柯布—道格拉斯生产函数讲解
- 格式:pdf
- 大小:393.11 KB
- 文档页数:2
柯布-道格拉斯生产函数柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(PaulH.Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
柯布-道格拉斯生产函数-简介保罗·道格拉斯柯布和道格拉斯研究的是1899年至1922年美国制造业的生产函数。
他们指出,制造业的投资分为,以机器和建筑物为主要形式的固定资本投资和以原料、半成品和仓库里的成品为主要形式的流动资本投资,同时还包括对土地的投资。
在他们看来,在商品生产中起作用的资本,是不包括流动资本的。
这是因为,他们认为,流动资本属于制造过程的结果,而非原因。
同时,他们还排除了对土地的投资。
这是因为,他们认为,这部分投资受土地价值的异常增值的影响较大。
因此,在他们的生产函数中,资本这一要素只包括对机器、工具、设备和工厂建筑的投资。
而对劳动这一要素的度量,他们选用的是制造业的雇佣工人数。
但是,不幸地是,由于当时对这些生产要素的统计工作既不是每年连续的,也不是恰好按他们的分析需要来分类统计的。
因而,他们不得不尽可能地利用有的一些其它数据,来估计出他们打算使用的数据的数值。
比如,用生铁、钢、钢材、木材、焦炭、水泥、砖和铜等用于生产机器和建筑物的原料的数量变化来估计机器和建筑物的数量的变化;用美国一两个州的雇佣工人数的变化来代表整个美国的雇佣工人数的变化等等。
经过一番处理,他们得到关于1899年至1922年间,产出量P、资本C和劳动L的相对变化的数据(以1899年为基准)。
令人佩服的是,在没有计算机的年代里,他们从这些数据中,得到了如下的生产函数公式:P=1.01L3/4C1/4柯布(C.W.Cobb)这一结果虽然与现代计算机统计软件的计算结果不同,但两者无本质上的差别。
柯布一道格拉斯生产函数格拉斯(Gresham)生产函数是英国经济学家托马斯·戈德堡·格拉斯(Thomas Gresham)在16初提出的一个经济供给方程,它涉及了多种因素,比如货币发行、供求状况、财政政策等。
格拉斯生产函数的理论认为,当政府发行某种新货币时,与原有货币相比,原有货币投资就会受到冲击,从而全面改变市场上货币价值的基本构成,应当注意的是,这种改变可能是正面的,也可能是负面的。
格拉斯生产函数的根本原理是,当政府发行一种新的货币时,新货币比原有货币升值,因此新货币可以迅速替代原有货币,而且新货币发行量不必完全取代旧货币发行量,这也是为什么有时新货币发行也会引发投机活动。
而新货币史蒂芬开始交易及经济活动之后,会有很多用新货币价格的产品出现,新旧货币的汇率也会随之调整。
格拉斯生产函数显示出政府发行某种新货币,对于经济的影响是相当大的,尤其是涉及到货币的金融服务行业,如银行、保险公司以及金融交易所等。
新货币可以给行业带来新的商机,这些利益群体在获得利益时也会受到政府的一定控制,所以新货币可以被认为是为经济服务的一种货币,新货币发行可以改变对其它经济系统所施加的影响,改变社会分配模式,因此新货币发行是带来经济影响的关键因素。
格拉斯生产函数可以帮助人们理解政府发行某种新货币时的经济影响,也可以帮助政府作出更加明智的货币发行政策。
如果经济体正发生重大变化,政府为了解决当前经济困境,应当更好的利用格拉斯生产函数的理论,作出正确的决策,以减轻经济的影响。
此外,格拉斯生产函数中表明的升值效应可以解释一些经济反应出现的原因,这有助于更好地全面应用经济学原理,制定出更有效的发行政策,以利于经济繁荣。
柯布-道格拉斯生产函数柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(PaulH.Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
柯布-道格拉斯生产函数-简介保罗·道格拉斯柯布和道格拉斯研究的是1899年至1922年美国制造业的生产函数。
他们指出,制造业的投资分为,以机器和建筑物为主要形式的固定资本投资和以原料、半成品和仓库里的成品为主要形式的流动资本投资,同时还包括对土地的投资。
在他们看来,在商品生产中起作用的资本,是不包括流动资本的。
这是因为,他们认为,流动资本属于制造过程的结果,而非原因。
同时,他们还排除了对土地的投资。
这是因为,他们认为,这部分投资受土地价值的异常增值的影响较大。
因此,在他们的生产函数中,资本这一要素只包括对机器、工具、设备和工厂建筑的投资。
而对劳动这一要素的度量,他们选用的是制造业的雇佣工人数。
但是,不幸地是,由于当时对这些生产要素的统计工作既不是每年连续的,也不是恰好按他们的分析需要来分类统计的。
因而,他们不得不尽可能地利用有的一些其它数据,来估计出他们打算使用的数据的数值。
比如,用生铁、钢、钢材、木材、焦炭、水泥、砖和铜等用于生产机器和建筑物的原料的数量变化来估计机器和建筑物的数量的变化;用美国一两个州的雇佣工人数的变化来代表整个美国的雇佣工人数的变化等等。
经过一番处理,他们得到关于1899年至1922年间,产出量P、资本C和劳动L的相对变化的数据(以1899年为基准)。
令人佩服的是,在没有计算机的年代里,他们从这些数据中,得到了如下的生产函数公式:P=1.01L3/4C1/4柯布(C.W.Cobb)这一结果虽然与现代计算机统计软件的计算结果不同,但两者无本质上的差别。
柯布道格拉斯生产函数-详解(重定向自柯布—道格拉斯函数)柯布-道格拉斯生产函数(Cobb-Douglas production function)目录• 1 柯布-道格拉斯生产函数概述• 2 柯布-道格拉斯生产函数的基本形式• 3 柯布一道格拉斯生产函数的应用[1]• 4 参考文献柯布-道格拉斯生产函数概述柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(Paul H. Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的。
是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
它是以美国数学家C·W·柯布和经济学家保罗·H·道格拉斯的名字命名的。
柯布—道格拉斯生产函数的一般形式可以表示为:他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,在技术经济条件不变的情况下,得出了产出与投入的劳动力及资本的关系。
但是柯布-道格拉斯生产函数中把技术水平A作为固定常数,难以反映出因技术进步而给产出带来的影响。
柯布—道格拉斯生产函数中,如果有任何一种投入品为零,则产出也为零,因此对于生产来说,每种生产要素都是必需的,没有一种要素可以完全替代另一种要素。
柯布—道格拉斯生产函数是采用的边际分析方法,可用于分析要素投入对产量(产出)的贡献率、规模收益和其他系列问题。
是生产函数中应用广泛的一种!根据研究目的和需要,现在有很多在柯布——道格拉斯生产函数基础上变形应用的函数形式。
柯布-道格拉斯生产函数的基本形式柯布-道格拉斯生产函数的基本形式为:Y = A(t)LαKβμ式中Y是工业总产值,At是综合技术水平,L是投入的劳动力数(单位是万人或人),K 是投入的资本,一般指固定资产净值(单位是亿元或万元,但必须与劳动力数的单位相对应,如劳动力用万人作单位,固定资产净值就用亿元作单位),α 是劳动力产出的弹性系数,β是资本产出的弹性系数,μ表示随机干扰的影响,μ≤1。
柯布 - 道格拉斯生产函数柯布—道格拉斯生产函数最初是美国数学家柯布 (C.W.Cobb) 和经济学家保罗·道格拉斯(PaulH.Douglas) 共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
柯布 - 道格拉斯生产函数- 简介保罗·道格拉斯柯布和道格拉斯研究的是 1899 年至 1922 年美国制造业的生产函数。
他们指出,制造业的投资分为,以机器和建筑物为主要形式的固定资本投资和以原料、半成品和仓库里的成品为主要形式的流动资本投资,同时还包括对土地的投资。
在他们看来,在商品生产中起作用的资本,是不包括流动资本的。
这是因为,他们认为,流动资本属于制造过程的结果,而非原因。
同时,他们还排除了对土地的投资。
这是因为,他们认为,这部分投资受土地价值的异常增值的影响较大。
因此,在他们的生产函数中,资本这一要素只包括对机器、工具、设备和工厂建筑的投资。
而对劳动这一要素的度量,他们选用的是制造业的雇佣工人数。
但是,不幸地是,由于当时对这些生产要素的统计工作既不是每年连续的,也不是恰好按他们的分析需要来分类统计的。
因而,他们不得不尽可能地利用有的一些其它数据,来估计出他们打算使用的数据的数值。
比如,用生铁、钢、钢材、木材、焦炭、水泥、砖和铜等用于生产机器和建筑物的原料的数量变化来估计机器和建筑物的数量的变化;用美国一两个州的雇佣工人数的变化来代表整个美国的雇佣工人数的变化等等。
经过一番处理,他们得到关于1899 年至 1922 年间,产出量 P、资本 C 和劳动 L 的相对变化的数据(以 1899 年为基准)。
生产函数模型—-经济增长分析柯布-道格拉斯生产函数的基本的形式为:式中Y是工业总产值A(t)是综合技术水平L是投入的劳动力数(万人/人)K是投入的资本,一般指固定资产净值(亿元/万元,但必须与劳动力数的单位相对应,劳动力:万人,固定资产净值:亿元)α是劳动力产出的弹性系数β是资本产出的弹性系数μ表示随机干扰的影响,μ≤1从这个模型看出,决定工业系统发展水平的主要因素是投入的劳动力数L、固定资产K和综合技术水平A(t)(包括经营管理水平、劳动力素质、引进先进技术等).根据α 和β的组合情况,它有三种类型:①α+β〉1,递增报酬型,表明按现有技术水平扩大生产规模的来增加产出是有利的。
②α+β<1,递减报酬型,表明按现有技术水平扩大生产规模来增加产出是得不偿失的。
③α+β=1,不变报酬型,表明生产效率并不会随着生产规模的扩大而提高,只有提高技术水平,才会提高经济效益.美国经济学家R。
M。
斯诺提出的中性技术模式即斯诺模型属于不变报酬型.当μ=1时,斯诺模型为:根据柯布-道格拉斯生产函数可以得到下列经济参数(设μ=1):①劳动力边际生产力表示在资产不变时增加单位劳动力所增加的产值.②资产边际生产力表示在劳动力不变时增加单位资产所增加的产值.③劳力对资产的边际代换率表示产值不变时增加单位劳动力所能减少的资产值.④劳动力产出弹性系数,表示劳动力投入的变化引起产值的变化的速率。
⑤资产产出弹性系数,表示资产投入的变化引起产值变化的速率。
国际上一般取α=0.2~0。
4,β=0.8~0.6.中国根据国家计委测算一般可取α=0.2~0.3,β=0.8~0。
7。
(三)斯诺模型美国经济学家R.M。
斯诺提出的中性技术模式即斯诺模型属于不变报酬型。
当μ=1时,斯诺模型为:Y = A(t)L1 − εKε 或,式中(1-ε)是劳动力产出的弹性系数。
根据弹性系数的经济意义和数学意义,.这里p是产出价格,q是资本价格。
当p=q时,。
生产函数模型——经济增长分析柯布—道格拉斯生产函数的基本的形式为:式中Y是工业总产值A(t)是综合技术水平L是投入的劳动力数(万人/人)K是投入的资本,一般指固定资产净值(亿元/万元,但必须与劳动力数的单位相对应,劳动力:万人,固定资产净值:亿元)α是劳动力产出的弹性系数β是资本产出的弹性系数μ表示随机干扰的影响,μ≤1从这个模型看出,决定工业系统发展水平的主要因素是投入的劳动力数L、固定资产K 和综合技术水平A(t)(包括经营管理水平、劳动力素质、引进先进技术等)。
根据α 和β的组合情况,它有三种类型:①α+β>1,递增报酬型,表明按现有技术水平扩大生产规模的来增加产出是有利的。
②α+β<1,递减报酬型,表明按现有技术水平扩大生产规模来增加产出是得不偿失的。
③α+β=1,不变报酬型,表明生产效率并不会随着生产规模的扩大而提高,只有提高技术水平,才会提高经济效益。
美国经济学家R.M.斯诺提出的中性技术模式即斯诺模型属于不变报酬型。
当μ=1时,斯诺模型为:根据柯布-道格拉斯生产函数可以得到下列经济参数(设μ=1):①劳动力边际生产力表示在资产不变时增加单位劳动力所增加的产值。
②资产边际生产力表示在劳动力不变时增加单位资产所增加的产值。
③劳力对资产的边际代换率表示产值不变时增加单位劳动力所能减少的资产值。
④劳动力产出弹性系数,表示劳动力投入的变化引起产值的变化的速率。
⑤资产产出弹性系数,表示资产投入的变化引起产值变化的速率。
国际上一般取α=0.2~0.4,β=0.8~0.6。
中国根据国家计委测算一般可取α=0.2~0.3,β=0.8~0.7。
(三)斯诺模型美国经济学家R.M.斯诺提出的中性技术模式即斯诺模型属于不变报酬型。
当μ=1时,斯诺模型为:Y = A(t)L1 − εKε 或,式中(1-ε)是劳动力产出的弹性系数。
根据弹性系数的经济意义和数学意义,。
这里p是产出价格,q是资本价格。
柯布-道格拉斯生产函数柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(PaulH.Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
柯布-道格拉斯生产函数-简介保罗·道格拉斯柯布和道格拉斯研究的是1899年至1922年美国制造业的生产函数。
他们指出,制造业的投资分为,以机器和建筑物为主要形式的固定资本投资和以原料、半成品和仓库里的成品为主要形式的流动资本投资,同时还包括对土地的投资。
在他们看来,在商品生产中起作用的资本,是不包括流动资本的。
这是因为,他们认为,流动资本属于制造过程的结果,而非原因。
同时,他们还排除了对土地的投资。
这是因为,他们认为,这部分投资受土地价值的异常增值的影响较大。
因此,在他们的生产函数中,资本这一要素只包括对机器、工具、设备和工厂建筑的投资。
而对劳动这一要素的度量,他们选用的是制造业的雇佣工人数。
但是,不幸地是,由于当时对这些生产要素的统计工作既不是每年连续的,也不是恰好按他们的分析需要来分类统计的。
因而,他们不得不尽可能地利用有的一些其它数据,来估计出他们打算使用的数据的数值。
比如,用生铁、钢、钢材、木材、焦炭、水泥、砖和铜等用于生产机器和建筑物的原料的数量变化来估计机器和建筑物的数量的变化;用美国一两个州的雇佣工人数的变化来代表整个美国的雇佣工人数的变化等等。
经过一番处理,他们得到关于1899年至1922年间,产出量P、资本C和劳动L的相对变化的数据(以1899年为基准)。
令人佩服的是,在没有计算机的年代里,他们从这些数据中,得到了如下的生产函数公式:P=1.01L3/4C1/4柯布(C.W.Cobb)这一结果虽然与现代计算机统计软件的计算结果不同,但两者无本质上的差别。
柯布道格拉斯生产函数柯布道格拉斯生产函数前言在社会经济的发展中,生产力的提高是推动经济持续增长的重要因素之一。
生产函数是研究生产力的核心工具,柯布道格拉斯生产函数是其中的经典代表之一。
下面将对柯布道格拉斯生产函数进行详细介绍。
一、生产函数的概念生产函数是研究生产关系的基本方法,它描述了技术、资本和劳动等生产要素之间的数量关系,即输入到输出的转化关系。
生产函数通常以数学公式的形式表达,可以表示为:Y = F(K, L)其中,Y表示产出,K表示资本,L表示劳动,F代表生产函数。
生产函数需要满足以下性质:1.生产函数是单调递增的,即当资本和劳动数量增加时,产出也会增加。
2.生产函数的边际收益递减,即当某一要素的投入增加时,对应的产出增加量会逐渐减少。
3.生产函数的二阶导数是负数,即边际产出弹性递减。
二、柯布道格拉斯生产函数的基本形式柯布道格拉斯生产函数是一种以“常比例”为特征的生产函数,它的基本形式为:Y = AK^α L^β其中,Y、K、L、A分别表示产出、资本、劳动、全要素生产率;α、β为弹性系数,常数A反映了技术水平和生产组织的效率。
三、柯布道格拉斯生产函数的特点1. 规模报酬递增当资本和劳动的增加引起产出增加的比率超过资本和劳动增加的比率时,称之为规模报酬递增。
对于柯布道格拉斯生产函数来说,如果α+β>1,则在所有的生产要素数量翻倍的情况下,产品输出将以更快的比率增长。
2. 规模报酬递减当资本和劳动的增加引起产出增加的比率低于资本和劳动增加的比率时,称之为规模报酬递减。
对于柯布道格拉斯生产函数来说,如果α+β<1,则在所有的生产要素数量翻倍的情况下,产品输出将以更慢的比率增长。
3. 规模报酬不变当资本和劳动的增加引起产出增加的比率等于资本和劳动增加的比率时,称之为规模报酬不变。
对于柯布道格拉斯生产函数来说,如果α+β=1,则在所有的生产要素数量翻倍的情况下,产品输出将按照同样的比率增长。