材料热力学--第6章 相变热力学
- 格式:ppt
- 大小:2.82 MB
- 文档页数:61
第6章单组元相图及纯晶体的凝固6.1 复习笔记一、单元系相变的热力学及相平衡1.相平衡条件和相律组元:组成一个体系的基本单元,如单质(元素)和稳定化合物,称为组元。
相:体系中具有相同物理与化学性质的且与其他部分以界面分开的均匀部分,称为相。
相律:F=C-P+2;式中,F为体系的自由度数,它是指不影响体系平衡状态的独立可变参数(如温度、压力、浓度等)的数目;C为体系的组元数;P为相数。
常压下,F=C-P+1。
2.单元系相图单元系相图是通过几何图像描述由单一组元构成的体系在不同温度和压条件下可能存在的相及多相的平衡。
图6-1 水的相图图6-2 Fe在温度下的同素异构转变上述相图中的曲线所表示的是两相平衡时温度和压力的定量关系,可由克劳修斯(Clausius)一克拉珀龙(Clapeyron)方程决定,即式中,为相变潜热;为摩尔体积变化;T是两相平衡温度。
有些物质在稳定相形成前,先行成自由能较稳定相高地亚稳定相。
二、纯晶体的凝固1.液态结构(1)液体中原子间的平均距离比固体中略大;(2)液体中原子的配位数比密排结构晶体的配位数减小;(3)液态结构的最重要特征是原子排列为长程无序,短程有序,存在结构起伏。
2.晶体凝固的热力学条件(6.1)式中,,是熔点T m与实际凝固温度T之差;L m是熔化热。
晶体凝固的热力学条件表明,实际凝固温度应低于熔点T m,即需要有过冷度△T。
3.形核晶体的凝固是通过形核与长大两个过程进行的,形核方式可以分为两类:均匀形核和非均匀形核。
(1)均匀形核①晶核形成时的能量变化和临界晶核新相晶核是在母相中均匀地生成的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响假定晶胚为球形,半径为r,当过冷液中出现一个晶胚时,总的自由能变化:(6.2)由,可得晶核临界半径:(6.3)代入公式(1),可得:(6.4)由式可知,过冷度△T越大,临界半径则越小,则形核的几率越大,晶核数目增多。
金属材料的相变与热力学分析金属材料是广泛应用于工业生产和日常生活中的重要材料之一。
在金属加工和利用过程中,了解金属材料的相变行为以及热力学特性对于改善材料性能和工艺效率至关重要。
本文将对金属材料的相变与热力学进行分析。
一、相变的概念及分类相变是指物质在一定条件下从一种相转变为另一种相的过程。
对于金属材料来说,常见的相变形式包括固-固相变、固-液相变、液-气相变等。
其中,固-固相变是指金属的晶体结构发生改变,而固-液相变是指金属由固态转变为液态,液-气相变则是指金属由液态转变为气态。
二、金属材料相变的热力学分析热力学是研究物质性质与热力学过程之间关系的学科。
金属材料的相变过程受热力学第一和第二定律的制约。
1. 热力学第一定律根据热力学第一定律,能量在相变过程中是守恒的,即相变前后系统的能量总和不变。
金属材料的相变过程中,吸收或释放的热量可以通过热力学分析来估计。
2. 热力学第二定律根据热力学第二定律,自发进行的相变过程是使系统熵增加的过程。
金属材料的相变过程中,热力学分析可以用来计算相变的熵变,从而评估相变的自发性和可逆性。
三、金属材料相变的影响因素金属材料的相变受多种因素的影响,包括温度、压力、化学成分等。
1. 温度温度是影响金属材料相变的重要因素。
随着温度的升高或降低,金属的相变温度也会相应地改变。
2. 压力在高压下,金属材料的相变温度可能会显著改变。
压力对金属的相变规律有一定的影响。
3. 化学成分金属材料的化学成分也会对其相变行为产生影响。
合金中的不同元素可能导致相变温度的改变和相变形式的差异。
四、金属材料相变的应用金属材料的相变特性可以广泛应用于材料工程和制造过程中。
1. 热处理通过控制金属材料的相变过程以及相变温度,可以实现对材料的硬度、强度和导电性等性能的调控,从而满足不同应用需求。
2. 材料制备相变过程对金属材料的制备有着重要的影响。
例如,通过调控相变过程可以制备出微观结构均匀的金属材料,提高其机械性能和腐蚀抗性。
材料学基础中的相变热力学材料科学是现代工程领域的重要学科之一,它的发展关系到我们日常生活中的许多方面。
而材料学的基础在于固体物理学中的结构与热力学。
在材料学这一领域中,相变热力学是非常重要的一个理论,它对材料的性质、结构和工艺等方面都有着不可替代的作用。
一、相变热力学概述相变热力学是研究物质从一种状态到另外一种状态时吸放热的变化,同时也涉及到物质体积和形态等改变的过程。
相变热力学通过一系列基本规律来描述这些过程,主要包括热力学势、热力学过程和热力学方程式三个部分。
在相变热力学中,能量是一个非常重要的参数,它可以用热力学势来描述。
其中最重要的是自由能、内能和焓。
自由能是体系可以进行非容积功的最大能量,它与温度和净分子数密度有关。
内能是体系所具有的全部能量,包括各种能量状态,它与温度、压力和分子组成有关。
焓是表示物质吸收或释放热量的一个物理量,表示物体通过物理变化和化学反应时的能量变化。
相变过程是一个物质在不同状态之间转变的过程,它可以通过热力学过程来描述。
包括等温变化、等压变化、等内能变化和等熵变化等。
这些过程不仅与温度和压强有关,还与物质的化学成分和反应有关。
热力学方程式是热力学中的一条基本定理,它描述了物质的能量和功的关系。
热力学方程式涉及到温度、压强、热力学势和物质的物理性质等参数。
通过它可以计算相变热力学中的各种物理量和热量变化。
二、相变类型及其表征在材料学中,相变类型非常多样,可以分为一级相变和二级相变等不同类型。
其中一级相变是指在相变时物质的热容和密度发生突变,是不可逆的。
而二级相变则比较平滑,物质的热容和密度变化连续,是可逆的。
相变的表征方法主要有三种:热力学方法、热力学力学方法和动力学方法。
其中,热力学方法通过自由能、焓、熵等物理量来描述相变的特征。
热力学力学方法是同时考虑了物质的热力学和力学特性,通过应力和应变等参数来描述相变的特征。
动力学方法则注重相变时物质分子之间的相互作用,通过对分子之间的距离和速度等物理量的动态变化来刻画相变的动力学过程。
热力学中的相变现象热力学是研究能量转化和过程的科学,而相变现象则是热力学中的重要概念之一。
相变指的是物质由一种相态转变为另一种相态的过程,例如液化、固化和气化等。
在本文中,我们将探讨热力学中的相变现象及其背后的原理。
一、相变的定义与分类相变是物质在一定条件下由一种状态转变为另一种状态的过程。
根据物质的性质和转变的条件,相变可以分为凝固、熔化和汽化三种基本类型。
1. 凝固:凝固是指物质由液态转变为固态的过程。
当温度降低到某一点,液体中的分子或离子开始有序排列,形成固态结晶体。
2. 熔化:熔化是指物质由固态转变为液态的过程。
当温度升高到某一点,固体中的分子或离子离开有序排列,变得更加自由运动。
3. 汽化:汽化是指物质由液态转变为气态的过程。
当温度升高到某一点,液体中的分子或离子足够具有逃离液体表面的能量,形成气体状态。
二、相变的热力学原理热力学中的相变现象与物质的内能变化及熵变有关。
在一个封闭系统中,相变发生时,物质的内能会发生变化,而系统的熵也会发生变化。
1. 内能变化:在相变过程中,虽然温度保持不变,但是物质的内能却发生了变化。
这是因为相变过程中,分子间的相互作用和排列方式发生了改变,导致内能的变化。
2. 熵变:熵是衡量系统无序程度的物理量,相变过程中也会发生熵的变化。
例如凝固过程中,液体变为有序排列的固体,系统的熵会减小。
而汽化过程中,液体变为高度无序的气体,系统的熵会增加。
根据热力学第二定律,熵的增加趋势是不可逆的,即自发向高熵状态变化。
因此,相变过程也符合热力学第二定律的要求。
三、相变与相图相图是描述特定物质在不同温度和压力下各相态之间转变关系的图表。
在相图中,可以清晰地看到物质的相变点和相变曲线。
1. 相变点:相变点是指在一定的温度和压力下,物质由一种相态转变为另一种相态的临界条件。
例如水的相变点在常压下是0摄氏度(冰点)和100摄氏度(沸点)。
2. 相变曲线:相变曲线是用来表示不同相态之间转变的曲线。
第6章单组元相图及纯晶体的凝固物质由液态转变为固态的过程称为凝固。
物质由液态转变为晶态的过程称为结晶材料的性能组织结构相种类数量尺寸形状分布C ONTENTS6.1 单元系相变的热力学及相平衡6.2纯晶体的凝固6.1单元系相变的热力学及相平衡1. 相(Phase)在一个系统中,成分、结构相同,性能一致的均匀的组成部分叫做相,不同相之间有明显的界面分开,该界面称为相界面。
注意:相在物理性能和化学性能上是均匀的。
相界面和晶界的区别。
6.1单元系相变的热力学及相平衡2. 组元(Component)组元通常是指系统中每一个可以单独分离出来,并能独立存在的化学纯物质,在一个给定的系统中,组元就是构成系统的各种化学元素或化合物。
按组元数目,将系统分为:一元系二元系三元系……化学元素:Cu, Ni, Fe 等化合物:Al 2O 3, MgO, Na 2O, SiO 2等6.1单元系相变的热力学及相平衡3. 相平衡在某一温度下,系统中各个相经过很长时间也不互相转变,处于平衡状态,这种平衡称为相平衡。
各组元在各相中的温度、压力和化学势相同。
A B热力学动态平衡6.1单元系相变的热力学及相平衡4.吉布斯相律(Gibbs Phase Rule)处于热力学平衡状态的系统中自由度与组元数和相数之间的关系定律,通常简称为相律。
f = C-P+N只考虑温度和压力对系统平衡状态的影响:f = C-P+2凝聚系统:f = C-P+1式中:f(freedom)是自由度数;C(component)是组成材料系统的独立组元数;P(phase)是平衡相的数目。
吉布斯相律的应用和局限性相律是检验、分析和使用相图的重要工具,利用它可以分析和确定系统中可能存在的相数,检验和研究相图。
注意使用相律有一些限制:(1)只适用于热力学平衡状态,各相温度相等、压力相等、化学势相等(化学平衡)。
(2)只表示体系中组元和相的数目,不能指明组元和相的类型和含量。
第一章单组元材料热力学名词解释:1 可逆过程2 Gibbs自由能最小判据3 空位激活能4 自发磁化:5 熵:6 热力学第一定律热力学第二定律7 Richard定律填空题1 热力学第二定律指出:一个孤立系统总是由熵低的状态向熵高的状态变化,平衡状态则是具有最大熵的状态。
2 按Boltzmann方程,熵S与微观状态数W的关系式为S=klnW3 热容的定义是系统升高1K时所吸收的热量,它的条件是物质被加热时不发生相变和化学反应4 α-Fe的定压热容包括:振动热容、电子热容和磁性热容。
5 纯Fe的A3的加热相变会导致体积缩小6 Gibbs-Helmholtz方程表达式是7 铁磁性物质的原子磁矩因交换作用而排列成平行状态以降低能量的行为被称为自发磁化论述题1 根据材料热力学原理解释为什么大多数纯金属加热产生固态相变时会产生体积膨胀的效应?2 试根据单元材料的两相平衡原理推导克拉伯龙(Clapeyron)方程。
3 试用G-T图的图解法说明纯铁中的A3点相变是异常相变。
4 试画出磁有序度、磁性转变热容及磁性转变(指铁磁-顺磁转变)自由能与温度的关系曲线。
计算题1已知纯钛α/β的平衡相变温度为882O C,相变焓为4142J•mol-1,试求将β-Ti过冷到800O C时,β→α的相变驱动力2若某金属形成空位的激活能为58.2KJ•mol-1,试求在700O C下,该金属的空位浓度。
3纯Bi在0.1MPa压力下的熔点为544K。
增加压力时,其熔点以3.55/10000K•MPa-1的速率下降。
另外已知融化潜热为52.7J•g-1,试求熔点下液、固两相的摩尔体积差。
(Bi的原子量为209g•mol-1.第二章二组元相名词解释:溶体:以原子或分子作为基本单元的粒子混合系统所形成的结构相同,性质均匀的相理想溶体:在宏观上,如果组元原子(分子)混合在一起后,既没有热效应也没有体积效应时所形成的溶体。
混合物:由结构不同的相或结构相同而成分不同的相构成的体系 化合物:两种或两种以上原子组成的具有特定结构的新相 溶解度:溶体相在与第二相平衡时的溶体成分(浓度),固溶体在与第二相平衡时的溶解度也成为固溶度。
第6、7章总结、思考题与作业题一、本章总结1、凝固与结晶、相变、固态相变、组元、系、相图、单元相图、相平衡、相律(及表达式)及应用2、纯金属凝固的过程和现象;过冷度对结晶过程和结晶组织的影响;3、结晶的热力学条件、动力学条件、能量条件和结构条件;包括:一些更要的公式,以其应用4、过冷现象、过冷度、理论凝固温度、实际凝固温度、临界过冷度、有效过冷度、动态过冷度;5、均匀形核与非均匀形核,二者有何异同点。
结构起伏(相起伏)、能量起伏、浓度起伏、晶胚、晶核、临界晶核、临界晶核半径、临界形核功,临界晶核半径、临界形核功的计算。
形核率及影响因素、变质处理。
非均匀形核时影响接触角θ的因素有哪些?选择什么样的异相质点可以大大促进结晶过程。
6、光滑界面、粗糙界面;正温度梯度、负温度梯度;平面长大、树枝长大。
晶体长大的条件和长大的机制。
界面的生长形态与L/S前沿的温度梯度有何关系?7、能用结晶理论说明实际生产问题。
如:变质处理和其它细化晶粒的工艺;单晶的制取和定向凝固技术。
(1).凝固理论的主要应用;(2).控制结晶组织的措施。
二、本章重要知识点1. 金属结晶的过程;结晶的热力学条件、动力学条件、能量条件和结构条件;2. 界面的生长形态与L/S前沿的温度梯度的关系。
三、思考题1. 简述金属结晶过程的热力学条件、动力学条件、能量条件和结构条件。
为什么需要这些条件?冷却速度与过冷度的关系是什么?能否说过冷度越大,形核率越高,为什么?2. 何谓正温度梯度和负温度梯度。
何谓粗糙界面和光滑界面。
分析纯金属生长形态与温度梯度的关系。
(简述纯金属枝晶的形成条件和长大过程。
)3. 在同样的负温度梯度下,为什么Pb结晶出树状晶,而Si结晶平面却是平整的?4. 何谓均匀形核?何谓非均匀形核(异质形核)?试比较二者有何异同?叙述异质形核的必要条件。
选择什么样的异相质点可以大大促进结晶过程?5. 指出形核过程的驱动力和阻力分别是什么?比较均匀形核和非均匀形核的临界形核功大小和形核率的大小,说明造成两者差异的原因。