贵州省黔南州中考数学试卷
- 格式:docx
- 大小:104.03 KB
- 文档页数:6
2020年贵州省黔南州中考试卷数学答案解析一、1.【答案】A【解析】解:根据相反数的定义,可得3的相反数是:3-.故选:A .2.【答案】D【解析】解:A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选:D .3.【答案】C【解析】解:493 4009.3410=⨯.故选:C .4.【答案】D【解析】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选:D .5.【答案】A【解析】解:A 、()4312a a =,故原题计算正确;B 、347a a a ⋅=,故原题计算错误;C 、2222a a a +=,故原题计算错误;D 、()222ab a b =,故原题计算错误;故选:A .6.【答案】D【解析】解:∵矩形纸条ABCD 中,AD BC ∥, '30AEG BGD ∠=∠=︒∴,18030150DEG ∠=︒-︒=︒∴,由折叠可得,111507522DEG ∠α∠==⨯︒=, 故选:D .7.【答案】B【解析】解:∵在Rt ADE △中,6DE =,1AE AB BE AB CD x =-=-=-,55ADE ∠=︒,sin55AE AD ︒=∴,cos55DE AD ︒=,1tan556AE x DE -︒==, 故选:B .8.【答案】C【解析】解:设该商品每件的进价为x 元,依题意,得:120.82x ⨯-=,解得:7.6x =.故选:C .9.【答案】D【解析】解:分两种情况:当腰为4时,449+<,所以不能构成三角形;当腰为9时,994+>,994-<,所以能构成三角形,周长是:99422++=.故选:D .10.【答案】C【解析】解:45∵,314∴<,1在3和4之间,即34a <<.故选:C .二、11.【答案】()2a ab -【解析】解:3222a a b ab -+, ()222a a ab b =-+,()2a ab =-.12.【答案】9【解析】解:27m n a b -+∵与443a b -的和仍是一个单项式,24m -=∴,74n +=,解得:6m =,3n =-,故()639m n -=--=.故答案为:9.13.【答案】4【解析】解:∵2,3,x ,1,5,7的众数为7,7x =∴,把这组数据从小到大排列为:1、2、3、5、6、7, 则中位数为3542+=; 故答案为:4.14.【答案】二【解析】解:由已知,得:0k >,0b <.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.15.【答案】()【解析】解:∵直线443y x =+与x 轴、y 轴分别交于A 、B 两点, ∴点A 的坐标为()3,0,点B 的坐标为()0,4.过点C 作CE y ⊥轴于点E ,如图所示.BC OC OA ==∵,3OC =∴,2OE =,CE ==∴∴点C 的坐标为().故答案为:().16.【答案】10【解析】解:在Rt ABC △中,2AB =∵,1sin 3AB ACB AC ∠==, 1263AC =÷=∴ 在Rt ADC △中,AD =10=.故答案为:10.17.【答案】4【解析】解:如图所示:∵两条对角线的和为6,6AC BD +=∴,∵菱形的周长为,AB ∴AC BD ⊥,12AO AC =,12BO BD =, 3AO BO +=∴, 222AO BO AB +=∴,()29AO BO +=,即225AO BO +=,2229AO AO BO BO +⋅+=, 24AO BO ⋅=∴,∴菱形的面积1242AC BD AO BO =⋅=⋅=; 故答案为:4.18.【答案】12y x =【解析】解:如图,过点C 作CE y ⊥轴于E ,∵四边形ABCD 是正方形,10AB BC ==∴,90ABC ∠=︒,6OB ===∴,90ABC AOB ∠=∠=︒∵,90ABO CBE ∠+∠=︒∴,90ABO BAO ∠+∠=︒,BAO CBE ∠=∠∴,又90AOB BEC ∠=∠=︒∵,()ABO BCE AAS △≌△∴,6CE OB ==∴,8BE AO ==,2OE =∴,∴点()6,2C ,∵反比例函数()0ky k x =≠的图象过点C ,6212k =⨯=∴,∴反比例函数的解析式为12y x =, 故答案为:12y x =.19.【答案】5210258x y x y +=⎧⎨+=⎩【解析】解:根据题意得:5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩. 20.【答案】0【解析】解:28160x x -+=,解得:4x =,即124x x ==,则2121?22*16160x x x x x =-=-=,故答案为0.三、21.【答案】解:(1)原式01232 2 0202⎛⎫=--⨯- ⎪⎝⎭ ()221 2 020=---02 2 019=--21=--1=--(2)解不等式312x -≤,得:1x ≥, 解不等式是324x +≥,得:23x ≥, 则不等式组的解集为1x ≥.【解析】具体解题过程参照答案。
2024年贵州黔南中考数学试题及答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D.3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A. B.C.D.5. 一元二次方程220x x -=的解是( )A. 13x =,21x = B. 12x =,20x = C. 13x =,22x =- D. 12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A 100人 B. 120人 C. 150人 D. 160人8. 如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD^9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB Ð=°,24OA =,则»AB 长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y= B. 2x y = C. 4x y = D. 5x y=12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( ).的A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.14.如图,在ABC V 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF Ð=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122´中任选3个代数式求和;的(2)先化简,再求值:()21122x x -×+,其中3x =.18. 已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的32名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC Ð=°,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A Ð;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ¢为法线,AO 为入射光线,OD 为折射光线.)测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ¢在同一平面内,测得20cm AC =,45A Ð=°,折射角32DON Ð=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°»,cos320.84°»,tan 320.62°»)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC Ð相等的角:______;(2)求证:OD AB ^;【(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB Ð=°,点P 在AOB Ð的平分线上,PA OA ^于点A .(1)【操作判断】如图①,过点P 作PC OB ^于点C ,根据题意在图①中画出PC ,图中APC Ð的度数为______度;(2)问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.【参考答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】C【11题答案】【答案】C【12题答案】【答案】D二、填空题(本大题共4题,每题4分,共16分)【13题答案】【14题答案】【答案】5【15题答案】【答案】20【16题答案】三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)【17题答案】【答案】(1)见解析(2)12x-,1【18题答案】【答案】(1)3 yx =(2)a c b<<,理由见解析【19题答案】【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)2 3【20题答案】【答案】(1)见解析(2)12【21题答案】【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【22题答案】【答案】(1)20cm(2)3.8cm【23题答案】【答案】(1)DCEÐ(答案不唯一)(2)163(3)163【24题答案】【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【25题答案】【答案】(1)画图见解析,90(2)见解析 (3)23或83。
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前2020年贵州省黔南州初中学业水平考试数 学一、选择题(本题10小题,每题4分,共40分)1.3的相反数是( ) A .3-B .3C .13-D .13 2.观察下列图形,是中心对称图形的是( )ABCD3.某市2020年参加中考的考生人数的为93 400人,将93 400用科学记数法表示为( ) A .293410⨯ B .393.410⨯ C .49.3410⨯D .50.93410⨯ 4.下列四个几何体中,左视图为圆的是( )ABC D5.下列运算正确的是( )A .()4312a a = B .3412a a a ⋅= C .224a a a +=D .()22ab ab =6.如图,将矩形纸条ABCD 折叠,折痕为EF ,折叠后点C ,D 分别落在点C ',D '处,D E '与BF 交于点G .已知30BGD ∠'=︒,则α∠的度数是 ( )A .30°B .45°C .74°D .75°第6题图第7题图7.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D 处测得旗杆顶端A 的仰角ADE ∠为55°,测角仪CD 的高度为1米,其底端C 与旗杆底端B 之间的距离为6米,设旗杆AB 的高度为x 米,则下列关系式正确的是( )A .6tan551x ︒=- B .1tan556x -︒=C .1sin556x -︒=D .1cos556x -︒=8.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为( )A .7.4元B .7.5元C .7.6元D .7.7元 9.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为( )A .9B .17或22C .17D .2210.已知1a ,a 介于两个连续自然数之间,则下列结论正确的是 ( )A .12a <<B .23a <<C .34a <<D .45a <<二、填空(本题10小题,每题3分,共30分)11.分解因式:3222a a b ab -+=_________.12.若单项式27m n a b -+与单项式443a b -的和仍是一个单项式,则m n -=_________. 13.若一组数据2,3,x ,1,5,7的众数为7,则这组数据的中位数为_________. 14.函数1y x =-的图象一定不经过第_________象限.15.如图,在平面直角坐标系中,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC OC OA ==,则点C 的坐标为_________.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)第15题图第16题图16.如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________.17.已知菱形的周长为6,则菱形的面积为_________. 18.如图,正方形ABCD 的边长为10,点A 的坐标为()8,0-,点B 在y 轴上,若反比例函数()0ky k x=≠的图象过点C ,则该反比例函数的解析式为_________.19.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为_________.20.对于实数a ,b ,定义运算“*”,()()22a ab a b a b ab b a b *⎧-⎪=⎨-⎪⎩>例如4*2,因为42>,所以24*24428=-⨯=.若1x ,2x 是一元二次方程28160x x -+=的两个根,则12*x x =_________.三、解析题(本题6小题,共80分)21.(12分)(1)计算()113tan 60|2cos60 2 0202-⎛⎫--+︒︒+- ⎪⎝⎭;(2)解不等式组:312324xx -⎧⎪⎨⎪+⎩≤≥.22.(12分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图,Rt ABC △中,90BCA ∠=︒,3AC =,4BC =,点O 在线段BC上,且32OC =,以O 为圆心.OC 为半径的O 交线段AO 于点D ,交线段AO 的延长线于点E .(1)求证:AB 是O 的切线; (2)研究过短中,小明同学发现AD DEDE AE=,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.23.(14分)勤劳是中生民的传統美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x 小时,将做家务的总时间分为五个类别:()010A x ≤<,()1020B x ≤<,()2030C x ≤<,()3040D x ≤<,()40E x ≥.并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的作息,解析下列问题:(1)本次共调查了_________名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形統计图中m =_________,类别D 所对应的扇形圆心角α的度数是_________度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?24.(14分)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比数学试卷 第5页(共6页) 数学试卷 第6页(共6页)甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?25.(12分)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点1A 、2A 、348A A ⋯分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x 与通电话次数y 之间的关系用如图模型表示:(1)填写上图中第四个图中y 的值为_________,第五个图中y 的值为_________. (2)通过探索发现,通电话次数y 与该班级人数x 之间的关系式为_________,当48x = 时,对应的y =_________.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生? 26.(14分)如图,已知AB 是O 的直径,O 经过Rt ACD △的直角边DC 上的点F ,交AC 边于点E ,点F 是弧EB 的中点,90C ∠=︒,连接AF . (1)求证:直线CD 是O 切线.(2)若2BD =,4OB =,求tan AFC ∠的值.27.(12分)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =++≠与y 轴交于点A ,与x 轴交于点()2,0C -,且经过点()8,4B ,连接AB ,BO ,作AM OB ⊥于点M ,将Rt OMA △沿y 轴翻折,点M 的对应点为点N .解析下列问题: (1)抛物线的解析式为_________,顶点坐标为_________; (2)判断点N 是否在直线AC 上,并说明理由;(3)如图(2),将图(1)中Rt OMA △沿着OB 平移后,得到Rt DEF △.若DE 边在线段OB 上,点F 在抛物线上,连接AF ,求四边形AMEF 的面积.-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________2020年贵州省黔南州中考试卷数学答案解析一、 1.【答案】A【解析】解:根据相反数的定义,可得 3的相反数是:3-. 故选:A . 2.【答案】D【解析】解:A 、不是中心对称图形,故本选项错误; B 、不是中心对称图形,故本选项错误; C 、不是中心对称图形,故本选项错误; D 、是中心对称图形,故本选项正确. 故选:D . 3.【答案】C【解析】解:493 4009.3410=⨯. 故选:C . 4.【答案】D【解析】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形, 故选:D . 5.【答案】A 【解析】解:A 、()4312a a =,故原题计算正确;B 、347a a a ⋅=,故原题计算错误;C 、2222a a a +=,故原题计算错误;D 、()222ab a b =,故原题计算错误; 故选:A . 6.【答案】D【解析】解:∵矩形纸条ABCD 中,AD BC ∥,'30AEG BGD ∠=∠=︒∴, 18030150DEG ∠=︒-︒=︒∴,由折叠可得,111507522DEG ∠α∠==⨯︒=,故选:D . 7.【答案】B【解析】解:∵在Rt ADE △中,6DE =,1AE AB BE AB CD x =-=-=-,55ADE ∠=︒,sin55AEAD︒=∴,cos55DE AD ︒=,1tan556AE x DE -︒==, 故选:B . 8.【答案】C【解析】解:设该商品每件的进价为x 元, 依题意,得:120.82x ⨯-=, 解得:7.6x =. 故选:C . 9.【答案】D【解析】解:分两种情况:当腰为4时,449+<,所以不能构成三角形;当腰为9时,994+>,994-<,所以能构成三角形,周长是:99422++=. 故选:D . 10.【答案】C【解析】解:45∵,314∴<,1在3和4之间,即34a <<.故选:C . 二、11.【答案】()2a ab - 【解析】解:3222a a b ab -+,()222a a ab b =-+,()2a ab =-.12.【答案】9【解析】解:27m n a b -+∵与443a b -的和仍是一个单项式,24m -=∴,74n +=,解得:6m =,3n =-, 故()639m n -=--=. 故答案为:9. 13.【答案】4【解析】解:∵2,3,x ,1,5,7的众数为7,7x =∴,把这组数据从小到大排列为:1、2、3、5、6、7,则中位数为3542+=;故答案为:4. 14.【答案】二【解析】解:由已知,得:0k >,0b <.故直线必经过第一、三、四象限. 则不经过第二象限. 故答案为:二.15.【答案】()【解析】解:∵直线443y x =+与x 轴、y 轴分别交于A 、B 两点, ∴点A 的坐标为()3,0,点B 的坐标为()0,4.过点C 作CE y ⊥轴于点E ,如图所示.BC OC OA ==∵, 3OC =∴,2OE =,CE ==∴∴点C 的坐标为().故答案为:().16.【答案】10【解析】解:在Rt ABC △中,2AB =∵,1sin 3AB ACB AC ∠==, 1263AC =÷=∴在Rt ADC △中,AD10=.故答案为:10.17.【答案】4【解析】解:如图所示:∵两条对角线的和为6, 6AC BD +=∴,∵菱形的周长为AB =∴AC BD ⊥,12AO AC =,12BO BD =,3AO BO +=∴,222AO BO AB +=∴,()29AO BO +=,即225AO BO +=,2229AO AO BO BO +⋅+=,24AO BO ⋅=∴,∴菱形的面积1242AC BD AO BO =⋅=⋅=;故答案为:4.18.【答案】12y x=【解析】解:如图,过点C 作CE y ⊥轴于E ,∵四边形ABCD 是正方形, 10AB BC ==∴,90ABC ∠=︒,6OB ==∴, 90ABC AOB ∠=∠=︒∵,90ABO CBE ∠+∠=︒∴,90ABO BAO ∠+∠=︒, BAO CBE ∠=∠∴,又90AOB BEC ∠=∠=︒∵,()ABO BCE AAS △≌△∴, 6CE OB ==∴,8BE AO ==, 2OE =∴,∴点()6,2C ,∵反比例函数()0ky k x=≠的图象过点C , 6212k =⨯=∴,∴反比例函数的解析式为12y x=, 故答案为:12y x=. 19.【答案】5210258x y x y +=⎧⎨+=⎩【解析】解:根据题意得:5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩.20.【答案】0【解析】解:28160x x -+=,解得:4x =, 即124x x ==,则2121?22*16160x x x x x =-=-=, 故答案为0. 三、21.【答案】解:(1)原式01232 2 0202⎛⎫=--⨯- ⎪⎝⎭()221 2 020=---02 2 019=--21=--1=--(2)解不等式312x-≤,得:1x ≥, 解不等式是324x +≥,得:23x ≥,则不等式组的解集为1x ≥. 【解析】具体解题过程参照答案。
贵州省黔南布依族苗族自治州中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列各对数中,是互为相反数的是()A . 和B . 和C . 和D . 和2. (2分) (2016八上·义马期中) 下列图形中,是轴对称图形的为()A .B .C .D .3. (2分)地球绕太阳公转的速度约是110 000千米/时,将110 000用科学记数法表示为()A . 11×104B . 1.1×105C . 1.1×104D . 0.11×1064. (2分)(2017·濮阳模拟) 如图,是由5个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A .B .C .D .5. (2分) (2020八下·邯郸月考) 能使成立的x的取值范围是()A . x≠2B . x≥0C . x≥2D . x>26. (2分)(2017·平川模拟) 在相同时刻物高与影长成比例,如果高为1.5m的测竿的影长为 2.5m,那么影长为30m的旗杆的高度是()A . 20mB . 16mC . 18mD . 15m7. (2分)已知两根之和等于两根之积,则m的值为()A . 1B . -1C . 2D . -28. (2分)(2019·广州模拟) 圆锥的母线长为8cm,底面半径为6cm,则圆锥的侧面积是()A . 96πcm2B . 60πcm2C . 48πcm2D . 24πcm29. (2分)(2017·天门) 如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE= ;④AF=2 ,其中正确结论的个数有()A . 1个B . 2个C . 3个D . 4个10. (2分)将抛物线的图象向上平移1个单位,则平移后的抛物线的解析式为()A .B .C .D .11. (2分)(2019·建华模拟) 如图,在中, .点是的中点,连结,过点作,分别交于点,与过点且垂直于的直线相交于点,连结 .给出以下四个结论:① ;②点是的中点;③ ;④ ,其中正确的个数是()A . 4B . 3C . 2D . 112. (2分)(2018·义乌) 某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品()A . 16张B . 18张C . 20张D . 21张二、填空题 (共6题;共6分)13. (1分)(2016·深圳模拟) 因式分解:xy2﹣4xy+4x=________.14. (1分) (2019九上·柳南期末) 分式方程的解为 ________.15. (1分) (2019·武汉模拟) 在▱ABCD中,AC=CD,∠ACB=2∠ACD,则∠B的度数为________.16. (1分)(2017·达州) 从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y= 图象上的概率是________.17. (1分) (2019九上·重庆开学考) 已知平行四边形的周长为28,自顶点作于点,于点 .若,,则 ________.18. (1分)(2020·涪城模拟) 如图,在平面直角坐标系中,与y轴相切的与x轴交于A、B两点,AC为直径,,,连结BC ,点P为劣弧上点,点Q为线段AB上点,且,与交于点,则当 NQ平分时,点P坐标是________.三、解答题 (共7题;共77分)19. (5分) (2019七下·崇明期末) 计算:.20. (12分)随着我国人民生活水平和质量的提高,百岁寿星日益增多.某市是中国的长寿之乡,截至2008年2月底,该市五个地区的100周岁以上的老人分布如表(单位:人):地区性别一二三四五男性2130384220女性3950737037根据表格中的数据得到条形图如下:解答下列问题:(1)请把统计图中地区二和地区四中缺失的数据、图形补充完整;(2)填空:该市五个地区100周岁以上老人中,男性人数的极差(最大值与最小值的差)是________人,女性人数的最多的是地区________;(3)预计2015年该市100周岁以上的老人将比2008年2月的统计数增加100人,请你估算2015年地区一增加100周岁以上的男性老人多少人?21. (10分)某服装店老板到厂家选购A、B两种型号的服装,如果购进A种型号服装9件,B种型号服装10件,就需要1810元;如果购进A种型号服装12件,B种型号服装8件,就需要1880元.问题:(1)求A、B两种型号的服装每件分别为多少钱?(2)已知销售1件A种型号服装可获利18元,销售B种型号服装可获利30元.根据市场需求,服装店老板的决定,购进A种型号服装的数量要比B种型号服装数量的2倍多4件,且A种型号服装最多购进28件,这样服装全部售出后,可使总的获利不少于732元.问有几种进货方案?22. (15分)(2020·丽水模拟) 如图所示,M、N、P在第二象限,横坐标分别是﹣4、﹣2、﹣1,双曲线y =过M、N、P三点,且MN=NP.(1)求双曲线的解析式;(2)过P点的直线l交x轴于A,交y轴于B,且PA=4AB,且交y=于另一点Q,求Q点坐标;(3)以PN为边(顺时针方向)作正方形PNEF,平移正方形使N落在x轴上,点P、E对应的点P′、E'正好落在反比例函数y=上,求F对应点F′的坐标.23. (10分) (2019九上·江阴期中) 如图,已知一次函数y=﹣ x+4的图象是直线l,设直线l分别与y 轴、x轴交于点A、B.(1)求线段AB的长度;(2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.①当⊙N与x轴相切时,求点M的坐标;②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x轴于点E,直线m过点N 分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标.24. (15分)(2017·天等模拟) 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求抛物线的解析式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A、C、D为顶点的三角形面积最大时,求点D 的坐标及此时三角形的面积;(3)以AB为直径作⊙M,直线经过点E(﹣1,﹣5),并且与⊙M相切,求该直线的解析式.25. (10分)(2020·永州模拟) 如图,在平面直角坐标系内,抛物线与x轴交于点A,C (点A在点C的左侧),与y轴交于点B,顶点为D.点Q为线段BC的三等分点(靠近点C).(1)点M为抛物线对称轴上一点,点E为对称轴右侧抛物线上的点且位于第一象限,当的周长最小时,求面积的最大值;(2)在(1)的条件下,当的面积最大时,过点E作轴,垂足为N,将线段CN绕点C顺时针旋转90°得到点N,再将点N向上平移个单位长度.得到点P,点G在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H,使点D,P,G,H构成菱形.若存在,请直接写出点H的坐标,若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共77分)19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-3、23-1、24-1、24-2、第21 页共21 页。
2020年贵州省黔南州中考数学试卷一、选择题(本大题共10小题,共30.0分)1.(2021·黑龙江省齐齐哈尔市·历年真题)3的相反数是()A. −3B. 3C. −13D. 132.(2021·江苏省盐城市·单元测试)观察下列图形,是中心对称图形的是()A. B. C. D.3.(2020·全国·历年真题)某市2020年参加中考的考生人数的为93400人,将93400用科学记数法表示为()A. 934×102B. 93.4×103C. 9.34×104D. 0.934×1054.(2021·新疆维吾尔自治区塔城地区·模拟题)下列四个几何体中,左视图为圆的是()A. B. C. D.5.(2021·四川省·单元测试)下列运算正确的是()A. (a3)4=a12B. a3⋅a4=a12C. a2+a2=a4D. (ab)2=ab26.(2021·安徽省安庆市·月考试卷)如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A. 30°B. 45°C. 74°D. 75°7.(2021·贵州省贵阳市·单元测试)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A. tan55°=6x−1B. tan55°=x−16C. sin55°=x−16D. cos55°=x−168.(2021·湖南省·单元测试)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A. 7.4元B. 7.5元C. 7.6元D. 7.7元9.(2020·陕西省西安市·期末考试)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A. 22B. 17C. 17或22D. 2610.(2021·天津市·单元测试)已知a=√17−1,a介于两个连续自然数之间,则下列结论正确的是()A. 1<a<2B. 2<a<3C. 3<a<4D. 4<a<5二、填空题(本大题共10小题,共30.0分)11.(2021·山东省·其他类型)分解因式:a3−2a2b+ab2=______.12.(2021·山东省·单元测试)若a m−2b n+7与−3a4b4的和仍是一个单项式,则m−n=______.13.(2021·全国·模拟题)若一组数据2,3,x,1,5,7的众数为7,则这组数据的中位数为______.14.(2020·全国·历年真题)函数y=x−1一定不经过第______ 象限.15.(2020·江苏省·单元测试)如图,在平面直角坐标系中,直x+4与x轴、y轴分别交于A、B两点,点C线y=−43在第二象限,若BC=OC=OA,则点C的坐标为______.16.(2021·广东省·单元测试)如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=1,则AD长度是______.317.(2021·湖北省武汉市·期中考试)已知菱形的周长为4√5,两条对角线的和为6,则菱形的面积为______.18.(2021·江苏省常州市·模拟题)如图,正方形ABCD的边长为10,点A的坐标为(−8,0),(k≠0)的图象过点C,则该反比例函数的解析点B在y轴上,若反比例函数y=kx式为______.19. (2021·四川省成都市·期末考试)《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为______.20. (2021·河南省驻马店市·期末考试)对于实数a ,b ,定义运算“∗“,a ∗b ={a 2−ab(a >b)ab −b 2(a ≤b)例如4∗2,因为4>2,所以4∗2=42−4×2=8.若x 1,x 2是一元二次方程x 2−8x +16=0的两个根,则x 1∗x 2=______.三、解答题(本大题共7小题,共90.0分)21. (2020·全国·历年真题)(1)计算(−12)−1−3tan60°+|−√3|+(2cos60°−2020)0;(2)解不等式组:{3−x 2≤13x +2≥4.22. (2020·全国·历年真题)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图,Rt △ABC 中,∠BCA =90°,AC =3,BC =4,点O 在线段BC 上,且OC =32,以O 为圆心.OC 为半径的⊙O 交线段AO 于点D ,交线段AO 的延长线于点E .(1)求证:AB是⊙O的切线;(2)研究过短中,小明同学发现ADDE =DEAE,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.23.(2020·全国·历年真题)勤劳是中生民的传統美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的作息,解答下列问题:(1)本次共调查了______名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形統计图中m=______,类别D所对应的扇形圆心角α的度数是______度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?24.(2021·安徽省芜湖市·单元测试)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?25.(2020·辽宁省沈阳市·月考试卷)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为______,第五个图中y的值为______.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为______,当x=48时,对应的y=______.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?26.(2021·湖南省怀化市·模拟题)如图,已知AB是⊙O的直径,⊙O经过Rt△ACD的直角边DC上的点F,交AC边于点E,点F是弧EB的中点,∠C=90°,连接AF.(1)求证:直线CD是⊙O切线.(2)若BD=2,OB=4,求tan∠AFC的值.27.(2021·广东省·单元测试)如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x轴交于点C(−2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt△OMA沿y轴翻折,点M的对应点为点N.解答下列问题:(1)抛物线的解析式为______,顶点坐标为______;(2)判断点N是否在直线AC上,并说明理由;(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.答案和解析1.【答案】A【知识点】相反数【解析】解:根据相反数的含义,可得3的相反数是:−3.故选:A.根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“−”,据此解答即可.此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“−”.2.【答案】D【知识点】中心对称图形【解析】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】C【知识点】科学记数法-绝对值较大的数【解析】解:93400=9.34×104.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【知识点】简单几何体的三视图【解析】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选:D.四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,由此可确定答案.主要考查立体图形的左视图,关键是几何体的左视图.5.【答案】A【知识点】同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】解:A、(a3)4=a12,故原题计算正确;B、a3⋅a4=a7,故原题计算错误;C、a2+a2=2a2,故原题计算错误;D、(ab)2=a2b2,故原题计算错误;故选:A.利用幂的乘方的性质、同底数幂的乘法法则、合并同类项法则、积的乘方的性质分别进行计算即可.此题主要考查了幂的乘方、同底数幂的乘法、合并同类项、积的乘方,关键是熟练掌握各计算法则.6.【答案】D【知识点】翻折变换(折叠问题)、平行线的性质【解析】解:∵矩形纸条ABCD中,AD//BC,∴∠AEG=∠BGD′=30°,∴∠DEG=180°−30°=150°,由折叠可得,∠α=12∠DEG=12×150°=75°,故选:D.依据平行线的性质,即可得到∠AEG的度数,再根据折叠的性质,即可得出∠α的度数.本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.【答案】B【知识点】解直角三角形的应用【解析】解:∵在Rt △ADE 中,DE =6,AE =AB −BE =AB −CD =x −1,∠ADE =55°, ∴sin55°=AE AD ,cos55°=DE AD ,tan55°=AE DE =x−16,故选:B .根据锐角三角函数和直角三角形的性质解答即可.此题考查了考查仰角的定义,三角函数的定义,注意数形结合思想的应用. 8.【答案】C【知识点】一元一次方程的应用【解析】解:设该商品每件的进价为x 元,依题意,得:12×0.8−x =2,解得:x =7.6.故选:C .设该商品每件的进价为x 元,根据利润=售价−成本,即可得出关于x 的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 9.【答案】A【知识点】三角形三边关系、等腰三角形的性质【解析】解:分两种情况:当腰为4时,4+4<9,所以不能构成三角形;当腰为9时,9+9>4,9−9<4,所以能构成三角形,周长是:9+9+4=22. 故选:A .题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.【答案】C【知识点】估算无理数的大小【解析】解:∵4<√17<5,∴3<√17−1<4,∴√17−1在3和4之间,即3<a<4.故选:C.先估算出√17的范围,即可得出答案.本题考查了估算无理数的大小,能估算出√17的范围是解此题的关键.11.【答案】a(a−b)2【知识点】提公因式法与公式法的综合运用【解析】解:a3−2a2b+ab2,=a(a2−2ab+b2),=a(a−b)2.先提取公因式a,再对余下的多项式利用完全平方公式继续分解.本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.12.【答案】9【知识点】单项式、合并同类项【解析】解:∵a m−2b n+7与−3a4b4的和仍是一个单项式,∴m−2=4,n+7=4,解得:m=6,n=−3,故m−n=6−(−3)=9.故答案为:9.直接利用合并同类项法则得出m,n的值,进而得出答案.此题主要考查了合并同类项,正确得出m,n的值是解题关键.13.【答案】4【知识点】中位数、众数【解析】解:∵2,3,x,1,5,7的众数为7,∴x=7,把这组数据从小到大排列为:1、2、3、5、6、7,=4;则中位数为3+52故答案为:4.根据众数的定义可得x的值,再依据中位数的定义即可得答案.本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.14.【答案】二【知识点】一次函数的性质【解析】解:由已知,得:k>0,b<0.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.根据一次函数y=kx+b的图象的性质作答.考查了一次函数的性质,能够根据k,b的符号正确判断直线所经过的象限.15.【答案】(−√5,2)【知识点】一次函数图象上点的坐标特征、等腰三角形的性质【解析】【分析】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC=OA利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【解答】x+4与x轴、y轴分别交于A、B两点,解:∵直线y=−43∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OC=3,OE=2,∴CE=√OC2−OE2=√5,∴点C的坐标为(−√5,2).故答案为:(−√5,2).16.【答案】10【知识点】角平分线的性质、勾股定理、解直角三角形【解析】解:在Rt△ABC中,∵AB=2,sin∠ACB=ABAC =13,∴AC=2÷13=6.在Rt△ADC中,AD=√AC2+CD2=√62+82=10.故答案为:10.根据直角三角形的边角间关系,先计算AC,再在直角三角形ACD中,利用勾股定理求出AD.本题考查了解直角三角形和勾股定理,利用直角三角形的边角间关系,求出AC是解决本题的关键.17.【答案】4【知识点】菱形的性质【解析】解:如图所示:∵两条对角线的和为6,∴AC+BD=6,∵菱形的周长为4√5,∴AB=√5,AC⊥BD,AO=12AC,BO=12BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO⋅BO+BO2=9,∴2AO⋅BO=4,∴菱形的面积=12AC⋅BD=2AO⋅BO=4;故答案为:4.由菱形的性质和勾股定理得出AO+BO=3,AO2+BO2=AB2,(AO+BO)2=9,求出2AO⋅BO=4,即可得出答案.本题考查菱形的性质、勾股定理;解题的关键是记住菱形的面积公式,记住菱形的对角线互相垂直.18.【答案】y=12x【知识点】待定系数法求反比例函数解析式、全等三角形的判定与性质、正方形的性质【解析】解:如图,过点C作CE⊥y轴于E,∵四边形ABCD是正方形,∴AB=BC=10,∠ABC=90°,∴OB=√AB2−AO2=√100−64=6,∵∠ABC=∠AOB=90°,∴∠ABO+∠CBE=90°,∠ABO+∠BAO=90°,∴∠BAO=∠CBE,又∵∠AOB=∠BEC=90°,∴△ABO≌△BCE(AAS),∴CE=OB=6,BE=AO=8,∴OE=2,∴点C(6,2),(k≠0)的图象过点C,∵反比例函数y=kx∴k=6×2=12,∴反比例函数的解析式为y=12,x故答案为:y=12.x过点C作CE⊥y轴于E,由“AAS”可证△ABO≌△BCE,可得CE=OB=6,BE=AO= 8,可求点C坐标,即可求解.本题考查了反比例函数图象上点的坐标特征,正方形的性质,利用待定系数法求解析式,求出点C 坐标是本题的关键.19.【答案】{5x +2y =102x +5y =8【知识点】由实际问题抽象出二元一次方程组【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:{5x +2y =102x +5y =8. 故答案为{5x +2y =102x +5y =8. 20.【答案】0【知识点】解一元二次方程-配方法、实数的运算、一元二次方程的根与系数的关系*【解析】解:x 2−8x +16=0,解得:x =4,即x 1=x 2=4,则x 1∗x 2=x 1⋅x 2−x 22=16−16=0,故答案为0.求出x 2−8x +16=0的解,代入新定义对应的表达式即可求解.此题主要考查了根与系数的关系,对新定义的正确理解是解题的关键.21.【答案】解:(1)原式=−2−3×√3+√3+(2×12−2020)0=−2−3√3+√3+(1−2020)2=−2−2√3+20190=−2−2√3+1=−1−2√3;(2)解不等式3−x 2≤1,得:x ≥1,解不等式是3x +2≥4,得:x ≥23,则不等式组的解集为x≥1.【知识点】特殊角的三角函数值、负整数指数幂、实数的运算、一元一次不等式组的解法【解析】(1)根据负整数指数幂和零指数幂的规定、绝对值的性质及特殊锐角的三角函数值计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】解:(1)如图1,过点O作OH⊥AB于H,∵∠BCA=90°,AC=3,BC=4,∴AB=√AC2+BC2=√9+16=5,∵S△ABC=S△AOC+S△ABO,∴12×3×4=12×3×32+12×5×OH,∴OH=32,∴OC=OH,且OH⊥BA,∴AB是⊙O的切线;(2)结论成立,理由如下:连接CD,EC,∵DE是直径,∴∠ECD=90°=∠ACO,∴∠ECO=∠ACD,∵OC=OE,∴∠CEO=∠OCE,∴∠ACD=∠CEO,又∵∠DAC=∠EAC,∴△DAC∽△CAE,∴ACAE =ADAC,∵OC=32,∴DE=2OC=3=AC,∴DEAE =ADDE,故小明同学发现的结论是正确的.【知识点】勾股定理、数学常识、相似三角形的判定与性质、切线的判定与性质、圆周角定理【解析】(1)过点O作OH⊥AB于H,由勾股定理可求AB的长,由面积法可求OH=32= OC,即可求结论.(2)连接CD,EC,通过证明△DAC∽△CAE,可得ACAE =ADAC,由DE=AC=3,可得结论.本题考查了相似三角形的判定和性质,切线的判定和性质,圆的有关知识,证明△DAC∽△CAE是本题的关键.23.【答案】50 32 57.6【知识点】扇形统计图、用样本估计总体、条形统计图、频数(率)分布直方图【解析】解:(1)本次共调查了10÷20%=50名学生,故答案为:50;(2)B类学生有:50×24%=12(人),D类学生有:50−10−12−16−4=8(人),补全的条形统计图如右图所示;(3)m%=16÷50×100%=32%,即m=32,类别D所对应的扇形圆心角α的度数是:360°×850=57.6°,故答案为:32,57.6;(4)400×16+8+450=224(人),即该校七年級有224名学生寒假在家做家务的总时间不低于20小时.(1)根据A类的人数和所占的百分比,可以求得本次调查的人数;(2)根据统计图中的数据,可以得到B类和C类的人数,然后即可将频数分布直方图补充完整;(3)根据统计图中的数据,可以得到m和α的值;(4)根据统计图中的数据,可以计算出该校七年級有多少名学生寒假在家做家务的总时间不低于20小时.本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x−50)元,由题意得:300x =4003x−50,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x−5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40−y)瓶,由题意得:30y+40(40−y)=1400,解得:y =20,∴40−y =40−20=20,答:购买了20瓶乙品牌消毒剂.【知识点】分式方程的应用、一元一次方程的应用【解析】(1)设甲品牌消毒剂每瓶的价格为x 元;乙品牌消毒剂每瓶的价格为(3x −50)元,由题意列出分式方程,解方程即可;(2)设购买甲种品牌的消毒剂y 瓶,则购买乙种品牌的消毒剂(40−y)瓶,由题意列出一元一次方程,解方程即可.本题考查分式方程的应用和一元一次方程的应用,解题的关键是:(1)正确找出等量关系,列出分式方程,(2)正确找出等量关系,列出一元一次方程.25.【答案】10 15 y =x(x−1)2 1128【知识点】一元二次方程的应用、图形规律问题【解析】解:(1)观察图形,可知:第四个图中y 的值为10,第五个图中y 的值为15. 故答案为:10;15.(2)∵1=2×12,3=3×22,6=4×32,10=5×42,15=6×52, ∴y =x(x−1)2,当x =48时,y =48×(48−1)2=1128. 故答案为:y =x(x−1)2;1128.(3)依题意,得:x(x−1)2=190, 化简,得:x 2−x −380=0,解得:x 1=20,x 2=−19(不合题意,舍去).答:该班共有20名女生.(1)观察图形,可以找出第四和第五个图中的y 值;(2)根据y 值随x 值的变化,可找出y =x(x−1)2,再代入x =48可求出当x =48时对应的y值;(3)根据(2)的结论结合九年级1班全体女生相互之间共通话190次,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用以及图形的变化规律,解题的关键是:(1)观察图形,数出当x =5和x =6时对应的y 值;(2)根据y 随x 的变化,找出变化规律y =x(x−1)2;(3)找准等量关系,正确列出一元二次方程. 26.【答案】(1)证明:连结OF ,BE ,如图: ∵AB 是⊙O 的直径, ∴∠AEB =90°,∵∠C =90°,∴∠AEB =∠ACD ,∴BE//CD ,∵点F 是弧BE 的中点,∴OF ⊥BE ,∴OF ⊥CD ,∵OF 为半径,∴直线DF 是⊙O 的切线;(2)解:∵∠C =∠OFD =90°,∴AC//OF ,∴△OFD∽△ACD ,∴OFAC =ODAD ,∵BD =2,OF =OB =4,∴OD =6,AD =10,∴AC =OF×ADOD =4×106=203,∴CD =√AD 2−AC 2=√102−(203)2=10√53,∵AC//OF ,OA =4,∴CF OA =CD AD ,即CF 4=10√5310,解得:CF =4√53, ∴tan∠AFC =AC CF =2034√53=√5.【知识点】解直角三角形、切线的判定与性质、圆周角定理【解析】(1)连结OF ,BE ,得到BE//CD ,根据平行线的性质得到CD ⊥OF ,即可得出结论;(2)由相似三角形的性质求出AC 长,再由勾股定理可求得DC 长,则能求出CF 长,即可得出结果.本题考查的是切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质、勾股定理以及三角函数定义等知识;掌握切线的判定定理和圆周角定理是解题的关键. 27.【答案】y =−15x 2+85x +4 (4,365)【知识点】二次函数综合【解析】解:(1)∵抛物线y =ax 2+bx +4(a ≠0)与x 轴交于点C(−2,0),且经过点B(8,4), ∴{0=4a −2b +44=64a +8b +4,解得:{a =−15b =85,∴抛物线解析式为:y =−15x 2+85x +4,∵:y =−15x 2+85x +4=−15(x −4)2+365,∴顶点坐标为(4,365)故答案为:y =−15x 2+85x +4,(4,365);(2)点N 在直线AC 上,理由如下:∵抛物线y =−15x 2+85x +4与y 轴交于点A ,∴点A(0,4),即OA =4,∵点B(8,4),∴AB//x 轴,AB =8,∴AB ⊥AO ,∴∠OAB =90°,∴∠OAM +∠BAM =90°,∵AM ⊥OB ,∴∠BAM +∠B =90°,∴∠B =∠OAM ,∴tan∠B =tan∠OAM =OA AB =48=12,∵将Rt △OMA 沿y 轴翻折,∴∠NAO =∠OAM ,∴tan∠NAO =tan∠OAM =12,∵OC =2,OA =4,∴tan∠CAO =OC OA =12, ∴tan∠CAO =tan∠NAO ,∴∠CAO =∠NAO ,∴AN ,AC 共线,∴点N 在直线AC 上;(3)∵点B(8,4),点O(0,0),∴直线OB 解析式为y =12x ,∵Rt △OMA 沿着OB 平移后,得到Rt △DEF ,∴AF//OB ,∴直线AF 的解析式为:y =12x +4,联立方程组:{y =12x +4y =−15x 2+85x +4解得:{x 1=0y 1=4或{x 2=112y 2=274 ∴点F(112,274),∵Rt △OMA 沿着OB 平移后,得到Rt △DEF ,∴Rt △OMA≌Rt △DEF ,OA =DF ,OA//DF∴S △OMA =S △DEF ,四边形OAFD 是平行四边形,∵四边形AMEF 的面积=S 四边形AMDF +S △DEF =S 四边形AMDF +S △OAM =S 四边形OAFD , ∴四边形AMEF 的面积=S 四边形OAFD =4×112=22.(1)将点B ,点C 坐标代入解析式可求a ,b 的值,由配方法可求顶点坐标;(2)由余角的性质可得∠MAO =∠B ,利用三角函数可求tan∠MAO =tan∠NAO =tan∠CAO =12,可得∠CAO =∠NAO ,可得AC 与AN 共线,即可求解;(3)先求出OB 解析式,AF 解析式,联立方程组可求点F 坐标,由四边形AMEF 的面积=S 四边形AMDF +S △DEF =S 四边形AMDF +S △OAM =S 四边形OAFD ,可求解.本题是二次函数综合题,考查了待定系数法求解析式,锐角三角函数,直角三角形的性质,折叠的性质,平移的性质,平行四边形的性质等知识,求出点F 的坐标是本题的关键.。
黔南中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2是质数B. 0是质数C. 1是质数D. 3是质数答案:D2. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 非等边三角形答案:B3. 如果一个数的平方是9,那么这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 以下哪个方程是一元一次方程?A. 2x + 3 = 7B. x^2 - 4x + 4 = 0C. 3x - 2y = 5D. x/2 + 3 = 0答案:A5. 以下哪个选项表示的是锐角?A. 90°B. 120°C. 45°D. 180°答案:C6. 以下哪个选项是正确的?A. 圆的面积公式是πr^2B. 圆的周长公式是2πrC. 圆的面积公式是2πrD. 圆的周长公式是πr^2答案:A7. 以下哪个选项是正确的?A. 直线是一维图形B. 圆是二维图形C. 球是三维图形D. 以上都不正确答案:C8. 以下哪个选项是正确的?A. 正数和负数的和总是负数B. 正数和负数的和总是正数C. 正数和负数的和可能是正数也可能是负数D. 正数和负数的和总是零答案:C9. 以下哪个选项是正确的?A. 任何数的绝对值都是正数B. 0的绝对值是0C. 负数的绝对值是负数D. 以上都不正确答案:B10. 以下哪个选项是正确的?A. 一个数的平方总是大于这个数B. 一个数的平方总是小于这个数C. 一个数的平方总是等于这个数D. 一个数的平方可能是大于、小于或等于这个数答案:D二、填空题(每题3分,共30分)11. 一个数的立方根是2,这个数是______。
答案:812. 如果一个角的补角是120°,那么这个角是______。
答案:60°13. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是______。
答案:514. 如果一个数的倒数是1/3,那么这个数是______。
贵州省黔南布依族苗族自治州中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七上·海港期中) 下列各式计算正确的是().A . 4÷ =1B . =9C . -5÷(-5)=1D . -1-1=02. (2分) (2020九下·云南月考) 下列四个几何体中,左视图为圆的是()A .B .C .D .3. (2分)(2019·泸西模拟) 我国自行设计、自主集成研制的蛟龙号载人潜水器最大下潜深度为7062m.将7062用科学记数法表示为()A . 7.062×103B . 7.1×103C . 0.7062×104D . 7.062×1044. (2分)(2019·广西模拟) 如图,下列说法错误的是()A . 若a∥b,b∥c,则a∥cB . 若∠1=∠2,则a∥cC . 若∠3=∠2,则b∥cD . 若∠3+∠5=180°,则a∥c5. (2分)下列运算正确的是()A . =±4B . 2a+3b=5abC . (x﹣3)2=x2﹣9D .6. (2分) (2017八下·南通期末) 在某次义务植树活动中,10名同学植树的棵树整理成条形统计图如图所示,他们植树的棵树的平均数为a,中位数为b,众数为c,则下列结论正确的是()A . a=bB . b>aC . b=cD . c>b7. (2分)一个几何体的三视图如图所示:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为()A .B .C .D .8. (2分) (2015八下·江东期中) 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A . x2+3x+4=0B . x2+4x﹣3=0C . x2﹣4x+3=0D . x2+3x﹣4=09. (2分)一次函数y=kx+b的图象如图所示,不等式kx+b>0的解集是()A . x>2B . x>4C . x<2D . x<410. (2分)已知四边形的对角线互相垂直,则顺次连接该四边形各边中点所得的四边形是()A . 梯形B . 矩形C . 菱形D . 正方形11. (2分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2015年年收入200美元,预计2017年年收入将达到1000美元,设2015年到2017年该地区居民年人均收入平均增长率为x ,可列方程为()A .B .C .D .12. (2分)如图所示,在菱形ABCD中,点E,F分别是AB,AC的中点,如果菱形的周长为16,那么EF等于()A . 4B . 8C . 12D . 2二、填空题 (共4题;共4分)13. (1分)=________。
贵州省黔南州2020年中考数学试卷一、单选题1.如图,四边形ABCD 是矩形,连接BD ,60ABD ∠=,延长BC 到E 使CE =BD ,连接AE ,则AEB ∠的度数为( )A .15B .20C .30D .602.2015年11月,“喜迎G20·杭州毅行大会”在杭州市民心中盛大开幕,本次毅行大会参与总人数超过42000人,用科学计数法表示42000应为( ). A .34210⨯B .54.210⨯C .50.4210⨯D .44.210⨯3.已知等腰三角形两边的长分别是6和10,则此三角形的周长是( ) A .22或26B .22C .24D .264.用5个完全相同的小正方体组合成如图所示的立体图形,它的左视图为( )A .B .C .D .5.判断√13之值介于下列哪两个整数之间( ) A .3,4B .4,5C .5,6D .6,76.下列六个图形中是轴对称图形的有( )7.如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕DE 分别交AB 、AC 于点E 、G ,连接GF ,下列结论:①∠AGD=112.5°;②tan ∠AED=2;③S △AGD =S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG,其中正确结论的序号是( )A .①②③④⑤B .①②③④C .①③④⑤D .①④⑤8.下列运算正确的是( ) A .a 2+a 2=a 4 B .(﹣b 2)3=﹣b 6 C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 29.6-的相反数可以表示成( ) A .(6)-+B .(6)+-C .(6)--D .16⎛⎫--⎪⎝⎭10.某种商品的售价为每件150元,若按现售价的8折进行促销,设购买x 件需要y 元,则y 与x 间的函数表达式为( ) A .0.8y x = B .30y x = C .120y x = D .150y x =二、填空题11.在《九章算术》“盈不足”中记载:“今有共买金,人出四百,盈三千四百;人出三百,盈一百,问人数、金价各几何?”“译文:“假设有一些人一起买金子,每人出400,多了3400;每人出300,多了100.问:人数是多少?金价是多少?”设人数为x 人,金价为y ,可列方程组为________.12.在平面直角坐标系xOy 中,一次函数y =10−x 的图象与函数y =6x (x >0)的图象相交于点A ,B .设点A 的坐标为(x 1,y 1),那么长为x 1,宽为y 1的矩形的面积为 ,周长为 .13.因式分解:3x 3﹣12x=_____.14.已知代数式53a b +的值为-4.那么代数式2()4(2)3a b a b +++的值是__.15.三个正方形如图摆放,其中两个正方形的面积为125S =,2144S =,则第三个正方形面积为3S =__________.16.一次函数y=3x-1的图像在y 轴上的截距是______.17.在平面直角坐标系中,一次函数y=kx+b(k 、b 为常数,k≠0)的图象经过第一、三、四象限,则直线y=kbx-k 不经过第_________象限.18.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 是平面内的一个动点,且AD =4,M 为BD 的中点.设线段CM 长度为a ,在D 点运动过中,a 的取值范围是__________.19.小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是______人.20.定义:对于实数a ,符号[]a 表示不大于a 的最大整数,例如:[]5.75=,[]55=,[]4π-=-,如果241x +⎡⎤⎢⎥⎦=-⎣,那么x 的取值范围是________三、解答题21.如图,在平面直角坐标系中,一次函数122y x =-的图像分别交x 、y 轴于点A 、B ,抛物线2y x bx c =++经过点A 、B ,点P 为第四象限内抛物线上的一个动点.(1)求此抛物线对应的函数表达式;(2)如图1所示,过点P 作PM ∥y 轴,分别交直线AB 、x 轴于点C 、D ,若以点P 、B 、C 为顶点的三角形与以点A 、C 、D 为顶点的三角形相似,求点P 的坐标;(3)如图2所示,过点P 作PQ ⊥AB 于点Q ,连接PB ,当△PBQ 中有某个角的度数等于∠OAB 度数的2倍时,请直接写出点P 的横坐标.22.如图,△ABC 中,A1,A2,A3,…,An 为AC 边上不同的n 个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形…(1)完成下表:若出现了45个三角形,则共连接了多少个点? 若一直连接到An ,则图中共有__________个三角形. 23.计算:-2+(π-1)0+tan60°-;24.如图所示,O 分别切ABC 的三边AB 、BC 、CA 于点D 、E 、F ,若8BC =,10AC =,6AB =.(1)求AD 的长; (2)求O 的半径长.25.我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?26.某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:(1)此次调查的样本容量是(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?27.如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB (1)求证:BC是⊙O的切线;(2)若⊙O OP=1,求BC的长.参考答案1.A如图,连接AC.只要证明CE=CA,推出∠E=∠CAE,求出∠ACE即可解决问题.如图,连接AC.∵四边形ABCD是矩形,∴AC=BD.∵EC=BD,∴AC=CE,∴∠AEB=∠CAE,易证∠ACB=∠ADB=30°.∵∠ACB=∠AEB+∠CAE,∴∠AEB=∠CAE=15°.故选A.本题考查了矩形的性质、等腰三角形的判定和性质,三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题.2.D解:用科学记数法表示42000应为4.2×104,故选D.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.A因为等腰三角形的两边分别为6和10,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.解:当6为底时,其它两边都为6,10、10可以构成三角形,周长为26;当6为腰时,其它两边为6和10,可以构成三角形,周长为22.故选:A.本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.4.D根据左视图的定义,找到从左面看所得到的图形即可得答案.从左面看,小正方体有两层,第一层有两个小正方形,上层左面有一个小正方形,故选D.本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.5.A由9<13<16得出3<√13<4即可求解.∵9<13<16,∴√9<√13<√16,即3<√13<4.故选A.考查了估算无理数的大小,能估算出√13的范围是解此题的关键.6.D解:第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,第五个图形是轴对称图形,第六个图形不是轴对称图形,综上所述,是轴对称图形的有4个.故选D.7.D∵在正方形纸片ABCD中,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F 重合,∠ADO=22.5°,∴∠GAD=45°,∠ADG=12∴∠AGD=112.5°,∴①正确.,AE=EF<BE,∵tan∠AED=ADAEAB,∴AE<12>2,∴tan∠AED=ADAE∴②错误.∵AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,∴③错误.根据题意可得:AE=EF,AG=FG,又∵EF∥AC,∴∠FEG=∠AGE,。
2020年贵州省黔南州中考数学试卷一. 选择题(本题10小题,每题4分,共40分)1.(3分)3的相反数是( )5. (3分)下列运算正确的是( )A. (/) 4=川2B. “九“4=/2C. a 2+a 2=a 4 6. (3分)如图,将矩形纸条ABCD 折叠,折痕为EF,折叠后点G D 分别落在点C‘ , D f处,D' E 与BF 交于点G.已知ZBGD' =30° ,则Zcx 的度数是()A. 30°B. 45°C. 74°D. 75°7. (3分)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D 处测得旗杆顶端A 的仰角ZADE 为55°,测角仪CD 的髙度为1米,其底端C 与旗杆底端B 之间的 距离为6米,设旗杆AB 的髙度为兀米,则下列关系式正确的是()3・(3分)某市2020年参加中考的考生人数约为93400人,将93400用科学记数法表示为( )A. 934X1()2B. 93.4X103C ・ 9.34X10°D ・0.934 XI O'D ・(ah) 2=ab 2AC B6 x— 1A. tan55° =口B・tan55° =—C. sin55° =罟D・cos55° =罟8.(3分)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A. 74元B・7・5元 C. 76元 D. 7・7元9.(3分)已知等腰三角形的一边长等于4, 一边长等于9,则它的周长为()A. 9 B・ 17 或22 C・ 17 D・ 2210.(3分)已知t/= V17-1, “介于两个连续自然数之间,则下列结论正确的是()A・1V“V2B・2<a<3C・3<a<4D・4V“<5二、填空题(本题10小题,每题3分,共30分)11・(3分)分解因式:6/3 - 2a2l>+ub2= ______ ・12.(3分)若单项式严2严7与单项式-3加的和仍是一个单项式,则m -n= ______________13.(3分)若一组数据2, 3, x, 1, 5, 7的众数为7,则这组数据的中位数为________ .14.(3分)函数>=x- 1的图象一泄不经过第 _______ 象限.15.(3分)如图,在平面直角坐标系中,直线—善x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA.则点C的坐标为 _____________ ・16.(3分)如图所示,在四边形ABCD中.ZB=90° , AB=2, CD=8・连接AC, AC丄CD,若sinZACB=则AD长度是 ______________ ・/B一17.(3分)已知菱形的周长为4的,两条对角线长的和为6,则菱形的而积为 ________ .18.(3分)如图,正方形ABCD的边长为10,点A的坐标为(-8, 0),点B在y轴上,若反比例函数)=£"工0)的图象过点C,则该反比例函数的解析式为____________ .19.(3分)《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:"假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为________ .20.(3分)对于实数“,b,泄义运算"* “,“枷=片一必3>“)例如4*2,因为4>2,lab - b2(a < b)所以4*2=4? - 4X2=8.若xi, xi是一元二次方程X1 - 8x+16=0的两个根,则xi*x2三. 解答题(本题6小题,共8()分)21.(12 分)(1)计算(一字)1 - 3tan60° +I-V3I+ (2cos60° - 2020)°;(3(2)解不等式组:p--1・13% + 2 > 422.(12分)古希腊数学家毕达哥拉斯认为:“一切平而图形中最美的圆S请研究如下美丽的圆,如图,RLMBC中,ZBCA=90° ,AC=3, BC=4,点。
2020年贵州省黔南州中考数学试卷一、选择题(本题10小题,每题4分,共40分)
1.(3分)3的相反数是()
A.﹣3B.3C.−1
3D.
1
3
2.(3分)观察下列图形,是中心对称图形的是()
A.B.
C.D.
3.(3分)某市2020年参加中考的考生人数约为93400人,将93400用科学记数法表示为()
A.934×102B.93.4×103C.9.34×104D.0.934×105 4.(3分)下列四个几何体中,左视图为圆的是()
A.B.C.D.
5.(3分)下列运算正确的是()
A.(a3)4=a12B.a3•a4=a12C.a2+a2=a4D.(ab)2=ab2 6.(3分)如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是()
A.30°B.45°C.74°D.75°
7.(3分)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()
A.tan55°=
6
x−1B.tan55°=
x−1
6
C.sin55°=x−1
6D.cos55°=
x−1
6
8.(3分)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()
A.7.4元B.7.5元C.7.6元D.7.7元
9.(3分)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9B.17或22C.17D.22
10.(3分)已知a=√17−1,a介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<5
二、填空题(本题10小题,每题3分,共30分)
11.(3分)分解因式:a3﹣2a2b+ab2=.
12.(3分)若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=.13.(3分)若一组数据2,3,x,1,5,7的众数为7,则这组数据的中位数为.14.(3分)函数y=x﹣1的图象一定不经过第象限.
15.(3分)如图,在平面直角坐标系中,直线y=−4
3x+4与x轴、y轴分别交于A、B两点,
点C在第二象限,若BC=OC=OA,则点C的坐标为.
16.(3分)如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥
CD,若sin∠ACB=1
3,则AD长度是.
17.(3分)已知菱形的周长为4√5,两条对角线长的和为6,则菱形的面积为 .
18.(3分)系统找不到该试题
19.(3分)《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问
牛、羊各直金几何?”
译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”
设每头牛值金x 两,每只羊值金y 两,可列方程组为 .
20.(3分)对于实数a ,b ,定义运算“*“,a *b ={a 2−ab(a >b)ab −b 2(a ≤b)
例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x 1,x 2是一元二次方程x 2﹣8x +16=0的两个根,则x 1*x 2= .
三、解答题(本题6小题,共80分)
21.(12分)(1)计算(−12)﹣1﹣3tan60°+|−√3|+(2cos60°﹣2020)0;
(2)解不等式组:{3−x 2≤13x +2≥4
. 22.(12分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图,Rt △ABC 中,∠BCA =90°,AC =3,BC =4,点O 在线段BC 上,且OC =32,
以O 为圆心.OC 为半径的⊙O 交线段AO 于点D ,交线段AO 的延长线于点E .
(1)求证:AB 是⊙O 的切线;
(2)研究过短中,小明同学发现AD DE =DE AE ,回答小明同学发现的结论是否正确?如果正
确,给出证明;如果不正确,说明理由.
23.(14分)勤劳是中华民族的传统美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:
根据统计图提供的作息,解答下列问题:
(1)本次共调查了名学生;
(2)根据以上信息直接在答题卡上补全条形统计图;
(3)扇形統计图中m=,类别D所对应的扇形圆心角α的度数是度;
(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?
24.(14分)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.
(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?
(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?
25.(12分)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.
用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:
(1)填写上图中第四个图中y的值为,第五个图中y的值为.
(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为,当x=48时,对应的y=.
(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?26.(14分)如图,已知AB是⊙O的直径,⊙O经过Rt△ACD的直角边DC上的点F,交AC边于点E,点F是弧EB的中点,∠C=90°,连接AF.
(1)求证:直线CD是⊙O切线.
(2)若BD=2,OB=4,求tan∠AFC的值.
27.(12分)如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x轴交于点C(﹣2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt△OMA沿y轴翻折,点M的对应点为点N.解答下列问题:
(1)抛物线的解析式为,顶点坐标为;
(2)判断点N是否在直线AC上,并说明理由;
(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.。