电磁场与电磁波学科发展历程
- 格式:docx
- 大小:22.84 KB
- 文档页数:5
电磁场与电磁波的发展历史电磁场是指电荷在空间中所产生的电场和磁场,它们的相互作用就像是一种能量场,对于物理学的发展和应用都有着非常重要的作用。
电磁波是指电磁场在空间中传播的波动,包括无线电波、光波等,它们的应用更是广泛,如无线通信、电子技术、光学等领域。
电磁场和电磁波的发展历史可以追溯到19世纪初。
当时的科学家们仍然相信,光是由于在介质中传播的一种粒子,称为以太。
然而,英国科学家Faraday通过实验发现了电磁感应现象,即磁场产生电势差,而电场产生磁场。
这启示了Maxwell,一个苏格兰科学家,去研究以太,并对电磁场做出了创新性的贡献。
他发现了电磁场的基本方程式,并成功预言了电磁波的存在,他认为电磁波就是以太中的一种波动。
在Maxwell的理论支持下,德国物理学家Hertz于1886年发现了电磁波的存在,并对其进行了系统的研究。
他通过实验证实了Maxwell的理论,并发现了电磁波的传播速度与光速相等,进一步证明了电磁波的本质就是一种光波。
20世纪初,电磁波的应用开始广泛地开展。
无线电通讯成为了一个新领域,Marconi通过无线电波实现了远距离通信。
随后,电子技术也得到了迅猛发展,农用无线电、航空通信等应用也得到了广泛应用。
同时,由于电磁波的各种特性,研究人员在天文学、气象学、地震学等领域也进行了重要的研究和应用。
另一方面,对于电磁场的研究也在不断深入。
20世纪后期,电磁场的理论和实验研究获得了长足的进展,引出了许多新的领域。
比如,与电磁场相关的物理学和数学,包括电磁理论的深入研究、量子场论等等。
此外,电磁场在新材料、生物科学等领域应用现象的研究也正在逐步展开,为电磁场和电磁波的应用开拓了新的方向。
在这个信息化的时代,电磁场与电磁波的重要性日益凸显。
比如,电磁波在通信和信息密集型应用领域扮演着至关重要的角色,而电磁场在新型材料和纳米器件中的应用也将推动科学技术的进一步发展。
随着技术的不断进步,我们可以期待着科学和技术在电磁场和电磁波研究领域的更多新突破。
电磁学发展历程电磁学是研究电场和磁场现象以及它们相互作用的物理学科,其发展历程可以追溯到古代。
以下是电磁学发展的重要里程碑。
古代希腊时期,一些学者发现当琥珀摩擦后能够吸引轻物体。
这一现象被认为是电磁学的起源,被称为静电现象。
16世纪末,英国物理学家吉尔伯特首次系统地研究了磁铁性质,并引入了“电”这个词。
他还发现了地球本身具有磁性,这为后来的航海提供了重要的帮助。
18世纪,法国物理学家居里发现了电流通过一条导线时,会在导线周围产生一个环状的磁场。
这一发现打开了电磁学的新篇章。
19世纪初,丹麦物理学家奥斯特和法国物理学家安培独立发现了法拉第电磁感应现象。
他们发现当一个导体在磁场中移动时,会在导体两端产生电流。
这一现象被称为电磁感应,成为后来电动机和发电机的基础。
1831年,法拉第进一步研究了电磁感应现象,并提出了著名的法拉第电磁感应定律。
根据该定律,导体中的感应电动势与磁场的变化率成正比。
1833年,英国物理学家Фарадей发现在导体中的感应电流产生磁场。
他提出了法拉第电磁旋涡理论,认为磁场线是由电流形成的闭合回路。
19世纪中叶,英国物理学家麦克斯韦提出了电磁场理论,将电场和磁场统一起来。
他发现电磁波是一种通过空间传播的电磁辐射。
这一理论奠定了电磁学的基础,并对后来的无线电通信产生了重大影响。
20世纪初,德国物理学家浦里和卢瑟福发现了电子,并提出了电子运动的动力学方程。
这为电子在电场和磁场中的行为提供了理论基础,对电磁学的发展起到了重要作用。
20世纪后半叶,人们进一步研究电磁场的量子性质,发展了量子电动力学。
这一理论成功解释了电磁相互作用的微观机制,并为现代粒子物理学做出了重要贡献。
近年来,电磁学的应用也得到了广泛发展。
无线电通信、雷达、卫星导航和医疗成像等技术都是基于电磁学原理的。
此外,磁共振成像技术的发展也为医学诊断提供了重要工具。
总的来说,电磁学的发展经历了数百年的演变,从古代的静电现象到现代的量子电动力学,电磁学的理论框架不断完善,应用领域也不断拓展。
电磁学的发展历程如下:1. 公元前600年,早在公元前585年,希腊哲学家泰勒斯已记载了用木块摩擦过的琥珀能够吸引碎草等轻小物体,以及天然磁矿石吸引铁等现象。
2. 公元前770至公元前221年的春秋战国时期,我国便有“山上有慈石(即磁石)者,其下有铜金”,“慈石召铁,或引之也”等慈石吸铁的记载;3. 西汉刘安主持撰写的《淮南子》中有“若以慈石之能连铁也,而求其引瓦,则难矣”及“夫燧之取火于日,慈石之引铁,蟹之败漆,葵之向日,虽有明智,弗能然也。
故耳目之察,不足以分物理”。
说明西汉时人们就已经发现磁铁虽能吸引铁,但是无法吸引瓦的现象。
当时的人们虽观测到“取火于日”、“慈石之引铁”、“葵之向日”等现象,但尚无法理解其原理,因此有“虽有明智,弗能然也”。
4. 东汉著名学者王充(公元27-97年)在《论衡·乱龙》一书中有“顿牟掇芥,磁石引针,皆以其真是,不假他类。
”顿牟即琥珀(也有玳瑁的甲壳之说);芥指芥菜子,统喻干草、纸等的微小屑末。
掇芥”的意思是吸引芥子之类的轻小物体。
5. 西晋张华《博物志》中记载“今人梳头、脱著衣时,有随梳、解结有光者,亦有咤声。
”6. 16世纪的吉尔伯特是英国著名的医生,曾是英皇伊丽莎白一世的御医。
他不但医术高明,在物理学方面也成绩斐然。
他发表了《论磁》比较系统的阐述了其在电与磁方面的研究成果。
在其著作中记录了大量有关的磁现象,如磁石的吸引和推斥;烧热的磁铁磁性消失等。
他认为地球本身就是一个巨大的磁体,并用大磁石模拟地球做过著名的“小地球”试验。
他发现除琥珀以外,还有十几种物体,玻璃、硫磺、树脂、水晶等经过摩擦,也可以吸引轻小物体。
吉尔伯特第一次使用了“电(electric)”这个词,英语的“电”来自于希腊文“琥珀(ƞλεκτορν)”。
7. 17世纪,德国马德堡市市长、物理学家格里凯制造出一种摩擦起电器,使用步摩擦可以连续转动的硫磺球,从而可以得到大量电荷。
后来,不断有人制造出各种静电起电器。
电磁场与电磁波发展史电磁场与电磁波发展史这学期,我们学习了《电磁场与电磁波》这门课程,课程虽已结束,但在学习过程中获得的知识却会让我们每个人受益终身。
每一门学科都有一个发展完善的过程,我将用自己查阅到的资料与自己的理解简单介绍一下电磁场与电磁波的发展史。
电磁学是研究电磁现象的规律的学科,其中,在电磁学里,电磁场(elect- -romagnetic field)是一种由带电物体产生的一种物理场;电磁波(electromagnetic wave)(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。
关于电磁现象的观察记录,可以追溯到公元前6世纪希腊学者泰勒斯(Thales),他观察到用布摩擦过的琥珀能吸引轻微物体,英文中“电”的语源就来自希腊文“琥珀”一词。
在我国,最早是在公元前4到3世纪战国时期《韩非子》中关于司南(一种用天然磁石做成的指向工具)和《吕氏春秋》中有关“慈石召铁”的记载。
由此可见,电磁现象很早就已经被发现。
然而真正对电磁现象的系统研究则要等到十六世纪以后,并且静电学的研究要晚于静磁学,这是由于难以找到一个能产生稳定静电场的方法,这种情况一直持续到1660年摩擦起电机被发明出来。
十八世纪以前,人们一直采用这类摩擦起电机来产生研究静电场,代表人物如本杰明富兰克林。
人们在这一时期主要了解到了静电力的同性相斥、异性相吸的特性、静电感应现象以及电荷守恒原理。
后来,人们曾将静电力与在当时已享有盛誉的万有引力定律做类比,发现彼此在理论和实验上都有很多相似之处,包括实验观测到带电球壳内部的球体不会带电,这和有质量的球壳内部物体不会受到引力作用(由牛顿在理论上证明,是平方反比力的一个特征)的情形类似。
其间苏格兰物理学家约翰罗比逊(1759年)和英国物理学家亨利卡文迪什(1773年)等人都进行过实验验证了静电力的平方反比律,然而他们的实验却迟迟不为人知。
电磁场与电磁波的历史与发展一、历史的前奏静磁现象和静电现象:公元前6、7世纪发现了磁石吸铁、磁石指南以及摩擦生电等现象。
1600年英国医生吉尔伯特发表了《论磁、磁体和地球作为一个巨大的磁体》的论文。
使磁学从经验转变为科学。
书中他也记载了电学方面的研究。
静电现象的研究要困难得多,因为一直没有找到恰当的方式来产生稳定的静电和对静电进行测量。
只有等到发明了摩擦起电机,才有可能对电现象进行系统的研究,这时人类才开始对电有初步认识。
1785年库仑公布了用扭秤实验得到电力的平方反比定律,使电学和磁学进入了定量研究的阶段。
1780年,伽伐尼发现动物电,1800年伏打发明电堆,使稳恒电流的产生有了可能,电学由静电走向动电,导致1820年奥斯特发现电流的磁效应。
于是,电学与磁学彼此隔绝的情况有了突破,开始了电磁学的新阶段。
19世纪二、三十年代成了电磁学大发展的时期。
首先对电磁作用力进行研究的是法国科学家安培,他在得知奥斯特发现之后,重复了奥斯特的实验,提出了右手定则,并用电流绕地球内部流动解释地磁的起因。
接着他研究了载流导线之间的相互作用,建立了电流元之间的相互作用规律——安培定律。
与此同时,比奥 沙伐定律也得到发现。
英国物理学家法拉第对电磁学的贡献尤为突出。
1831年发现电磁感应现象,进一步证实了电现象与磁现象的统一性。
法拉第坚信电磁的近距作用,认为物质之间的电力和磁力都需要由媒介传递,媒介就是电场和磁场。
电流磁效应的发现,使电流的测量成为可能。
1826年欧姆(Georg Simon Ohm,1784—1854)因而确定了电路的基本规律——欧姆定律。
及至1865年,麦克斯韦把法拉第的电磁近距作用思想和安培开创的电动力学规律结合在一起,用一套方程组概括电磁规律,建立了电磁场理论,预测了光的电磁性质,终于实现了物理学史上第二次理论大综合。
爱因斯坦在纪念麦克斯韦100周年的文集中写道:“自从牛顿奠定理论物理学的基础以来,物理学的公理基础的最伟大的变革,是由法拉第和麦克斯韦在电磁现象方面的工作所引起的”。
电磁场与电磁波理论的发展与应用电磁理论如今已经拥有十分完备的体系,并且广泛应用于我们的生活中,大大提高了我们的生活质量。
这并不是某一位科学家的功劳,而是靠着一代代科学家前赴后继,后人站在前人的肩膀上不断探索发现,不断发展的结果。
公元前6,7世纪,人们发现了磁石吸铁,磁石指南以及摩擦生电现象,从此人们对“磁”有了概念,但是也仅仅停留于经验阶段,并没有理论研究。
并且,19世纪以前,人们还是认为,“电”与“磁”是两个不相关的概念。
18实际末期,德国科学家谢林认为,宇宙是由活力的,而不是僵死的。
他认为电就是宇宙的活力,是宇宙的灵魂,磁、光、热是相互联系的。
1777年,法国物理学家库仑发明了能够以非常高的精度测出非常小的力的扭秤,利用扭秤可以算出磁力或者静电力的大小。
1785年,库仑利用自己的扭秤建立了库仑定理,即两个电荷之间的力与两电荷的乘积成正比,与他们之间的距离平方成反比。
库伦定理是电学史上第一个定量规律,他使电学研究从定性阶段进入到了定量阶段,在电学史上是一块重要的里程碑。
1789年,生物学家迦伐尼发现了动物电。
1800年,迦伐尼的好朋友伏打用锌片与铜片夹以盐水浸湿的纸片叠成电堆产生了电流,这个装置后来称为伏打电堆,他还把锌片和铜片放在盛有盐水或稀酸的杯中,放多这样的小杯子中联起来,组成电池。
他指出这种电池“具有取之不尽,用之不完的电”,“不预先充电也能给出电击”。
伏打电堆(电池)的发明,提供了产生恒定电流的电源——化学电源,使人们有可能从各个方面研究电流的各种效应。
从此,电学进入了一个飞速发展的时期——电流和电磁效应的新时期。
直到现在,我们用的干电池就是经过改时后的伏打电池。
干电池中用氯化铵的糊状物代替了盐水,用石墨棒代替了铜板作为电池的正极,而外壳仍然用锌皮作为电池的负极。
人们为了纪念他们的功绩,就把这种电池称为伽伐尼电池或伏打电池,并把电压的单位用“伏特”来命名。
奥斯特是谢林的信徒,他从1807年开始研究电与磁之间的关系。
电磁学的发展简史我国古代和古希腊,人类从生产实践和日常生活中便了解到电和磁的一些现象和知识。
:春秋时代(公元前六百多年)十三世纪前后。
欧洲学术复兴。
通过实验研究自然规律蔚然成风。
当时得到磁学实验,发现了磁石有两极,并命名为N极和S极,并通过实验证实了异性磁极相吸,同性磁极相斥。
一根磁针断为两半时。
每一半又各自成为一根独立的小磁针。
但这股实验风气,立即遭到教廷中那些僧侣的反对,被压了下去。
电和磁的研究又进入了停顿期。
十六世纪。
英国:吉尔伯特:发现了电和磁有一些不同的性质。
制作了第一只实验用的验电器1660年,德国工程师盖利克,发明了第一台较大的摩擦起电机,使较大量电荷的获得成为可能。
1729年,英国:格雷:发现了导体和绝缘体具有不同的导电特性,这为电荷的输运奠定了基础。
1733年,法国:杜费:发现了两种性质完全不同的电荷。
1745年:荷兰:物理学家穆欣布罗克:发明了莱顿瓶,为电荷的储存提供了有效的手段,也为电的进一步研究提供了条件。
1747年:美国:富兰克林:在杜费的基础上,引入了正电和负电的规定,为定量研究电现象提供了一个基础,具有重大的意义。
他还认为。
摩擦的作用是使电从一个物体转移到另一物体,而不是创造电荷;任何一与外界绝缘的体系中,电的总量使不变的。
这就是通常所说的电荷守恒原理。
电荷的获得、储存和传递为定量研究电现象提供了充分的条件。
在认识了电荷分为正负两种,同性相斥异性相吸后,人们很快便转向研究电荷之间相互作用利的定量规律。
1750年,德国:埃皮诺斯:发现了两电荷之间的相互作用力随其距离的减小而增大的现象,但他没有深入的研究下去给出定量的规律。
1766年:德国:普里斯特利:通过一系列实验证明,带电的空心金属容器内表面上没有电荷,而且对内部空间没有任何电力作用,他做了猜测,认为电荷之间的作用力与万有引力相似,即与他们之间距离的平方成反比。
但他仅仅停留在猜测阶段。
1769年:英国:罗宾逊:他通过实验测出两个同种电荷之间的排斥力与距离的2.06次方成反比,他进一步猜想正确的应当使平方反比关系。
电磁学的发展历程简述
电磁学是研究电磁现象的学科,它的发展历程可以追溯到古希腊时期。
然而,真正意义上的电磁学发展始于 19 世纪。
在 19 世纪初期,物理学家法拉第发现了电磁感应定律。
这一发现奠定了电磁学的基础,为电磁学的发展开辟了新的道路。
随后,物理学家欧姆发现了欧姆定律,这一定律是电流通过导体时电阻值与电压成正比的定律。
欧姆定律的发现为电磁学的应用提供了重要的基础。
在 19 世纪中期,丹麦物理学家奥斯特发现了电流磁效应,即电流能够在导体周围产生磁场。
这一发现为电磁学的应用提供了新的思路。
在 19 世纪晚期,物理学家麦克斯韦提出了电磁场理论。
这一理论描述了电磁场的运动和相互作用,为电磁学的研究提供了重要的理论支持。
20 世纪初期,物理学家发明了电动机和发电机,这一发明开创了电磁学的新时代。
随着科学技术的不断发展,电磁学在各个领域中的应用也越来越广泛。
今天,电磁学已经成为了一个非常重要的学科,它对人类的生产和生活产生了深远的影响。
电磁场理论发展史——著名实验和相关科学家纲要:一、定性研究1、吉尔伯特的研究2、富兰克林二、定量研究1、反平方定律的提出2、电流磁效应的发现3、电磁感应定律及楞次定律4、麦克斯韦方程5、电磁波的发现三、小结、定性研究1、吉尔伯特的研究他发现不仅摩擦过的琥珀有吸引轻小物体的性质,而且一系列其他物体如金刚石、水晶、硫磺、明矾等也有这种性质,他把这种性质称为电性,他是第一个用“电力”、“电吸引”、“磁极”等术语的人。
吉尔伯特把电现象和磁现象进行比较,发现它们具有以下几个截然不同的性质:1.磁性是磁体本身具有的,而电性是需要用摩擦的方法产生;2.磁性有两种——吸引和排斥,而电性仅仅有吸引(吉尔伯特不知道有排斥);3.磁石只对可以磁化的物质才有力的作用,而带电体可以吸引任何轻小物体;4.磁体之间的作用不受中间的纸片、亚麻布等物体的影响,而带电体之间的作用要受到中间这些物质的影响。
当带电体浸在水中,电力的作用可以消失,而磁体的磁力在水中不会消失;5.磁力是一种定向力,而电力是一种移动力。
2、富兰克林的研究富兰克林(公元1706一1790)原来是费城的印刷商,他通过书本和科学上的来往获得了丰富知识,他利用莱顿瓶做出的第一项重要工作,是根据莱顿瓶内外两种电荷的相消性,在杜菲的“玻璃电”和“树脂电”的基础上提出正电和负电的概念。
富兰克林所做的第二项重要工作是统一了天电和地电。
、定量研究1、反平方定律的提出1750年前后,彼得堡科学院院士埃皮努斯在实验中发现;当发生相互作用的电荷之间的距离缩短时,两者之间的吸引力和排斥力便增加。
1766年富兰克林写信给他在德国的一位朋友普利斯特利(公元1733一1804),介绍了他在实验中发现在金属杯中的软木球完全不受金属杯电性的影响的现象。
他请普利斯特利给予验证。
英国科学家卡文迪许在1772年做了一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。
电磁学的发展历史概述静磁现象和静电现象:公元前6、7世纪发现了磁石吸铁、磁石指南以及摩擦生电等现象。
1600年英国医生吉尔伯特发表了《论磁、磁体和地球作为一个巨大的磁体》的论文。
使磁学从经验转变为科学。
书中他也记载了电学方面的研究。
静电现象的研究要困难得多,因为一直没有找到恰当的方式来产生稳定的静电和对静电进行测量。
只有等到发明了摩擦起电机,才有可能对电现象进行系统的研究,这时人类才开始对电有初步认识。
1785年库仑公布了用扭秤实验得到电力的平方反比定律,使电学和磁学进入了定量研究的阶段。
1780年,伽伐尼发现动物电,1800年伏打发明电堆,使稳恒电流的产生有了可能,电学由静电走向动电,导致1820年奥斯特发现电流的磁效应。
于是,电学与磁学彼此隔绝的情况有了突破,开始了电磁学的新阶段。
19世纪二、三十年代成了电磁学大发展的时期。
首先对电磁作用力进行研究的是法国科学家安培,他在得知奥斯特发现之后,重复了奥斯特的实验,提出了右手定则,并用电流绕地球内部流动解释地磁的起因。
接着他研究了载流导线之间的相互作用,建立了电流元之间的相互作用规律——安培定律。
与此同时,比奥 沙伐定律也得到发现。
英国物理学家法拉第对电磁学的贡献尤为突出。
1831年发现电磁感应现象,进一步证实了电现象与磁现象的统一性。
法拉第坚信电磁的近距作用,认为物质之间的电力和磁力都需要由媒介传递,媒介就是电场和磁场。
电流磁效应的发现,使电流的测量成为可能。
1826年欧姆(GeorgSimonOhm,1784—1854)因而确定了电路的基本规律——欧姆定律。
及至1865年,麦克斯韦把法拉第的电磁近距作用思想和安培开创的电动力学规律结合在一起,用一套方程组概括电磁规律,建立了电磁场理论,预测了光的电磁性质,终于实现了物理学史上第二次理论大综合。
1、电磁学发展的历史回顾早在公元前770年的春秋时代,中国人就发现了天然磁石,在东汉时代中国人发明了指南针,公元前120年前西汉刘安等编篆的《淮南子》中描述了“阴阳相薄为雷,激扬为电”。
北宋时期陈微显描述了磁屏蔽现象,并有磁石治疗耳病的记载。
17世纪(牛顿年代)法国旅行家卡⋅戴马甘兰游离中国后对中国的避雷针进行了描述“中国屋宇顶上龙头中有伸出的金属龙舌,舌根有细铁丝直通地下,使房屋不受雷电的破坏作用”。
虽然中国人发明较早,却无人去深入总结。
在我们的教科书里全是洋名,不见华名,因为中国古人注重发现,但不大注重理论总结与宣传。
1800年伏打给英国皇家学会会长班克斯写信介绍了电池的原理和构造。
使之成为至今众所周知的伏打电池。
1820年初奥斯芯发现电流的磁效应,并进行了深入研究和总结,而且首先传到德国和法国,在电磁学领域里,无人不晓奥斯芯这个大名。
1820年10月毕奥和萨伐尔发表了关于载流长直导线的磁场的实验结果,经过数学家拉普拉斯的帮助,总结出电流元在空间某点处产生的磁感应强度的规律d d 0I r 2μI l 4πr=⨯B e e ,称之为毕奥-萨伐尔-拉普拉斯定律,简称毕-萨定律。
1824年12月安培发现两传导电流之间的相互作用,并从毕-萨定律出发,描述了磁场环路公式0L L d I μ⋅=∑⎰B l ,称之为安培环路定律。
1832年法拉第发现磁铁与导体之间的感应,并认为是在导体中产生了感生电动势d d U =-l t∂Φ∂⎰。
法拉第还在静电测量方面和电镀领域作出了显著贡献。
1834年楞茨却认为是在导体中产生了感生电流I 。
由于感生电动势U ∆与感生电流I 体现在欧姆定律sdU Idl σ=-方程的两端,哪一个是因? 哪是一个果?这正如当时哲学界所争论的鸡蛋与小鸡的因果关系一样,谁也说不清楚。
1840年法拉第做了静电感应实验,麻绳系着一电量为Q 的带电体,并放入金属桶内,结果发现,金属桶外壁的电量也为Q ,然后,他用多个较大的金属桶套在外层,测量结果是:最外层桶的带电量仍为Q ,这是著名的桶实验。
电磁场理论发展的历史回顾第一部分概述人类对电磁现象的认识经历了相当长的时间。
静电现象与磁现象很早就引起了人们的注意,公元前六七百年就发现了磁石吸铁,磁石指南和摩擦生电现象。
真正对电磁现象进行研究是从英国御医吉尔伯特开始,1600年他发表了《论磁,磁体和地球作为一个巨大的磁体》,开创了电磁现象研究的新纪元。
关于电和磁现象的系统研究,始于18世纪。
1750年米切尔提出磁极间的作用力服从平方反比定律。
1785年公布了用扭秤实验得到了电力的平方反比定律,即著名的库伦定律,使电磁学进入了定量研究的阶段。
1780年伽伐尼研究电对动物机体的作用,做了有名的伽伐尼实验,1800年伏打发明电堆,获得产生稳定电流的手段,这导致1820年奥斯特发现了电流的磁效应,使电磁学的研究从电磁分离跃至电磁相互联系的研究阶段,开始了电磁学的新纪元。
此后,19世纪二三十年代成了电磁学大发展的时期。
1831年法拉第发现了电磁感应现象,证实了电与磁的统一性,而麦克斯韦从理论上总结了法拉第的物理观念,用一套方程组概括实验上发现的电磁规律,建立了电磁场理论,并将光与电磁现象统一起来,为利用电和磁开辟了广阔前景,实现了物理学史上第三次大综合。
第二部分电磁场的早期研究1. 中国古代的电磁学a) 对磁现象的认识。
公元前4世纪左右成书的《管子》中有“上有磁石者,其下有黄金”,这是关于磁的最早记载。
《吕氏春秋》中也曾写道“磁石召铁,或引之也”。
磁石可以指南的性质是我国人民的重大的发现。
北宋时期的政治家和科学家沈括,在《梦溪笔谈》中记有“方家以磁石磨针锋,则能指南”,此外,他还发现了地磁偏角。
b) 对于电现象的认识从雷电和摩擦起电现象开始的。
早在3000多年前的殷商时期,甲骨文中就有了“雷”及“电”的形声字。
王充在《论衡,雷虚篇》中写道:“云雨至则雷电击”,明确地提出云与雷电之间的关系。
《淮南子,坠行训》中提到:“阴阳相薄为雷,激扬为电”,即雷电是阴阳两气对立的产物。
电磁场与电磁波学科发展历程一.早期的电磁学研究早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下: 1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。
1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。
1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。
他还总结出静电相互作用的基本特征,同性排斥,异性相吸。
1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。
1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。
1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。
1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。
欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。
父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。
16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。
欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。
欧姆对导线中的电流进行了研究。
他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。
因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。
开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。
后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。
但是如何测量电流的大小,这在当时还是一个没有解决的难题。
开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。
后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置。
再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。
当导线中通过电流时,磁针的偏转角与导线中的电流成正比。
实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了欧姆定律,也就是通过导体的电流与电势差成正比与电阻成反比。
这个结果发表于1826年,次年他又出版了《关于电路的数学研究》,给出了欧姆定律的理论推导。
欧姆定律发现初期,许多物理学家不能正确理解和评价这一发现,并遭到怀疑和尖锐的批评。
研究成果被忽视,经济极其困难,使欧姆精神抑郁。
直到1841年英国皇家学会授予他最高荣誉的科普利金牌,才引起德国科学界的重视。
二.安培和法拉第奠定了电动力学基础1820年间,奥斯特在给学生讲课时,意外地发现了电流的小磁针偏转的现象。
当导线通电流时,小磁针产生了偏转。
这个消息传到巴黎后,启发了法国物理学家安培。
他思考,既然磁与磁之间、电流与磁之间都有作用力,那么电流与电流之间是否也存在作用力呢?他重复了奥斯特的实验,几天后向巴黎科学院提交了第一篇论文,提出了磁针转动方向与电流方向的关系,就是大家在高中学习过的右手定则。
再一周后,他向科学院提交了第二篇论文,在该文中,他讨论了平行载流导线之间的相互作用问题。
同时,他还发现如果给两个螺线管通电流,它们就会象两个条形磁铁一样相互吸引或者排斥。
1822年,安培在实验的基础上,以严密数学形式表述了电流产生磁力的基本定律,即安培定律。
该定律表明,两个电流元的作用力与它们之间距离的平方成反比,与库仑定律很类似,但是它们作用力的方向却要由右手定则来判断。
安培通过研究电流和磁铁的磁力情况,他认为磁铁的磁力在本质上和电流的磁力是一样的,提出了著名的安培分子电流假说。
该假说认为在物体内部的每个微粒都有一个环形电流,它们实际上就相当于一个小磁针,当这些小磁针的磁性排列一致时,就体现出宏观磁性。
这一假说在当时不被人们看重,一直到了70年后人们才真的发现了这种带电粒子,证明了安培假说的正确性。
既然电流有磁效应,那么磁是否也会有电流效应呢?根据物理的相互作用原理,这个结果应该是显然的,因此不少人为此做了很多实验,试图发现磁的电流效应。
但是这个现象直到奥斯特发现电流磁效应的10多年后,才被英国物理学家法拉第和美国物理学家亨利发现。
法拉第,1791年9月22日生在一个手工工人家庭,家里人没有特别的文化,而且颇为贫穷。
法拉第的父亲是一个铁匠。
法拉第小时候受到的学校教育是很差的。
十三岁时,他就到一家装订和出售书籍兼营文具生意的铺子里当了学徒。
但与众不同的是他除了装订书籍外,还经常阅读它们。
他的老板也鼓励他,有一位顾客还送给了他一些听伦敦皇家学院讲演的听讲证。
1812年冬季一天,正当拿破仑的军队在俄罗斯平原上遭到溃败的时候,一位二十一岁的青年人来到了伦敦皇家学院,他要求和著名的院长戴维见面谈话。
作为自荐书,他带来了一本簿子,里面是他听戴维讲演时记下的笔记。
这本簿子装订得整齐美观,这位青年给戴维留下了很好的印象。
戴维正好缺少一位助手,不久他就雇用了这位申请者,从此,法拉第开始步入科学的殿堂法拉第是一个伟大的实验物理学家,他在电磁学方面的主要贡献就是现在称之为法拉第电磁感应定律,并且提出了力线和场的概念。
前面提到的安培和奥斯特等人的工作说明了电和磁之间存在着必然的联系,法拉第发现的电磁感应定律比他们前进了一大步。
他用实验证明了电不仅可以转化为磁,磁也同样可以转变为电。
运动中的电能感应出磁,同样运动中的磁也能感应出电。
法拉第的发现为大规模利用电力提供了基础,后来人们利用法拉第电磁感应定律制造了感应发电机,从此蒸气机时代进入了电气化时代。
1831年,法拉第用铁粉做实验,形象地证明了磁力线的存在。
他指出,这种力线不是几何的,而是一种具有物理性质的客观存在。
从这个实验说明,电荷或者磁极周围空间并不是以前那样认为是一无所有的、空虚的,而是充满了向各个方向散发的这种力线。
他把这种力线存在的空间称之为场,各种力就是通过这种场进行传递的。
法拉第将他的一生所做的实验进行了总结,写出了《电学实验研究》。
由于法拉第基本上不懂数学,在这部著作中人们几乎找不到一个数学公式,以至于有人认为它只是一本关于电磁学的实验报告。
但是,正是因为他不懂数学,他才不得不想尽方法用简单易懂的语言来表达高深的物理规律,才有力线和场这样简明而优美的概念。
法拉第同时还是一个出色的科普演讲家。
他的这个不懂数学的缺陷恰好被他的后来者麦克斯韦所弥补,建立了完美的电磁学理论。
同时,法拉第具有深刻的哲学思想和几何学和空间上的洞察力。
他的善于持久思考的能力,正好补偿了他数学上的不足。
在他留下来的笔记中,有下面一段话:“我一直冥思苦索什么是使哲学家获得成功的条件。
是勤奋和坚韧精神加上良好的感觉能力和机智吗?……但是,我长期以来为我们实验室寻找天才却从未找到过。
不过我看到了许多人,如果他们真能严格要求自己,我想他们已成为有成就的实验哲学家了。
”开尔文勋爵对法拉第非常了解,他在纪念法拉第的文章中说:“他的敏捷和活跃的品质,难以用言语形容。
他的天才光辉四射,使他的出现呈现出智慧之光,他的神态有一种独特之美,这有幸在他家里或者皇家学院见过他的任何人都会感觉到的,从思想最深刻的哲学家到最质朴的儿童。
”三.麦克斯韦的电动力学麦克斯韦出生于苏格兰爱丁堡的一个名门望族。
他从小便显露出出色的数学才能。
他在14岁就在英国《爱丁堡皇家学会学报》上发表数学论文,获得了爱丁堡学院的数学奖。
后来,麦克斯韦给英国皇家学会送去了两篇论文,但是皇家学会以“不适宜一个穿夹克的小孩登上这里的讲台”为理由让别人代为宣读论文。
1850年,麦克斯韦考入了剑桥大学三一学院,主攻数学和物理。
1854年以优异的成绩毕业。
1871年回到了母校担任实验物理教授。
法拉第精于实验研究,麦克斯韦擅长于理论分析概括,他们相辅相成,导致了科学上的重大突破。
1855年,24岁的麦克斯韦发表了他的论文《论法拉第的力线》,对法拉第的力线概念进行了数学分析。
1862年,他继续发表了《论物理的力线》。
在这篇论文中,他不但解释了法拉第的实验研究结果,而且还发展了法拉第的场的思想,提出了涡旋电场和位移电流的概念,初步提出了完整的电磁学理论。
1873年,麦克斯韦完成了电磁理论的经典著作《电磁学通论》,建立了著名的麦克斯韦方程组,以非常优美简洁的数学语言概括了全部电磁现象。
这一方程组有积分形式和微分形式。
其积分形式有四个等式组成。
,就是说通过任意闭合曲面的电通量等于它包围住的自由电荷的代数和,说明在任何电场中电场强度沿着任意闭合曲线的积分等于通过此闭合曲线包围面积的磁通量随时间变化律的负值。
,即在任何磁场中,通过任意封闭曲面的磁通量等于零。
,说明任何磁场中磁场强度沿着任意闭合曲线的积分等于通过此闭合曲线所包围面积内的全电流。
麦克斯韦方程组把电荷、电流、磁场和电场的变化用数学公式全部统一起来了。
从该方程组可以知道,变化的磁场能够产生电场,变化的电场能产生磁场,它们将以波动的形式在空间传播,因此麦克斯韦预言了电磁波的存在,并且推导出电磁波传播速度就是光速,因此他也同时说明了光波就是一种特殊的电磁波。
这样,麦克斯韦方程组的建立就标志着完整的电磁学理论体系的建立,《电磁学通论》的科学价值可以与牛顿的《自然哲学的数学原理》相媲美。
通过麦克斯韦的科学经历,我们可以看到数学在物理学科中的重要作用。
麦克斯韦精通数学,他用精确的数学语言把实验结果升华为理论,用数学完美的形式使得法拉第的实验结果更加和谐美丽,显示了数学的巨大威力。
由于没有实验的验证,麦克斯韦理论当时得不到大多数科学家的理解。
物理学家劳厄说:“象赫尔姆赫兹和玻尔兹曼这样有异常才能的人为了理解它也需要花几年的力气。
”因此,支持他理论的科学家就更加少了。
1883年,赫兹注意到一个有关的新研究,有人提出,如果电磁波存在,那么莱顿瓶在振荡放电的时候,应该产生电磁波。
1886年,赫兹在进行放电实验时,发现近傍一个没有闭和的线圈也出现了火花,他得到启发,很快制出了可以检测电磁波的电波环。
电波环的结构非常简单,在一根弯成环状的粗铜线两端,安上两个金属球,小球间的距离可以进行调整。
赫兹经历了无数次失败,不断改变实验设计和装置,反复调整实验仪器。