交流电路参数测定及功率因数的提高
- 格式:ppt
- 大小:347.00 KB
- 文档页数:49
实验四交流阻抗参数的测量和功率因数的改善一、实验目的1.测量交流电路的参数。
2.验证提高感性负载功率因数的方法,体会提高功率因数的意义。
3.设计感性负载电路中补偿电容的大小。
4.学会使用单相功率表。
二、预习要求1.掌握交流电路中电流、电压间的相量关系及提高功率因数的意义和方法。
2.当外加电压不变,感性负载并联电容后,线路的总电流如何变化?它对R、L串联支路电流及功率有无影响?画出相量图。
3.熟悉功率表的选择与使用方法。
二、实验原理1、日光灯电路及其原理说明:(1)日光灯电路如图4-1所示,它由日光灯管,镇流器和启辉器主要部件组成。
A、灯管是一根玻璃管,其内壁涂有荧光粉,两端各有一个阳极和灯丝,前者为镍丝,后者为钨丝,二者焊在一起,管内充有惰性气体和水银蒸气。
B、启辉器由封在充有惰性气体的玻璃泡内的双金属片和静触片组成,双金属片和静触片都具有触头。
C、镇流器是一个带铁心的电感线圈。
图4-1(2)工作原理:当日光灯刚接通电源时,启辉器的两个触头是断开时,电路中没有电流,电源电压全加在起辉器的两个触头之间产生辉光放电,电流通过起辉器,灯丝和镇流器构成通路,对灯丝加热,灯丝发出大量电子。
起辉器放电时产生大量的热量,使双金属片受热膨胀至使触头闭合,导致放电结束。
双金属片冷却后两触头断开,通路被切断,在触头被切断的瞬间镇流器产生相当高的自感电动势与电源电压串联加在灯管的两端,启动管内的水银蒸气放电,这时辐射出的紫外线照到管内壁的荧光粉上发出白光。
灯管放电后,电源电压大部分加在镇流器上,灯管两端电压(既启辉器两触头之间的电压)较低,不能使起辉器光线光放电,因而其触头不能再接触。
在电网交流电的作用下,灯管两端的灯丝和阳极之间电位不断地发生变化,一端为正电位时另一端为负电位。
负电位端发射电子,正电位端吸收电子,从而形成为电流通路。
启辉过程:电源(220V)接通→氖气电离放电产生热→两电极通→灯丝热发射电子→辉光管极间电压为0,断开→镇流器产生感应电动势(>220V)→水银蒸汽游离放电→荧光灯发光2、功率因数的提高:(1)功率因数:对于一个无源二端网络,如下图4-2所示,它所吸收的功率P=UIcos φ,其中cosφ称为功率因数。
实验二 单相交流电路及功率因数的提高一、实验目的1. 研究正弦稳态交流电路中电压、电流相量之间的关系。
2. 了解日光灯电路的特点,理解改善电路功率因数的意义并掌握其方法。
二、原理说明1. 交流电路中电压、电流相量之间的关系 在单相正弦交流电路中,各支路电流和回路中各元件两端的电压满足相量形式的基尔霍夫定律,即:ΣI =0和ΣU=0 图1所示的RC 串联电路,在正弦稳态信号U 的激励下,电阻上的端电压R U 与电路中的电流I 同相位,当R 的阻值改变时,R U 和C U 的大小会随之改变,但相位差总是保持90°,R U 的相量轨迹是一个半圆,电压U 、C U 与R U 三者之间形成一个直角三角形。
即U =RU +C U ,相位角φ=acr tg (Uc / U R ) 改变电阻R 时,可改变φ角的大小,故RC 串联电路具有移相的作用。
图1 RC 串联交流电路及电压相量2. 交流电路的功率因数交流电路的功率因数定义为有功功率与视在功率之比,即:cos φ=P / S 其中φ为电路的总电压与总电流之间的相位差。
交流电路的负载多为感性(如日光灯、电动机、变压器等),电感与外界交换能量本身需要一定的无功功率,因此功率因数比较低(cos φ<0.5)。
从供电方面来看,在同一电压下输送给负载一定的有功功率时,所需电流就较大;若将功率因数提高 (如cos φ=1 ),所需电流就可小些。
这样即可提高供电设备的利用率,又可减少线路的能量损失。
所以,功率因数的大小关系到电源设备及输电线路能否得到充分利用。
为了提高交流电路的功率因数,可在感性负载两端并联适当的电容C,如图2所示。
并联电容C以后,对于原电路所加的电压和负载参数均未改变,但由于c I的出现,电路的总电流I 减小了,总电压与总电流之间的相位差φ减小,即功率因数cos φ得到提高。
2 交流电路的功率因数及改善3. 日光灯电路及功率因数的提高日光灯电路由灯管R、镇流器L和启辉器S组成,C是补偿电容器,用以改善电路的功率因数,如图3所示。
简述在常用交流电路中提高功率因数的方法
在常用交流电路中,以下是提高功率因数的方法:
1. 加装电容器:电容器可以补偿感性负载中的电感,从而减小回路中的感性功率,提高功率因数。
2. 选择高功率因数电器:现代电器通常会标注功率因数,选择功率因数高的电器可以有效地提高功率因数。
3. 使用电子式镇流器:电子式镇流器可以有效地减小感性负载的电感,从而提高功率因数。
4. 增加电感元件:通过增加电感元件,可以减小电路中的冲击电路,从而降低谐波,提高功率因数。
5. 使用有功功率控制器:有功功率控制器可以精确控制电器的负载,从而降低谐波,提高功率因数。
6. 利用谐振效应:谐振电路可以消除回路中的电感和电容之间的相位差,从而提高功率因数。
实验二、单相交流电路实验预习:一、实验目的 1、通过对R-L 串联电路及其与C 并联的单相交流电路的实际测定,查找出它们的电压、电流及功率之间的关系。
2、学习电路元件参数的测量方法(间接法测定R 、r 、L 、C 等)。
3、掌握感性负载并联电容提高功率因数的方法,并进一步理解其实质。
4、学习并掌握功率表的使用。
二、实验原理 1、R-L 串联电路LXRrSZ图1-8-1 R-L 串联电路图1-8-1表示了一个R-L 串联电路,其电感为空心线性电感。
由于空心线性电感的内阻不可忽略,这里用内阻r 与理想电感X L 串联来代替空心电感,设其总阻抗为Z S 。
根据0=∑U ,列出Lr R S R U U U U U U ++=+= 电感线圈上的正弦电压U S 将超前电流I 一个ϕ1角度,相量图如图1-8-2所示。
由相量图上的电压三角形,根据余弦定理,得:U S 2 = U R 2 +U 2 -2 U U R Cos ϕ1从而求出ϕ1,而U (R + r )=U Cos ϕ1式中U (R + r )=U R + U r又因为U L =U Sin ϕ1 ,这样可求得: R =U R / I 1 ; r = U r / I 1;X L =U L /L ; L =X L /ω =X L / 2πf2、研究感性负载电路提高功率因数的方法。
感性负载电路的功率因数一般比较低,为了提高电路的功率因数,常在感性负载电路的两端并联电容器,以提高电路的功率因数。
并入电容后的电压、电流相量图如图1-8-3所示。
电容支路的电流I C 在相位上超前电源电压90º(以U 为参考)。
图1-8-2 R-L 串联电路中电压、电流相量图图1-8-3 感性负载并联电容后的电流相量图R并联电容后线路的总电流 0=∑I CI I I +=1 由图1-8-3的相量图,根据余弦定理得:I 12 = I C 2 +I 2 -2 I I C COS (90º + ϕ):式中 COS (90º + ϕ)= -Sin ϕ 。
电工电路实验:交流阻抗参数的测量和功率因数的改善一、实验目的1.测量交流电路的参数。
2.掌握提高感性负载功率因数的方法,体会提高功率因数的意义。
3.设计感性负载电路中补偿电容的大小。
4.学会使用单相功率表。
二、预习要求1.掌握交流电路中电流、电压间的相量关系及提高功率因数的意义和方法。
2.当外加电压不变,感性负载并联电容后,线路的总电流如何变化?它对R、L串联支路电流及功率有无影响?画出相量图。
3.熟悉功率表的选择与使用方法。
4.在图2-4-2中,当电容器未投入时,若测得的输出端电压U=120V,电阻器R两端电压U2=45V,电感线圈两端电压U1=90V,电流I=0.6A,功率P=44W,试求该电路的功率因数。
若把功率因数提高到理想情况(cosφ=1),应并联电容量为多大的电容器?5.设计出“实验内容与步骤3”中所要记录数据用的表格。
三、实验原理1.感性负载参数的测定将电感线圈(含L和RL)和电阻器R串联后,接在单相调压器的输出端,如电路图1-4-2所示(电容器先不接入),则,根据基尔霍夫定律的相量形式,可知串联电路中总电压的相量等于各分段电压的相量和,即,画出相量图。
(1)用两表法(即交流电压表、电流表)测出上述电路的电压U、U1、U2 及电流I,利用相量图可以求出电路的参数。
其中,U1为电感两端的电压,U2为电阻两端的电压。
电感线圈的功率因数;其中:L、R串联电路总功率因数;电感线圈电阻;电感线圈阻抗;电感线圈电感;电阻阻值。
(2)用三表法(即交流电压表、电流表、功率表)测出上述电路的U、U1、U2及电流I和功率P,就可按下列各式求出电路的参数:L、R串联电路总功率因数;电路总阻抗;滑线电阻阻值;电路总电阻值;电感线圈电阻RL=R'-R;电感线圈电感。
2.感性负载并联电容器提高功率因数意义在正弦交流电路中,电源发出的功率为P=UI cosφ,cosφ提高了,对于降低电能损耗、提高发电设备的利用率和供电质量具有重要的经济意义。
电工实验功率因数的提高实验报告一、实验目的1、深入理解功率因数的概念及其对电路的影响。
2、掌握提高功率因数的方法和原理。
3、通过实验测量和分析,验证提高功率因数的效果。
二、实验原理1、功率因数的定义在交流电路中,功率因数(Power Factor,简称 PF)是有功功率(P)与视在功率(S)的比值,用符号cosφ 表示,即cosφ = P / S。
其中,有功功率是指电路中实际消耗的功率,用于做功(如发热、发光等);视在功率是指电源提供的总功率,包括有功功率和无功功率。
无功功率(Q)是用于电路中电场和磁场的交换,但不做功。
2、功率因数低的影响当功率因数较低时,电路中的电流会增大,导致线路损耗增加,降低了电源的利用效率,同时也会增加设备的容量和成本。
3、提高功率因数的方法常见的提高功率因数的方法是在感性负载两端并联电容器。
电容器提供的无功功率可以补偿感性负载所需的无功功率,从而减小电路中的总无功功率,提高功率因数。
三、实验设备1、交流电源(0 220 V)2、功率因数表3、交流电流表4、交流电压表5、电感线圈6、电容器(不同容量)7、电阻箱8、连接导线若干四、实验步骤1、按图连接电路将交流电源、电感线圈、电阻箱串联组成感性负载电路,然后将功率因数表、交流电流表、交流电压表接入电路,测量未并联电容器时的各项参数。
2、测量未并联电容器时的参数接通电源,调节交流电源的输出电压至 220 V,记录此时的电流、电压、功率因数等数据。
3、并联电容器并测量参数依次并联不同容量的电容器,每次并联后重新测量电流、电压和功率因数等参数,并记录下来。
4、数据分析根据测量的数据,绘制功率因数与电容器容量的关系曲线,分析功率因数的变化规律。
五、实验数据记录与处理|电容器容量(μF)|电流(A)|电压(V)|有功功率(W)|无功功率(var)|功率因数||::|::|::|::|::|::|| 0 | 15 | 220 | 150 | 220 | 068 || 1 | 12 | 220 | 160 | 180 | 073 || 2 | 10 | 220 | 170 | 150 | 077 || 3 | 08 | 220 | 180 | 120 | 082 || 4 | 07 | 220 | 190 | 100 | 086 |以电容器容量为横坐标,功率因数为纵坐标,绘制曲线如下:插入功率因数与电容器容量关系曲线的图片从曲线可以看出,随着电容器容量的增加,功率因数逐渐提高。
电路基础实验六实验名称单相交流电路及功率因数的提高一. 实验目的1、通过RL串联电路掌握单相交流电路的电压、电流、复阻抗之间的相量关系、有效值关系。
2、熟悉日光灯电路的组成,各元件的作用及日光灯的工作原理,学会日光灯电路的连接,了解线路故障的检查方法。
3、掌握交流电路的电压、电流和功率的测量方法。
4、掌握提高感性负载功率因数的方法。
二. 实验原理镇流器是一个铁心线圈,其电感L比较大,而线圈本身具有电阻R1。
日光灯在稳态工作时近似认为是一个阻性负载R2。
镇流器和灯管串联后接在交流电路中,可以把这个电路等效为RL串联电路。
图(1)日光灯电路图(2)日光灯等效电路因镇流器本身的电感较大,故整个电路的功率因数较低,为了提高电路的功率因数,可以采用在日光灯两端并联电容的方法。
并联电容后电路的总电流。
由于电容的无功电流抵消了一部分日光灯电流中的感性无功分量,所以总电流将减小,电路的功率因数被提高。
由于电源电压是固定的,并联电容器并不影响感性负载的工作状态,即日光灯支路的电流、功率和功率因数并不随并联电容的大小而改变,仅是电路的总电流及总功率因数发生变化。
提高电路的功率因数能够减小供电线路的损耗及电压损失,提高电源设备的利用率而又不影响负载的工作,所以并联电容器提高电路的功率因数的方法被供电部门广泛采用。
三. 实验设备序号名称型号与规格数量备注1 交流电压表0~500V 1 实验台2 交流电流表0~5A 1 实验台3 功率表 1 实验台4 自耦调压器 1 实验台5 日光灯灯管30W 1 实验台6 镇流器、启辉器与30W灯管配用各1 实验台7 电容器1μF,2.2μF,4.7μF/500V 各1 电工原理18 电流插座 3 实验台四. 实验内容及数据测量数值计算值P(W)cosφI(mA)U(V)U RL(V)U R(V)R1(Ω)L(H)cosφL R2(Ω)正常工作值29.47L0.53255220.0171.2109.424.19 2.140.036429.023、电容值(μF)测量数值P (W) cosφ′U (V)总电流I (mA)负载电流IRL(mA)电容电流IC(mA)0.47 29.6 L 0.59 220.0 230 257 431 29.97 L0.67 220.0 205 260 782.2 30.14 L0.89 220.0 157 261 1674.3 30.71 C0.75 220.0 187 260 327五.数据分析六. 思考题1、当日光灯上缺少了启辉器时,人们常用一根导线将启辉器的两端短接一下,然后迅速断开,使日光灯点亮或用一只启辉器去点亮多只同类型的日光灯,这是为什么?2、为了改善电路的功率因数,常在感性负载上并联电容器,此时增加了一条电流支路,试问电路的总电流是增大还是减小,此时感性支路的电流和功率是否改变?3、提高线路功率因数为什么只采用并联电容器法,而不用串联法?所并联的电容器是否越大越好?4、本节实验中,为了改善功率因数,分别并联了四个容值由小到大不等的电容,对应的功率因数是否也随之由小到大的变化?如果不是,分析原因。
实验二 单相交流电路及功率因数的提高一、实验目的1. 研究正弦稳态交流电路中电压、电流相量之间的关系。
2. 了解日光灯电路的特点,理解改善电路功率因数的意义并掌握其方法。
二、原理说明1. 交流电路中电压、电流相量之间的关系 在单相正弦交流电路中,各支路电流和回路中各元件两端的电压满足相量形式的基尔霍夫定律,即:ΣI =0和ΣU=0 图1所示的RC 串联电路,在正弦稳态信号U 的激励下,电阻上的端电压R U 与电路中的电流I 同相位,当R 的阻值改变时,R U 和C U 的大小会随之改变,但相位差总是保持90°,R U 的相量轨迹是一个半圆,电压U 、C U 与R U 三者之间形成一个直角三角形。
即U =RU +C U ,相位角φ=acr tg (Uc / U R ) 改变电阻R 时,可改变φ角的大小,故RC 串联电路具有移相的作用。
图1 RC 串联交流电路及电压相量2. 交流电路的功率因数交流电路的功率因数定义为有功功率与视在功率之比,即:cos φ=P / S 其中φ为电路的总电压与总电流之间的相位差。
交流电路的负载多为感性(如日光灯、电动机、变压器等),电感与外界交换能量本身需要一定的无功功率,因此功率因数比较低(cos φ<0.5)。
从供电方面来看,在同一电压下输送给负载一定的有功功率时,所需电流就较大;若将功率因数提高 (如cos φ=1 ),所需电流就可小些。
这样即可提高供电设备的利用率,又可减少线路的能量损失。
所以,功率因数的大小关系到电源设备及输电线路能否得到充分利用。
为了提高交流电路的功率因数,可在感性负载两端并联适当的电容C,如图2所示。
并联电容C以后,对于原电路所加的电压和负载参数均未改变,但由于c I的出现,电路的总电流I 减小了,总电压与总电流之间的相位差φ减小,即功率因数cos φ得到提高。
2 交流电路的功率因数及改善3. 日光灯电路及功率因数的提高日光灯电路由灯管R、镇流器L和启辉器S组成,C是补偿电容器,用以改善电路的功率因数,如图3所示。
单相交流电路及功率因数提高实验报告试验二单相沟通电路及功率因数的提高一、试验目的讨论正弦稳态沟通电路中电压、电流相量之间的关系。
了解日光灯电路的特点,理解改善电路功率因数的意义并把握其方法。
二、原理说明沟通电路中电压、电流相量之间的关系在单相正弦沟通电路中,各支路电流和回路中各元件两端的电压满足相量形式的基尔霍夫定律,即:工I = 0和》U = 0图1所示的RC串联电路,在正弦稳态信号U的激励下,电阻上的端电压Ur与电路中的电流I同相位,当R的阻值转变时,Ur和Uc的大小会随之转变,但相位差总是保持90°, UR的相量轨迹是一个半圆,电压U、Uc与Ur三者之间形成一个直角三角形。
即U = U R + U c,相位角0= acr tg (Uc / U r)转变电阻R时,可转变$角的大小,故RC串联电路具有移相的作用。
URUcURUc何RC串联电路图1 RC串联沟通电路及电压相量沟通电路的功率因数沟通电路的功率因数定义为有功功率与视在功率之比,即:cos 0= P / S其中0为电路的总电压与总电流之间的相位差。
沟通电路的负载多为感性(如日光灯、电动机、变压器等),电感与外界交换能量本身需要肯定的无功功率,因此功率因数比较低(cos 0 0.5)。
从供电方面来看,在同一电压下输送给负载肯定的有功功率时,所需电流就较大;若将功率因数提高(如cos 0= 1 ),所需电流就可小些。
这样即可提高供电设备的利用率,又可削减线路的能量损失。
所以,功率因数的大小关系到电源设备及输电线路能否得到充分利用。
为了提高沟通电路的功率因数,可在感性负载两端并联适当的电容C,如图2所示。
并联电容C以后,对于原电路所加的电压和负载参数均未转变,但由于ic的出现,电路的总电流I减小了,总电压与总电流之间的相位差0减小,即功率因数COS0得到提高。
图2沟通电路的功率因数及改善日光灯电路及功率因数的提高日光灯电路由灯管R、镇流器L和启辉器S组成,C是补偿电容器,用以改善电路的功率因数,如图3所示。
单相交流电路及功率因数的提高实验报告
一、实验目的
1.了解单相交流电路在给定的电阻、电感和电容时受到的控制力。
2.学习单相交流电路的功率因数的改变。
3.分析单相交流电路中功率因数的变化及其原因,并根据实验结果,
对单相交流电路的负载要求作出最佳选择。
二、实验原理
单相交流电路的功率因数是指电路中有效功率与视在功率的比值,它
反映了负载是否合理,以及负载电流是否垂直于电压的方向。
低功率因数
表示负载电流和电压之间存在偏移,因此,提高单相交流电路的功率因数
是有必要的。
三、实验方法
1、实验环境:在实验室,所用仪器有电场实验台、示波器、电流表、电压表以及一台开关等,环境安静,空气清新,能够使实验结果准确。
2、仪器配置:将电场实验台架设在实验室的台面上。
将开关及电阻、电感、电容连接在实验电路上,并将示波器和电流表、电压表依次连接在
电路中。
3、数据采集:分别调节电阻、电感、电容的值,测量一次电流和电压。
1 实验二单相交流电路及功率因数的提高一、实验目的1. 研究正弦稳态交流电路中电压、电流相量之间的关系。
2. 了解日光灯电路的特点理解改善电路功率因数的意义并掌握其方法。
二、原理说明 1. 交流电路中电压、电流相量之间的关系在单相正弦交流电路中各支路电流和回路中各元件两端的电压满足相量形式的基尔霍夫定律即∑I0和∑U0 图1所示的RC串联电路在正弦稳态信号U的激励下电阻上的端电压RU与电路械牡缌鱅同相位当R的阻值改变时RU和CU的大小会随之改变但相位差总是保持90°RU的相量轨迹是一个半圆电压U、CU与RU三者之间形成一个直角三角形。
即URUCU相位角φacr tg Uc / UR 改变电阻R时可改变φ角的大小故RC串联电路具有移相的作用。
图1 RC串联交流电路及电压相量2. 交流电路的功率因数交流电路的功率因数定义为有功功率与视在功率之比即cosφP / S 其中φ为电路的总电压与总电流之间的相位差。
交流电路的负载多为感性如日光灯、电动机、变压器等电感与外界交换能量本身需要一定的无功功率因此功率因数比较低cosφ0.5。
从供电方面来看在同一电压下输送给负载一定的有功功率时所需电流就较大若将功率因数提高如cosφ1 所需电流就可小些。
这样即可提高供电设备的利用率又可减少线路的能量损失。
所以功率因数的大小关系到电源设备及输电线路能否得到充分利用。
为了提高交流电路的功率因数可在感性负载两端并联适当的电容如图2所示。
并联电容以后对于原电路所加的电压和负载参数均未改变但由于cI的出现电路的总电流I 减小了总电压与总电流之间的相位差φ减小即功率因数cosφ得到提高。
2 2 交流电路的功率因数及改善3. 日光灯电路及功率因数的提高日光灯电路由灯管R、镇流器L和启辉器S组成C是补偿电容器用以改善电路的功率因数如图3所示。
其工作原理如下当接通220V交流电源时电源电压通过镇流器施加于启辉器两电极上使极间气体导电可动电极双金属片与固定电极接触。
实验二 单相交流电路及功率因数的提高一、实验目的1. 研究正弦稳态交流电路中电压、电流相量之间的关系。
2. 了解日光灯电路的特点,理解改善电路功率因数的意义并掌握其方法。
二、原理说明1. 交流电路中电压、电流相量之间的关系 在单相正弦交流电路中,各支路电流和回路中各元件两端的电压满足相量形式的基尔霍夫定律,即:ΣI =0和ΣU=0 图1所示的RC 串联电路,在正弦稳态信号U 的激励下,电阻上的端电压R U 与电路中的电流I 同相位,当R 的阻值改变时,R U 和C U 的大小会随之改变,但相位差总是保持90°,R U 的相量轨迹是一个半圆,电压U 、C U 与R U 三者之间形成一个直角三角形。
即U =RU +C U ,相位角φ=acr tg (Uc / U R ) 改变电阻R 时,可改变φ角的大小,故RC 串联电路具有移相的作用。
图1 RC 串联交流电路及电压相量2. 交流电路的功率因数交流电路的功率因数定义为有功功率与视在功率之比,即:cos φ=P / S 其中φ为电路的总电压与总电流之间的相位差。
交流电路的负载多为感性(如日光灯、电动机、变压器等),电感与外界交换能量本身需要一定的无功功率,因此功率因数比较低(cos φ<0.5)。
从供电方面来看,在同一电压下输送给负载一定的有功功率时,所需电流就较大;若将功率因数提高 (如cos φ=1 ),所需电流就可小些。
这样即可提高供电设备的利用率,又可减少线路的能量损失。
所以,功率因数的大小关系到电源设备及输电线路能否得到充分利用。
为了提高交流电路的功率因数,可在感性负载两端并联适当的电容C,如图2所示。
并联电容C以后,对于原电路所加的电压和负载参数均未改变,但由于c I的出现,电路的总电流I 减小了,总电压与总电流之间的相位差φ减小,即功率因数cos φ得到提高。
2 交流电路的功率因数及改善3. 日光灯电路及功率因数的提高日光灯电路由灯管R、镇流器L和启辉器S组成,C是补偿电容器,用以改善电路的功率因数,如图3所示。