天线原理 天线基本参数
- 格式:ppt
- 大小:3.66 MB
- 文档页数:22
天线基本知识介绍天线是将电信号转换为电磁波并将其传输或接收的装置。
它是电磁学的一个分支,用于无线通信、电视和广播接收、雷达以及天体物理学研究等领域。
本文将对天线的基本知识进行介绍。
1.天线的作用和原理:天线的主要作用是将电信号转换为电磁波并将其辐射到空间中,或者将接收到的电磁波转换为电信号。
它的工作原理基于法拉第电磁感应定律和亥姆霍兹理论,即通过电流在导体中产生的磁场和由变化的磁场产生的感应电流来实现电磁波的辐射或接收。
2.天线的分类:天线可以根据其结构、工作频率、功率和应用等方面进行分类。
根据结构,天线可分为线性天线(如偶极子天线)、面型天线(如片极天线、光波导天线)和体型天线(如反射天线、波导天线)。
根据工作频率,天线可分为超高频、高频、甚高频、极高频和微波天线等。
根据功率,天线可分为小功率天线和大功率天线。
根据应用,天线还可细分为通信天线、雷达天线、电视天线、卫星天线和微波天线等。
3.天线参数:天线的性能取决于其设计参数。
常见的天线参数包括增益、方向性、波束宽度、驻波比、频率响应、极化方式和带宽等。
增益是天线辐射功率与等效输入功率之比,方向性衡量天线在一些方向上的辐射能力,波束宽度是主瓣的半功率宽度,驻波比是反射功率与输入功率之比,频率响应表示天线在不同频率下的性能表现,极化方式表示电磁波的电场分量与地面垂直或平行的相对方向,带宽表示天线能够工作的频率范围。
4.天线设计方法:天线的设计是一个综合考虑电磁学原理、工作频率和应用要求的过程。
常见的天线设计方法包括试验法、数值法和半经验法。
试验法通过制作实物天线并进行实际测量来调整参数和优化天线性能。
数值法使用计算机模拟和数值算法来预测和分析天线性能,例如有限元法、谱域法和时域法等。
半经验法结合实验和数值方法,通过经验公式和优化算法来设计天线。
5.天线应用:天线的应用非常广泛,涵盖了通信、广播、雷达、航天、医疗和科学研究等领域。
在通信领域,天线用于无线电通信、移动通信和卫星通信等。
天线工作原理与主要参数(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--天线工作原理与主要参数一、天线工作原理与主要参数<BR>天线是任何一个无线电通信系统都不可缺少的重要组成部分。
合理慎重地选用天线,可以取得较远的通信距离和良好的通信效果。
(一)天线的作用<BR>各类无线电设备所要执行的任务虽然不同,但天线在设备中的作用却是基本相同的。
任何无线电设备都是通过无线电波来传递信息,因此就必须有能辐射或接收电磁波的装置。
所以,天线的第一个作用就是辐射和接收电磁波。
当然能辐射或接收电磁波的东西不一定都能用来作为天线。
例如任何高频电路,只要不是完全屏蔽起来的,都可以向周围空间或多或少地辐射电磁波,或者从周围空间或多或少地接收到电磁波。
但是,任意一个高频电路并不一定能作天线,因为它辐射和接收电磁波的效率很低。
只有能够有效地辐射和接收电磁波的设备才有可能作为天线使用。
天线的另一个作用是”能量转换”。
大家知道,发信机通过馈线送入天线的并不是无线电波,收信天线也不能直接把无线电波送入收信机,这里有一个能量的转换过程,即把发信机所产生的高频振荡电流经馈线送入天线输入端,天线要把高频电流转换为空间高频电磁波,以波的形式向周围空间辐射。
反之在接收时,也是通过收信天线把截获的高频电磁波的能量转换成高频电流的能量后,再送给收信机。
显然这里有一个转换效率问题。
天线增益越高,则转换效率就越高。
(二)天线的分类<BR>天线的形式繁多,按其用途可以分为发信天线和收信天线;按使用波段可以分为长、中、短、超短波天线和微波天线、微带天线等。
此外,我们还可按其工作原理和结构来进行分类。
<BR>为便于分析和研究天线的性能,一般把天线按其结构形式分为两大类:一类是半径远小于波长的金属导线构成的线状天线,另一类是用尺寸大于波长的金属或介质面构成的面状天线。
天线知识培训一、天线基本原理天线是无线通信系统中的重要组成部分,负责将电磁波传输和接收。
天线能够将电流元转换为电磁波,或者将电磁波转换为电流元。
其基本原理基于电磁波的传播和辐射。
二、天线类型与用途1. 按照工作频段:可分为超长波、长波、中波、短波、超短波以及微波等类型。
2. 按照方向性:可分为全向和定向天线。
3. 按照增益:可分为无源和有源天线。
4. 按照结构:可分为线天线和面天线。
不同类型的天线有不同的用途,例如长波天线用于通信和导航,短波天线用于电报通信和广播,超短波天线用于电视、雷达和移动通信等。
三、天线参数与性能1. 阻抗:天线的输入阻抗应与信号源的输出阻抗相匹配,以实现最佳传输效果。
2. 方向图:表示天线接收和辐射电磁波的方向和强度。
3. 增益:表示天线辐射或接收电磁波的能力,与天线的尺寸、形状和材料有关。
4. 带宽:表示天线的工作频率范围。
5. 极化:表示电场矢量的方向,影响着天线的性能。
四、天线辐射与传播天线的辐射原理是将电磁能转化为向空间发散的电磁波,或者将空间中的电磁波转化为电流元。
电磁波在传播过程中受到各种因素的影响,如空气阻力、地面反射等,形成不同的传播模式。
五、天线材料与工艺天线的材料和工艺对其性能有着重要影响。
常用的天线材料包括铜、铝、铁等金属材料,以及塑料、陶瓷等非金属材料。
工艺方面,需要考虑天线的精度、防腐、防水等因素。
六、天线设计与优化天线的设计过程需要考虑诸多因素,如阻抗匹配、增益、方向图、极化等。
现代计算机辅助设计软件的应用使得天线的优化设计成为可能,通过对天线结构、尺寸和材料等因素的调整,可以得到最佳的性能表现。
七、天线测量与调试天线的性能需要通过实际测量来评估。
测量内容包括阻抗、方向图、增益、极化等。
一旦发现性能不佳,需要进行调试,调整天线的结构、尺寸或工作参数等,以实现最佳性能。
八、天线干扰与防护天线在使用过程中可能会受到各种干扰,如其他电磁波的干扰、雷电的袭击等。
(完整word版)天线基本原理第⼀讲天线基本原理⼀、天线的基本概念1.天线的作⽤在任何⽆线电通信设备中,总存在⼀个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。
天线的作⽤就是将调制到射频频率的数字信号或模拟信号发射到空间⽆线信道,或从空间⽆线信道接收调制在射频频率上的数字或模拟信号。
2.天线问题的实质从电磁场理论出发,天线问题实质上就是研究天线所产⽣的空间电磁场分布,以及由空间电磁场分布所决定的电特性。
空间任何⼀点的电磁场满⾜电磁场⽅程——麦克斯韦⽅程及其边界条件。
因此,天线问题是时变电磁场问题的⼀种特殊形式。
从信号系统的⾓度出发,天线问题可以理解为考察由⼀个电磁波激励源产⽣的电磁响应特性。
从通信系统的⾓度出发,天线可以理解为信号发射和接收器,收发天线之间的⽆线电信号强度满⾜通道传输⽅程和多径衰落特性。
3.对天线结构的概念理解采⽤不同的模型,对天线可以有不同的理解。
典型的模型⽐如:●开放的电容[思考] 野外电台或电视发射塔,⽆线电视或电台接收机,为什么能构成⼀个天线,其电流回路在什么地⽅?●开放的传输线从传输线理论理解,天线可以看做是将终端开路的传输线终端掰开。
●TM mn型波导将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励⾼次模。
由电磁波源和电磁波传输媒质形成电磁波传输的机构波的形成都需要波源和传输媒质。
在⼀盆⽔中形成机械波纹,可以使⽤点激励源产⽣波,并在⽔⾯上传播。
波的传播特性只与媒质特性有关⽽与波源⽆关。
将⼀个⾁包⼦扔出去,这个⾁包⼦可能产⽣不同的结果,或者被狗吃了,或者掉在什么地⽅了,都与扔包⼦的⼈不再有任何关系。
⽽对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。
不过电磁波的传输媒质可以是真空。
[思考] 电磁波具有波粒⼆象性。
频率越低,波动性越强;频率越⾼,粒⼦性越强。
所以光波主要表现出粒⼦性,⽽长波表现出波动性。
天线的基本参数1.1天线得基本参数从左侧得传输线得⾓度瞧,天线就是⼀个阻抗(impedance)为Z得2终端电路单元(2-terminal circuit element),其中Z包含得电阻部分(resistiv eponent)被称为辐射电阻(radiationresistance,Rr);从右侧得⾃由空间⾓度来瞧,天线得特征可以⽤辐射⽅向图(radiation pattern)或者包含场量得不等于天线材料⾃⼰得电阻,⽽就是天线、天线所处得环境(⽐如温度)⽅向图。
Rr与天线终端得综合结果。
影响辐射电阻Rr得还包括天线温度(antennatemperature,T A)。
对于与天线材料本⾝得温度⼀点都没有关系,⽽就是与⾃⽆损天线来说,天线温度TA由空间得温度有关。
确切地说,天线温度与其说就是天线得固有属性,还不如说就是⼀个取决于天线“瞧到”得区域得参数。
从这个⾓度瞧,⼀个接收天线可以被视作能遥感测温设备。
辐射电阻Rr与天线温度T A都就是标量。
另⼀⽅⾯,辐射⽅向图包括场变量或者功率变量(功率变量与场变量得平⽅成正⽐),这两个变量都就是球体坐标θ与Φ得函数。
1.2天线得⽅向性(D,Directivity)与增益(G,Gain)D=4π/ΩA,其中ΩA就是总波束范围(或者波束⽴体⾓)、ΩA由主瓣范围(⽴+副瓣范围(⽴体⾓)Ωm。
体⾓)ΩM如果就是各向同性得(isotropic)天线,则ΩA=4π,因此D=1。
各向同性天线具有最低得⽅向性,所有实际得天线得⽅向性都⼤于1。
如果⼀个天线只对上半空间辐射,则其波束范围ΩA=2π,因此D=4π/2π=2=3.01dBi、简单短偶极⼦具有波束范围ΩA=2.67πsr,与定向性D=1、5(1、76dBi)。
如果⼀个天线得主瓣在θ平⾯与Φ平⾯得半功率波束宽度HPBW都就是20度,则D=4πsr/ΩA sr=41000deg2/(20deg)*(20 deg) ≈103≈20dBi(dB over isotropic)。
天线基本参数天线,又称为空间声纳,是一种收发无线电波的装置,由一组可以发送或接收无线电波的元件组成,常用来作为无线通信系统中换能器。
天线作为无线通信系统中的重要组件,能够将空气中的无线电波转换为电能,也可以将电能转换为无线电波,从而实现无线通信的传播和接收。
天线的关键参数包括频率,增益,材料,波束形状,以及电阻,相位匹配等。
其中,频率是指天线所能接收或发射的无线电波的频率范围,增益是指天线在接收或发射无线电波时能够提供的能量增益。
材料是指用于制造天线的材料,波束形状是指天线接收或发射无线电波时能够形成的波束形状。
电阻是指在接收或发射无线电波时,天线能够抗电流的能力,而相位匹配则是指天线能够在接收或发射无线电波时能够匹配电路的潮流相位。
从天线的构造来看,分为端面天线、块面天线,元件天线和线性天线等,它们各自具有不同的特性。
端面天线由一个面板组成,其增益较低,最大特点是小而轻。
块面天线是由多个端面天线排列制成,增益较高,广泛应用于高频应用。
元件天线是由单独的元件组成,其增益比较高,常用于PLL、数据采集等应用。
线性天线是由一条线缆和一组晶体管组成,增益较低,使用频率范围较宽,常用于电台和全球定位系统等应用。
另外,天线的阻抗有中阻抗和终端阻抗,中阻抗是指天线输入端与发射端之间的电阻,而终端阻抗是指天线输入端与负载之间的阻抗,两者都是需要匹配的,只有当两个参数都能达到匹配,天线才能够正常发挥作用。
此外,天线往往会受到环境影响,包括气溶胶、地形和空气湿度等。
空气湿度会影响天线的传输效果,当湿度较高时,天线效果会受到影响,反之,如果空气湿度较低就不容易受到影响。
另外,气溶胶会影响天线的传输效果,当气溶胶较多时,天线传输效果会受到影响,反之,如果气溶胶较少就不容易受到影响。
以上就是关于天线基本参数的介绍,从频率、增益、材料、波束形状、电阻、相位匹配等参数来看,天线的参数都是非常重要的,这些参数都会直接影响到天线的性能。
天线有五个基本参数:方向性系数、天线效率、增益系数、辐射电阻和天线有效高度。
这些参数是衡量天线质量好坏的重要指标。
【天线的方向性】是指天线向一定方向辐射电磁波的能力。
它的这种能力可采用方向图,方向图主瓣的宽度,方向性系数等参数进行描述。
所以方向性是衡量天线优劣的重要因素之一。
天线有了方向性,就能在某种程度上相当于提高发射机或接收机的效率,并使之具有一定的保密性和抗干扰性。
【方向性图】方向性图是表示天线方向性的特性曲线,即天线在各个方向上所具有的发射或接收电磁波能力的图形。
实用天线处在三度几何空间中,所以,它的方向性图应该是个立体图。
在这个立体图中,由于所取的截面不同而有不同的方向性图。
最常用的是水平面内的方向性图(即和大地平行的平面内的方向性图)和垂直面内的方向性图(即垂直于大地的平面内的方向性图)。
有的专业书籍上也称赤道面方向性图或子午面方向性图。
【波瓣宽度】有时也称波束宽度。
系指方向性图的主瓣宽度。
一般是指半功率波瓣宽度。
当L/λ数值不同时,其波瓣宽度也不同。
L/λ比值增加时,方向图越尖锐,但当(L/λ)>0.5时,除了与振子轴垂直的方向有最大的主瓣外,还可能出现付瓣。
因此,波瓣宽度越小,其方向性越强,保密性也强,干扰邻台的可能性小。
所以,对于超短波,微波等所用的天线,登记主瓣宽度这一指标,是十分重要的。
【方向性系数】方向性系数是用来表示天线向某一个方向集中辐射电磁波程度(即方向性图的尖锐程度)的一个参数。
为了确定定向天线的方向性系数,通常以理想的非定向天线作为比较的标准。
任一定向天线的方向性系数是指在接收点产生相等电场强度的条件下,非定向天线的总辐射功率对该定向天线的总辐射功率之比。
按照上面的定义,由于定向天线在各个方向上的辐射强度不等,故天线的方向性系数也随着观察点的位置而不同,在辐射电场最大的方向,方向性系数也最大。
通常如果不特别指出,就以最大辐射方向的方向性系数作为定向天线的方向性系数。