电磁场与电磁波总复习
- 格式:doc
- 大小:1.72 MB
- 文档页数:28
电磁场与电磁波知识点复习一、电磁场的基本概念电磁场是由电场和磁场相互作用而形成的一种物理场。
电场是由电荷产生的,而磁场则是由电流或变化的电场产生的。
电荷是产生电场的源,库仑定律描述了两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比。
电场强度是描述电场强弱和方向的物理量,其定义为单位正电荷在电场中所受到的力。
电流是产生磁场的源,安培定律描述了电流元之间的相互作用。
磁场强度则是描述磁场强弱和方向的物理量。
二、电磁波的产生电磁波是由时变的电场和时变的磁场相互激发而产生,并在空间中以一定的速度传播。
变化的电流和电荷分布都可以产生电磁波。
例如,一个振荡的电偶极子就是一种常见的电磁波源。
当电偶极子中的电荷来回振动时,周围的电场和磁场也随之发生周期性的变化,从而产生电磁波向空间传播。
三、电磁波的性质1、电磁波是横波电磁波中的电场强度和磁场强度都与电磁波的传播方向垂直,这是电磁波作为横波的重要特征。
2、电磁波的传播速度在真空中,电磁波的传播速度恒定,等于光速 c,约为 3×10^8 米/秒。
3、电磁波的频率和波长频率和波长是描述电磁波的两个重要参数,它们之间的关系为:波长=光速/频率。
电磁波的频率范围非常广泛,从低频的无线电波到高频的伽马射线。
4、电磁波的能量电磁波具有能量,其能量密度与电场强度和磁场强度的平方成正比。
四、麦克斯韦方程组麦克斯韦方程组是描述电磁场基本规律的一组方程,包括四个方程:高斯定律、高斯磁定律、法拉第电磁感应定律和安培麦克斯韦定律。
高斯定律描述了电场的通量与电荷量之间的关系;高斯磁定律表明磁场的通量总是为零;法拉第电磁感应定律说明了时变磁场可以产生电场;安培麦克斯韦定律则指出时变电场也可以产生磁场。
这组方程统一了电学和磁学现象,预言了电磁波的存在,并奠定了现代电磁学的基础。
五、电磁波的传播电磁波在不同介质中的传播特性不同。
在均匀介质中,电磁波遵循直线传播规律;当电磁波从一种介质进入另一种介质时,会发生折射和反射现象。
电磁场与电磁波复习题第一部分矢量分析1、请解释电场与静电场的概念。
静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。
不随时间变化的电场称为静电场。
2、请解释磁场与恒定磁场的概念。
运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。
不随时间变化的磁场称为恒定磁场。
3、请解释时变电磁场与电磁波的概念。
如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。
时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。
4、请解释自由空间的概念。
电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。
在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。
因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。
5、举例说明电磁场与波的应用。
静电复印、静电除尘以及静电喷漆等技术都是基于静电场对于带电粒子具有力的作用。
电磁铁、磁悬浮轴承以及磁悬浮列车等,都是利用磁场力的作用。
当今的无线通信、广播、雷达、遥控遥测、微波遥感、无线因特网、无线局域网、卫星定位以及光纤通信等信息技术都是利用电磁波作为媒介传输信息的。
6、请解释常矢与变矢的概念。
若某一矢量的模和方向都保持不变,此矢量称为常矢,如某物体所受到的重力。
而在实际问题中遇到的更多的是模和方向或两者之一会发生变化的矢量,这种矢量我们称为变矢,如沿着某一曲线物体运动的速度v等。
7、什么叫矢性函数?设t是一数性变量,A为变矢,对于某一区间G[a,b]内的每一个数值t,A 都有一个确定的矢量A(t)与之对应,则称A为数性变量t的矢性函数。
8、请解释静态场和动态场的概念。
如果在某一空间区域内的每一点,都对应着某个物理量的一个确定的值,则称在此区域内确定了该物理量的一个场。
换句话说,在某一空间区域中,物理量的无穷集合表示一种场。
“电磁场与电磁波“复习提纲根本定义、根本公式、根本概念、根本计算一、场的概念〔§1-1〕 1. 场的定义2. 标量场与矢量场:等值面、矢量线 二、矢量分析1. 矢量点积与叉积的定义:〔第一次习题〕2. 三种常用正交坐标系3.标量的梯度〔§1-3〕 a) 等值面:例1-1 b) 方向导数:例1-2c) 梯度定义与计算:例1-3 4. 矢量场的通量与散度〔§1-4〕a) 矢量线的定义:例1-4b) 矢量场的通量:()()S e r F S r F n SSd d⋅=⋅=⎰⎰ψc) 矢量场的散度定义与计算:例1-5d) 散度定理〔高斯定理〕:⎰⎰⋅=⋅∇SVS F V Fd d5. 矢量场的环量与旋度〔§1-5〕a) 矢量场的环流〔环量〕:⎰⋅=ll F d Γb) 矢量场的旋度定义与计算:例1-6 c) 旋度定理〔斯托克斯定理〕:()⎰⎰⋅=⋅⨯∇CSl F S Fd d6. 无源场与无散场a) 旋度的散度()0≡⨯∇⋅∇A ,散度处处为0的矢量场为无源场,有A F⨯∇=b) 梯度的旋度()0≡∇⨯∇ϕ,旋度处处为0的矢量场为无旋场,有u F -∇=;c) 矢量场的分类 7. 拉普拉斯算子8. 亥姆霍兹定理:概念与意义 根本概念:1. 矢量场的散度和旋度用于描述矢量场的不同性质a) 矢量场的旋度是矢量,矢量场的散度是标量;b) 旋度描述矢量场中场量与涡旋源的关系,散度描述矢量场中场量与通量源的关系; c) 无源场与无旋场的条件;d) 旋度描述场分量在与其垂直方向上的变化规律;散度描述场分量沿各自方向上的变化规律 2. 亥姆霍兹定理概括了矢量场的根本性质a) 矢量场由其散度、旋度和边界条件唯一确定;b) 由于矢量的散度和旋度分别对应矢量场的一种源,故分析矢量场总可以从研究其散度和旋度着手; c) 散度方程和旋度方程是矢量场的微分形式,故可以从矢量场沿闭合面的通量和沿闭合路径的环流着手,得到根本方程的积分形式。
电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。
散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。
2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。
当S 点P 时,存在极限环量密度。
⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。
4.⽮量的旋度在直⾓坐标系下的表达式。
5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。
梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。
9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。
电磁场与电磁波复习第一部分知识点归纳第一章矢量分析1、三种常用的坐标系(1)直角坐标系微分线元:dz a dy a dx a R d z y x →→→→++=面积元:⎪⎩⎪⎨⎧===dxdy dS dxdzdS dydzdS zyx ,体积元:dxdydzd =τ(2)柱坐标系长度元:⎪⎩⎪⎨⎧===dz dl rd dl drdl z r ϕϕ,面积元⎪⎩⎪⎨⎧======rdrdzdl dl dS drdz dl dl dS dz rd dl dl dS z zz r z r ϕϕϕϕ,体积元:dzrdrd d ϕτ=(3)球坐标系长度元:⎪⎩⎪⎨⎧===ϕθθϕθd r dl rd dl drdl r sin ,面积元:⎪⎩⎪⎨⎧======θϕθϕθθθϕϕθθϕrdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元:ϕθθτd drd r d sin 2=2、三种坐标系的坐标变量之间的关系(1)直角坐标系与柱坐标系的关系⎪⎪⎩⎪⎪⎨⎧==+=⎪⎩⎪⎨⎧===z z x y yx r zz r y r x arctan,sin cos 22ϕϕϕ(2)直角坐标系与球坐标系的关系⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=⎪⎩⎪⎨⎧===z yz y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 222222ϕθθϕθϕθ(3)柱坐标系与球坐标系的关系⎪⎪⎩⎪⎪⎨⎧=+=+=⎪⎩⎪⎨⎧===ϕϕθθϕϕθ22'22''arccos ,cos sin z r z zr r r z r r 3、梯度(1)直角坐标系中:za y a x a grad z y x∂∂+∂∂+∂∂=∇=→→→μμμμμ(2)柱坐标系中:za r a r a grad z r∂∂+∂∂+∂∂=∇=→→→μϕμμμμϕ1(3)球坐标系中:ϕμθθμμμμϕθ∂∂+∂∂+∂∂=∇=→→→sin 11r a r a r a grad r 4.散度(1)直角坐标系中:zA y A x A A div zy X ∂∂+∂∂+∂∂=→(2)柱坐标系中:z A A r rA r r A div zr ∂∂+∂∂+∂∂=→ϕϕ1)(1(3)球坐标系中:ϕθθθθϕθ∂∂+∂∂+∂∂=→A r A r A r rr A div r sin 1)(sin sin 1)(1225、高斯散度定理:⎰⎰⎰→→→→=⋅∇=⋅ττττd A div d A S d A S,意义为:任意矢量场→A 的散度在场中任意体积内的体积分等于矢量场→A 在限定该体积的闭合面上的通量。
一、 单项选择题1.两个矢量的矢量积(叉乘)满足以下运算规律( B )A. 交换律 A B B A ⨯=-⨯B. 分配率 ()A B C A B A C ⨯+=⨯+⨯C. 结合率D. 以上均不满足 2. 下面不是矢量的是( C )A. 标量的梯度B. 矢量的旋度C. 矢量的散度D. 两个矢量的叉乘 3. 下面表述正确的为( B )A. 矢量场的散度结果为一矢量场B. 标量场的梯度结果为一矢量(具有方向性,最值方向)C. 矢量场的旋度结果为一标量场D. 标量场的梯度结果为一标量 4. 矢量场的散度在直角坐标下的表示形式为( D )A .A A A x y z ∂∂∂++∂∂∂B .y x z x y z A A Ae e e x y z ∂∂∂++∂∂∂C .x y z A A A e e e x y z ∂∂∂++∂∂∂ D . y x zA A A xy z ∂∂∂++∂∂∂ 5. 散度定理的表达式为( A )体积分化为面积分 A. sVA ds AdV ⋅=∇⋅⎰⎰⎰⎰⎰Ò B.sVA ds A dV⨯=∇⋅⋅⎰⎰⎰⎰⎰ÒC.sVA ds A dV ⨯=∇⨯⋅⎰⎰⎰⎰⎰Ò D.sVA ds A dV ⋅=∇⨯⋅⎰⎰⎰⎰⎰Ò 6. 斯托克斯定理的表达式为(B )面积分化为线积分A. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ B.()LsA dl A ds⋅=∇⨯⋅⎰⎰⎰ÑC.()LsA dl A ds ⨯=∇⨯⋅⎰⎰⎰Ñ D. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ 7. 下列表达式成立的是( C ) 两个恒等式()0A ∇∇⨯=g ,()0u ∇⨯∇=A.()sVAds A dV =∇⨯⋅⎰⎰⎰⎰⎰Ò; B. ()0u ∇∇=g ;C. ()0A ∇∇⨯=g ;D. ()0u ∇⨯∇=g8. 下面关于亥姆霍兹定理的描述,正确的是( A )(注:只知道散度或旋度,是不能全面反映场的性质的)A. 研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。
B. 研究一个矢量场,只要研究它的散度就可确定该矢量场的性质。
C. 研究一个矢量场,只要研究它的旋度就可确定该矢量场的性质。
D. 研究一个矢量场,只要研究它的梯度就可确定该矢量场的性质。
二、 判断题 (正确的在括号中打“√”,错误的打“×”。
)1.描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )2. 矢量场在闭合路径上的环流和在闭合面上的通量都是标量。
( √ )3. 空间内标量值相等的点集合形成的曲面称为等值面。
( √ )4. 标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )5. 矢量场在闭合路径上的环流是标量,矢量场在闭合面上的通量是矢量。
( × ) 标量6. 梯度的方向是等值面的切线方向。
( × ) 法线方向三、 计算题1.某二维标量函数22u y x =-,求(1)标量函数梯度u ∇;(2)求梯度在正x 方向的投影。
解:(1)标量函数的梯度是22x y x y u uu e e e ye x y∂∂∇=+=-+∂∂ (2)梯度在正x 方向的投影(22)2x x y x u e e ye e ∇⋅=-+⋅=-2.已知某二维标量场22(,)u x y x y =+,求(1)标量函数的梯度;(2)求出通过点(1,1)处梯度的大小。
解:(1)标量函数的梯度是22x y x y u uu e e xe ye x y∂∂∇=+=+∂∂(2)任意点处的梯度大小为u ∇=在点()1,1处梯度的大小为:u ∇=3.已知矢量2x y z e x e xyz e xy z =++A ,(1)求出其散度;(2)求出其旋度 解:(1)矢量的散度是21y x zxz xy x y z ∂∂∂∇⋅=++=++∂∂∂A A A A(2)矢量的旋度是22(2)()xy zx y z e e e e xyz xy e y z e yz x y z xxyzxy z∂∂∂∇⨯==-+-+∂∂∂A 4.矢量函数2x y z x e ye xe =-++A ,试求(1)∇⋅A ;(2)若在xy 平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A 穿过此正方形的通量。
解:(1)21y x zx x y z∂∂∂∇⋅=++=-+∂∂∂A A A A (2)矢量A 穿过此正方形的通量2 () z x y z z SSS d e dS x e ye xe e dS ⋅=⋅=-++⋅⎰⎰⎰蜒?A S A 11110Sx y xdS xdxdy =-=-===⎰⎰⎰Ñ一.选择题(每题2分,共20分)1. 毕奥—沙伐尔定律( C )(提示该定律没有考虑磁化介质,是在真空中,0μ) A. 在任何媒质情况下都能应用 B. 在单一媒质中就能应用 C. 必须在线性,均匀各向同性媒质中应用。
2. 一金属圆线圈在均匀磁场中运动,以下几种情况中,能产生感应电流的( C )A. 线圈沿垂直于磁场的方向平行移动B.线圈以自身某一直径为轴转动,转轴与磁场方向平行C.线圈以自身某一直径为轴转动,转轴与磁场方向垂直 (提示 B S ψ=⋅, 磁场或面积变化会导致磁通变化)3 . 如图所示,半径为a 的圆线圈处于变化的均匀磁场中,线圈平面与B 垂直。
已知2321B t t =++,则线圈中感应电场强度i E 的大小和方向为( C )(提示i lS BE dl dS t∂⋅=-⋅∂⎰⎰Ñ,) A. 22(31)t a π+,逆时针方向 B. (31)t a +,顺时针方向 C. (31)t a +,逆时针方向4. 比较位移电流与传导电流,下列陈述中,不正确的是( A )A. 位移电流与传导电流一样,也是电荷的定向运动 (提示位移电流是假想电流,为了支持电容中环路定理的连续提出的,实际是电场的微分量)B. 位移电流与传导电流一样,也能产生涡旋磁场C. 位移电流与传导电不同,它不产生焦耳热损耗5. 根据恒定磁场中磁感应强度B 、磁场强度H 与磁化强度M 的定义可知,在各向同性媒质中:( A )(B H μ=u v u u v ,B 与H 的方向一定一致, 0B H M μ=+v v v,B 与M 之间不确定同异)A. B 与H 的方向一定一致,M 的方向可能与H 一致,也可能与H 相反B. B 、M 的方向可能与H 一致,也可能与H 相反C. 磁场强度的方向总是使外磁场加强。
6. 恒定电流场基本方程的微分形式说明它是( A ) A. 有散无旋场 B. 无散无旋场 C. 无散有旋场7. 试确定静电场表达式3(32)()x y z E e y e x z e cy z =+--+中,常数c 的值是( A ) ( 提示0E ∇⨯=, 可以解出 )A. 2c =B. 3c =C. 2c =-8. 已知电场中一个闭合面上的电通密度,电位移矢量D 的通量不等于零,则意味着该面内( A )(提示0sD dS q ⋅=≠⎰Ñ)A. 一定存在自由电荷B. 一定不存在自由电荷C. 不能确定9. 电位移表达式D E ε=v v( C )(提示在非均匀介质中ε不是常数,见课本54) A. 在各种媒质中适用 B. 在各向异性的介质中适用 C. 在各向同性的、线性的均匀的介质中适用10. 磁感应强度表达式0B H M μ=+v v v( A ) (提示任何磁介质,磁极矩极化只有和B 同向或反向,见课本58)A. 在各种磁介质中适用B. 只在各向异性的磁介质中适用C. 只在各向同性的、线性的均匀的磁介质中适用二、计算题(每题10分,共80分)1.真空中均匀带电球体,其电荷密度为ρ,半径为a 。
试求(1)球内任一点的电场强度;(2) 球外任一点的电位移矢量。
解:(1)作半径为r 的高斯球面,在高斯球面上电位移矢量的大小不变,(2分)根据高斯定理,在r a <区域,有sD dS q ⋅=⎰Ñ23443D r r ππρ=(2分) 3D r ρ= r e u v(1分)电场强度为 003DE r ρεε== r e u v (2分) (2)当r a >时,作半径为r 的高斯球面,根据高斯定理,有 ρππ32344a r D =(2分)323a D rρ= r e u v(3分)2.在真空中,有一均匀带电的长度为L 的细杆,其电荷线密度为τ。
求在其横坐标延长线上距杆端为d 的一点P 处的电场强度P E 。
解:将细杆分解为无数个线元,每个线元都会产生各自的电场强度,方向都沿x e u u r。
在离左端长度为x 处取线元dx ,它的点电荷为dq dx τ=,在轴线P 点产生的电场是2014()x dqdE e L d x πε=+-u u r 2014()x dx e L d x τπε=+-u u r (5分) 由电场的叠加,合电场只有x e u u r分量,得到2014()x dxE dE e L d x τπε==+-⎰⎰u u r201()4()x d L d x e L d x τπε-+-=+-⎰u u r 011()4x e d L d τπε=-+u u r (5分) 3. 一个球壳体的内半径、外半径分别为a 和b ,壳体中均匀分布着电荷,电荷密度为ρ。
试求离球心为 r 处的电场强度。
解:电荷体密度为:334()3q b a ρπ=- (2分)由高斯定理:()sqE r dS ε⋅=⎰Ñ (2分)在0r a <<区域内,10q =,10E =, (2分) 在a r b <<区域内,332204()3()sr a q E r dS πρεε-⋅==⎰Ñ,332204()34r a E r πρπε-=,得到 33220()3r a E r ρε-= r e u v(2分)在b r <区域,30()sqE r dS ε⋅=⎰Ñ,2304qE r πε=,得到 33320()3b a E rρε-= r e u v (2分) 4.设半径为a 的无限长圆柱内均匀地流动着强度为I 的电流,设柱外为自由空间,求柱内离轴心r 任一点处的磁场强度;柱外离轴心r 任一点处的磁感应强度。
解:由电流的柱对称性可知,柱内离轴心r 任一点处的磁场强度大小处处相等,方向为沿柱面切向µe φ,在r a <区域,由安培环路定律: 222cr H dl rH I a φπππ⋅==⎰v v Ñ (3分) 整理可得柱内离轴心r 任一点处的磁场强度2ˆ2rH eI aφπ=v(r a <) (2分)柱外离轴心r 任一点处的磁感应强度也大小处处相等,方向为沿柱面切向ˆeφ,在 r a >区域,培环路定律:02cB dl rB I φπμ⋅==⎰vv Ñ (3分)整理可得柱内离轴心r 任一点处的磁感应强度rIeˆB πμϕ20=ϖ (r a >) (2分)5.设无限长直导线与矩形回路共面,(如图所示),(1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。