 (19)2.4 机器人气动回路方案设计 (22)2.4.1 配气盘结构设计 (22)2.4.2 吸盘气动回路设计 (24)2.5 本章小结 (25)第3章履带吸盘式爬壁机器人结构的开发与论证 (27)3.1 爬壁机器人吸附结构的设计与论证 (27)3.1.1 爬壁机器人吸附结构的设计 (27)3.1.2 爬壁机器人吸附结构的论证 (29)3.2 爬壁机器人行走机构的设计与论证 (30)3.2.1 爬壁机器人行走机构的设计 (31)3.2.2 爬壁机器人行走机构的论证 (31)3.3 爬壁机器人车体的设计与论证 (33)3.3.1 爬壁机器人车体的设计 (34)3.3.2 爬壁机器人车体的论证 (34)3.4 本章小结 (36)第4章履带吸盘式爬壁机器人附属部件开发与设计 (37)4.1 背仓部件开发与设计 (37)4.2 清洁壁面部件开发与设计 (37)4.3 传递消防水管部件开发与设计 (38)4.4 控制系统部件开发与设计 (39)4.5 本章小结 (39)第5章结论与展望 (41)参考文献 (43)注释 (45)谢辞 (47)译文与原文 (49)汉语译文 (49)英语原文 (57)摘要随着科技的进步,工业机器人在各个领域得到了广泛地运用。
多功能履带式机器人设计一、整体结构设计多功能履带式机器人的整体结构设计是其实现各种功能的基础。
为了适应不同的工作环境和任务需求,机器人的外形通常采用紧凑且坚固的设计。
履带部分是其重要的移动机构,履带的材质需要具备高强度、耐磨损和良好的抓地力。
履带的宽度和长度应根据机器人的负载能力和通过性要求进行合理选择。
较宽的履带可以增加机器人的稳定性,而较长的履带则有助于提高其跨越障碍物的能力。
机器人的主体框架一般采用铝合金或高强度工程塑料,以减轻重量并保证足够的强度。
在框架上,合理布置各种传感器、执行器和电子设备的安装位置,同时要考虑到散热、防护和维修的便利性。
二、驱动系统设计驱动系统是多功能履带式机器人的动力来源,直接影响其运动性能。
常见的驱动方式有电动驱动和液压驱动。
电动驱动具有响应速度快、控制精度高、噪音低和无污染等优点。
通常采用直流无刷电机或步进电机,通过减速器将电机的高速旋转转换为履带的低速转动。
在电机的选择上,需要根据机器人的负载、速度和工作时间等参数进行计算,以确保电机能够提供足够的扭矩和功率。
液压驱动则适用于负载较大、工作环境恶劣的情况。
液压系统通过油泵将机械能转化为液压能,再通过液压缸或液压马达驱动履带运动。
液压驱动具有输出扭矩大、过载能力强的特点,但系统相对复杂,维护成本较高。
三、控制系统设计控制系统是多功能履带式机器人的大脑,负责对机器人的运动、操作和各种功能进行精确控制。
控制系统通常采用基于微控制器或嵌入式系统的架构,如Arduino、STM32 等。
通过编写控制程序,实现对电机、传感器和执行器的实时控制。
在控制算法方面,常用的有 PID 控制、模糊控制和神经网络控制等。
PID 控制算法简单可靠,适用于对精度要求不高的场合;模糊控制则能够较好地处理不确定性和非线性问题;神经网络控制具有强大的自学习和自适应能力,但计算量较大,对硬件要求较高。
为了实现远程控制,机器人还需要配备无线通信模块,如 WiFi、蓝牙或 4G/5G 模块,以便操作人员能够在一定距离内对机器人进行监控和操作。
可变形履带式机器人行走机构设计及运动仿真李松;朱建柳;金晓怡;黄立新【摘要】针对移动机器人在非结构化地形环境中负载能力低、运动稳定性较差的问题,设计了一种可变形履带式机器人行走机构.该机器人采用4节履带构型,有效地增加了与地面的接触面积,从而提高了其运动稳定性.将椭圆形成原理应用于履带张紧机构的设计当中,采用双椭圆摆臂回转机构,设计可变形履带机器人模型.为了描绘机器人的越障性能,从运动学的角度分析了机器人在爬越台阶和跨越沟壑2种典型障碍的运动过程,并得出相应的越障极限参数.利用Adams建立仿真模型,对机器人的虚拟样机进行了动力学分析.仿真分析表明机器人能够翻越200 mm高的台阶和300 mm宽的障碍,并得出驱动机器人运动的力矩曲线图.本研究为后续改进及优化研究提供了参考.%Aiming at the problem of low load capacity and poor movement stability of mobile robot in unstructured terrain environment,a travel mechanism for reconfigurable tracked robot was designed.The robot applied the configuration with four tracks, which increased the contact area with the ground effectively and improved the movement stability.By applying the ellipse forming principle to the mechanism design of the crawler tension device, and adopting swing arm mechanism with two ellipses, the model of reconfigurable tracked robot was designed.For describing obstacle-surmounting performance of robot,the processes of climbing stair and crossing gully were analyzed from the viewpoint of kinematics,and obtaining the corresponding obstacle-surmounting limit parameters.By applying Adams the simulation model was built, and the dynamics of the virtual prototyping for robot was analyzed.The resultsshow that the robot succeeded in surmounting 200 mm high stair and 300 mm wide gully,and obtained the torque curve which could drive the motion for robot,which provides an effective method for the following study of improvement and optimization.【期刊名称】《轻工机械》【年(卷),期】2018(036)001【总页数】6页(P29-34)【关键词】可变形履带式机器人;行走机构;越障性能;虚拟样机【作者】李松;朱建柳;金晓怡;黄立新【作者单位】上海工程技术大学机械工程学院,上海 201620;上海交通职业技术学院,上海 200431;上海工程技术大学机械工程学院,上海 201620;上海工程技术大学机械工程学院,上海 201620【正文语种】中文【中图分类】TP242机器人技术正逐渐转向可以在特殊环境中执行任务的特种机器人,而移动机器人是最早研究、应用最为广泛的一类特种机器人[1-3]。
履带式移动机器人越障能力的研究一、本文概述随着科技的快速发展和智能化时代的到来,履带式移动机器人作为一种高效、灵活的移动平台,在军事侦察、灾害救援、物流配送、农业自动化等众多领域展现出巨大的应用潜力。
然而,面对复杂多变的地形环境,机器人的越障能力成为影响其性能的关键因素。
因此,对履带式移动机器人越障能力的研究具有重要的理论价值和现实意义。
本文旨在深入探讨履带式移动机器人在不同地形条件下的越障性能,通过理论分析和实验研究相结合的方法,为提升机器人的环境适应性和越障能力提供理论支持和实践指导。
文章首先介绍履带式移动机器人的基本结构和工作原理,然后重点分析影响其越障能力的关键因素,包括履带设计、动力性能、控制系统等。
在此基础上,文章将探讨如何通过优化机器人结构和改进控制算法来提高其越障能力。
本文还将关注履带式移动机器人在实际应用中可能遇到的问题和挑战,如复杂地形环境下的导航与定位、多机器人协同越障等。
通过综合研究和实践应用,本文旨在为推动履带式移动机器人技术的发展和应用提供有益参考。
二、履带式移动机器人的结构设计履带式移动机器人的结构设计是提升其越障能力的关键。
结构设计主要包括底盘设计、履带设计、驱动系统设计以及控制系统设计等方面。
底盘设计:底盘是履带式移动机器人的基础结构,需要承受机器人的重量以及越障时产生的冲击力。
因此,底盘设计需要考虑到强度、刚性和稳定性。
我们采用了高强度金属材料,通过合理的结构设计,实现了底盘的轻量化与坚固性之间的平衡。
履带设计:履带是机器人越障能力的重要体现。
我们设计的履带具有足够的宽度和深度,以提供足够的摩擦力,使机器人在各种地形上都能稳定行驶。
同时,履带的设计还考虑到了耐磨性和寿命,采用了耐磨材料,并通过优化履带齿形,提高了机器人的越障性能。
驱动系统设计:驱动系统是履带式移动机器人的动力来源。
我们采用了大功率电机,并通过合理的传动机构设计,实现了动力的有效传递。
同时,驱动系统还配备了防滑功能,当机器人遇到湿滑或松软地面时,能够自动调整驱动力,保证机器人的稳定行驶。
摘要在微小型履带机器人方面美国走在了世界的前列,代表机器人有Packbot机器人,Talon机器人,NUGV等。
我国微小型机器人的研究和开发晚于西方的一些发达国家,我国是从20世纪80年代开始机器人领域的研究的。
其中具有代表性的有中国科学院研制的复合移动机器人“灵晰-B”型排爆机器人,“龙卫士Dragon Guard X3B 反恐机器人”,“JW-901 排爆机器人”等。
此设计的目的设计结构新颖,能实现过坑、越障等动作。
通过在机器人机架上加装其他功能的模块来实现不同的使用功能,本研究的意义是为机器人提供一个动力输出平台,为开发各种功能的机器人提供基础平台。
此设计移动方案的选择是采用了履带式驱动结构。
结构整体使用模块化设计,以便后续拆卸维修,可以适应于各种复杂的路面,并可主动控制前后两侧摇臂的转动来调节机器人的运动姿态,从而达到辅助过坑、越障等动作。
经过合理的设计后机器人将具有很好的环境适应能力、机动能力并能承受一定的掉落冲击,此设计的移动机构主要由四部分组成:主动轮减速机构、翼板转动机构、自适应路面执行机构、履带及履带轮运动机构。
关键词:履带机器人;履带移动机构;模块化设计AbstractIn terms of micro small crawler robots walk in the forefront of the world in the United States, on behalf of the robot has disposal robot, Talon robot, NUGV, etc. Miniature robot research and development in our country later than some developed western countries, our country from the 1980 s began to research in the field of robot. One of the typical composite mobile robot developed by the Chinese academy of sciences \"norm of spirit - B\" type eod robots, \"Dragon Guard Dragon Guard X3B anti-terrorism robot\", \"JW - 901 eod robot\", etc.The design is novel, the purpose of this design can achieve pit, surmounting obstacles. Through in the robot arm with other function modules to realize different use function, the significance of this study is to provide a power output for robot platform, provides the basis for the development of all sorts of function of robot platform.This design is the choice of mobile solutions adopted crawler drive structure. Structure of the overall use of modular design, in order to follow-up maintenance, removal can be adapted to various complicated road, and can turn on either side of the rocker arm before and after active control to regulate the robot's motion, so as to achieve auxiliary pit, surmounting obstacles. After reasonable design robots will have good environmental adaptability, mobility and can absorb a certain amount of drop impact, this design of the mobile mechanism is mainly composed of four parts: the driving wheel deceleration institutions, wing rotating mechanism, adaptive pavement actuators, track and track wheel motion mechanism.Keywords: tracked robot; tracked mobile mechanism;the modular design目录摘要 (1)1 引言 (4)2 履带机器人的现状及发展 (5)3 履带机器人的运动特性 (8)4 本研究采用的行走机构 (11)4.1 行走机构的选择 (11)4.2 履带机器人的功能、性能指标与设计 (12)4.3 主要机构的工作原理 (13)5 机器人越障分析 (14)5.1 跨越台阶 (14)5.2 跨越沟槽 (15)5.3 斜坡运动分析 (16)6 机器人移动平台主履带电机的选择 (18)6.1 机器人在平直的路上行驶 (18)6.2 机器人在30°坡上匀速行驶 (19)6.3 机器人的多姿态越阶 (20)7 移动机构的分析及其选择 (22)7.1 典型移动机构分析 (22)7.2 本研究采用的移动机构 (26)8 履带部分设计 (27)8.1 履带的选择 (27)8.2 确定主从动轮直径 (30)8.5 功率验算 (37)8.6 同步带的物理机械性能 (37)8.7 履带主从动轮设计 (38)8.8 副履带部分设计 (41)9履带翼板部分设计 (46)9.1 履带翼板的作用 (46)9.2 履带翼板设计 (46)10 计算履带装置的重心及其各部件重心 (48)10.1 主履带的重心计算 (48)10.2 副履带的重心计算 (53)10.3 主履带及其摇臂也就是副履带总部分的重心计算 (54)总结 (55)致谢 (56)参考文献 (56)1 引言随着社会的发展,我们面临的自身能力、能量的局限越来越多,所以我们创造了各种类型的机器人来辅助或代替我们完成任务。
履带式机器人包括侦察机器人、巡逻机器人、爆炸处理机器人、步兵支援机器人以及复杂环境下搜救机器人等,用来代替我们进入危险环境下完成一些如侦查、搜集资料、救援等工作,从而减少了我们工作的危险系数,在我们未来的生活与工作中起到非常重要的作用。
民用履带式机器人被广泛用于工业生产等各种服务领域,如生产线传输、清扫、导盲和搜救复杂环境下的资料等各个方面。
但我国对机器人研究起步较晚,大多数尚处于某个单项研究阶段,主要的研究项目有:清华大学智能移动机器人于1994年通过鉴定,还有上海交通大学的地面移动消防机器人已投入使用。
北京理工大学、南京理工大学等单位承担的总装项目“地面军用机器人技术”研究是以卡车、面包车作为平台的,是大型智能作战平台。
中国科学院沈阳自动化研究所的AGC和防爆机器人,中国科学院自动化自行设计、制造的全方位移动式机器人视觉导航系统,哈尔滨工业大学于1996年研制成功的导游机器人等。
2 履带机器人的现状及发展20世纪60年代到70年代,想到工业机器人印入脑海的便是自动机械手。
机器人移动功能的大力研究和开发是20世纪80年代以后才开始,现在作为移动机器人而研制的移动机械类型已远远超过了机械手。
尤其是履带式机器人,不仅是生物体中没见过的移动形态,而且能够在复杂的环境下行进。
履带式机器人因采用履带式传动而得名。
其最大特征是将圆状的循环轨道履带套在若干车轮上,使车轮不与地面直接接触,利用履带缓冲地面带来的冲击,使机器人能够适应各种路面状况。
目前六履带摆臂式搜救机器人还是局限于单个或两个自由度。
其主要由机械本体、控制系统、导航系统等部分组成。
六履带摆臂式搜救机器人的研究涉及以下几个方面,首先是移动方式的选择,对于履带式移动机器人,可以是两履带式、四履带式、六履带式等。
其次,考虑驱动器的控制,以使机器人达到期望的功能。
再者,必须考虑导航或路径规划,如传感信息融合,特征提取,避碰以及环境映射。
最后,考虑摆臂角的原理,这方面需要重点考虑,通过控制摇臂的角度来改变自身高度以达到越障过坑功能是这种机器人的最大特点。
对于这些问题可归结为:机械结构设计、控制系统设计、运动学与动力学建模、导航与定位、多传感器信息融合等。
下面是各国研发的一些履带式可变形机器人:(1)美国的拆弹专家:如图2-1、2-2、2-3、2-4所示,这是美国iRobot的一种较小型“PackBot”机器人,现服役于美国军队,它搭配了一个爆炸物感应系统,能有效地探测炸弹。
图2-3这种iRobot SUGV的机器人是一种小型地面探测车,重量仅为30磅。
图2-4是iRobot生产的“Warrior”机器人配备了两个全自动、自动装弹、可遥控的12杆机抢,重量为250磅。
图2-1 RackBot准备展开图2-2 RackBot伸展情况图2-3 SUGV机器人图2-4 Warrior机器人(2)德国telemax防爆机器人:仅在一两年前,德国公司出品了一款防爆机器人,现在2006年的新一代机器人已经上市了,其结构比以前的更加轻便,体积更小。
这款机器人依靠一个灵活的小型系统有了和一些大型机器人一样的功能。
图2-5 telemax行走姿势图2-6最紧凑姿势通过对国内外六履带摆臂式搜救机器人的分析,可以看出六履带摆臂式搜救机器人今后的发展有以下几个方面的趋势:(1)结构上,趋向小型、微型。
(2)运动上,趋向全方位,更灵活,更具自主性。
(3)在用途上,趋向于功能多功能化。
3 履带机器人的运动特性(1)平面运动及转弯平面运动及转弯是最基本的运动方式,当两侧的履带同向等速运动时,则表现为直线行走,当两侧履带反向等速运动可实现原地零半径回转,而不同速度同向运动可实现任意半径转向。
图3-7(a)、图3-7(b)为四摆臂履带单元同时着地,使机器人与地面的接触面积增大,可以使机器人适应松软、泥泞和凹凸不平等各种地形环境;图3-1(a)图3-1(b)图3-1(c)、图3-1(d)、图3-1(e)中当遇到小坡度的斜坡时,可直接爬坡而不必采取其他动作,从而可减少对驱动控制系统要求;图3-1(c)图3-1(d)图3-1(e)图3-1(f)为四摆臂单元向上摆到中间位置,可实现机器人小空间转向运动。