2016年贵州省中考数学试卷
- 格式:doc
- 大小:396.00 KB
- 文档页数:27
2016年贵州省毕节地区中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.(3分)的算术平方根是()A.2 B.±2 C.D.2.(3分)2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为()A.89×103 B.8.9×104C.8.9×103D.0.89×1053.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.(a2)3=a5C.a3+4a=a3D.3a2•2a3=6a5 4.(3分)图中是一个少数名族手鼓的轮廓图,其主视图是()A.B.C.D.5.(3分)为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52 C.53 D.546.(3分)到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点 D.三条边的垂直平分线的交点7.(3分)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间8.(3分)如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85°B.60°C.50°D.35°9.(3分)已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.10.(3分)如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.211.(3分)下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形12.(3分)如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100°B.72°C.64°D.36°13.(3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.14.(3分)一次函数y=ax+c(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.15.(3分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.(5分)分解因式3m4﹣48=.17.(5分)若a2+5ab﹣b2=0,则的值为.18.(5分)掷两枚质地均匀的骰子,其点数之和大于10的概率为.19.(5分)在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD=.20.(5分)如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为.三、解答题(本大题共7小题,各题分值见题号后,共80分,请解答在答题卡相应题号后,应写出必要的文字说明,证明过程或演算步骤)21.(8分)计算:.22.(8分)已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.23.(10分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.24.(12分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a=,b=;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.25.(12分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.26.(14分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.27.(16分)如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.2016年贵州省毕节地区中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.(3分)(2016•毕节市)的算术平方根是()A.2 B.±2 C.D.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的定义,注意关键是要首先计算=2.2.(3分)(2016•毕节市)2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为()A.89×103 B.8.9×104C.8.9×103D.0.89×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将89000用科学记数法表示为:8.9×104.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2016•毕节市)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.(a2)3=a5C.a3+4a=a3D.3a2•2a3=6a5【分析】A、原式去括号得到结果,即可作出判断;B、原式利用幂的乘方运算法则计算得到结果,即可作出判断;C、原式不能合并,错误;D、原式利用单项式乘单项式法则计算得到结果,即可作出判断.【解答】解:A、原式=﹣2a﹣2b,错误;B、原式=a6,错误;C、原式不能合并,错误;D、原式=6a5,正确,故选D【点评】此题考查了单项式乘单项式,合并同类项,去括号与添括号,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.(3分)(2016•毕节市)图中是一个少数名族手鼓的轮廓图,其主视图是()A.B.C.D.【分析】直接利用几何体的形状结合主视图的观察角度得出答案.【解答】解:由几何体可得:其主视图为:.故选:B.【点评】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.5.(3分)(2016•毕节市)为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52 C.53 D.54【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵数据中52和54均出现了2次,出现的次数最多,∴这组数据的众数是52和54,故选:A.【点评】本题考查了众数,一组数据中出现次数做多的数叫做众数,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.6.(3分)(2016•毕节市)到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点 D.三条边的垂直平分线的交点【分析】根据线段的垂直平分线上的点到线段的两个端点的距离相等解答即可.【解答】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选:D.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.(3分)(2016•毕节市)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【分析】利用”夹逼法“得出的范围,继而也可得出的范围.【解答】解:∵2=<=3,∴3<<4,故选B.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.8.(3分)(2016•毕节市)如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85°B.60°C.50°D.35°【分析】先利用三角形的外角定理求出∠4的度数,再利用平行线的性质得∠3=∠4=50°.【解答】解:在△ABC中,∵∠1=85°,∠2=35°,∴∠4=85°﹣35°=50°,∵a∥b,∴∠3=∠4=50°,故选C.【点评】本题考查了平行线的性质和三角形的外角定理,比较简单;运用了三角形的一个外角等于与它不相邻的两个内角的和,及两直线平行,内错角相等;本题的解法有多种,也可以利用直线b下方的三角形和对顶角相等来求解.9.(3分)(2016•毕节市)已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.【分析】利用二元一次方程的定义判断即可.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,故选A【点评】此题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键.10.(3分)(2016•毕节市)如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.2【分析】根据反比例函数系数k的几何意义:在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变,可计算出答案.【解答】解:△ABO的面积为:×|﹣4|=2,故选D.【点评】本题考查了反比例函数系数k的几何意义,关键是掌握比例系数k的几何意义:①在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.②在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.11.(3分)(2016•毕节市)下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形【分析】由菱形的判定方法得出选项A错误;由全等三角形的判定方法得出选项B错误;由矩形的性质得出选项C正确;由平行四边形的性质得出选项D错误;即可得出结论.【解答】解:∵对角线互相垂直的四边形不一定是菱形,∴选项A错误;∵有两边及一角对应相等的两个三角形不一定全等,∴选项B错误;∵矩形的对角线相等,∴选项C正确;∵平行四边形是中心对称图形,不一定是轴对称图形,∴选项D错误;故选:C.【点评】本题考查了矩形的性质、全等三角形的判定方法、菱形的判定方法、平行四边形的性质;熟练掌握矩形的性质、全等三角形的判定方法、菱形的判定是解决问题的关键.12.(3分)(2016•毕节市)如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100°B.72°C.64°D.36°【分析】连接OA,根据等腰三角形的性质得到∠OAC=∠C=28°,根据等腰三角形的性质解答即可.【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=28°,∴∠OAB=64°,∵OA=OB,∴∠B=∠OAB=64°,故选:C.【点评】本题考查的是圆周角定理,掌握圆的半径相等、等腰三角形的性质是解题的关键.13.(3分)(2016•毕节市)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.【分析】设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,根据:现在植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【解答】解:设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,根据题意,可列方程:=,故选:A.【点评】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.14.(3分)(2016•毕节市)一次函数y=ax+c(a≠0)与二次函数y=ax2+bx+c(a ≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【解答】解:A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c 与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【点评】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.15.(3分)(2016•毕节市)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【分析】根据折叠可得DH=EH,在直角△CEH中,设CH=x,则DH=EH=9﹣x,根据BE:EC=2:1可得CE=3,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:设CH=x,则DH=EH=9﹣x,∵BE:EC=2:1,BC=9,∴CE=BC=3,∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4.故选(B).【点评】本题主要考查正方形的性质以及翻折变换,折叠问题其实质是轴对称变换.在直角三角形中,利用勾股定理列出方程进行求解是解决本题的关键.二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.(5分)(2016•毕节市)分解因式3m4﹣48=3(m2+4)(m+2)(m﹣2).【分析】先提取公因式,再利用平方差公式把原式进行因式分解即可.【解答】解:3m4﹣48=3(m4﹣42)=3(m2+4)(m2﹣4)=3(m2+4)(m+2)(m﹣2).故答案为:3(m2+4)(m+2)(m﹣2).【点评】本题考查的是提公因式法与公式法的综合运用,熟记平方差公式是解答此题的关键.17.(5分)(2016•毕节市)若a2+5ab﹣b2=0,则的值为5.【分析】先根据题意得出b2﹣a2=5ab,再由分式的减法法则把原式进行化简,进而可得出结论.【解答】解:∵a2+5ab﹣b2=0,∴﹣===5.故答案为:5.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.18.(5分)(2016•毕节市)掷两枚质地均匀的骰子,其点数之和大于10的概率为.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其点数之和大于10的情况,再利用概率公式求解即可求得答案.【解答】解:列表如下:∵两次抛掷骰子总共有36种情况,而和大于10的只有:(5,6),(6,5),(6,6)三种情况,∴点数之和大于10的概率为:.故答案为:.【点评】此题考查了列表法或树状图法求概率.注意此题是放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.(5分)(2016•毕节市)在△ABC 中,D 为AB 边上一点,且∠BCD=∠A .已知BC=,AB=3,则BD=.【分析】证明△DCB ≌△CAB ,得=,由此即可解决问题.【解答】解:∵∠BCD=∠A ,∠B=∠B , ∴△DCB ~△CAB , ∴=,∴=,∴BD=. 故答案为.【点评】本题考查相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定方法,利用相似三角形的性质解决问题,属于中考常考题型.20.(5分)(2016•毕节市)如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为π﹣1 .【分析】如图,作辅助线;首先求出半圆O 的面积,其次求出△ABP 的面积;观察图形可以发现:阴影部分的面积=4(S 半圆O ﹣S △ABP ),求出值,即可解决问题. 【解答】解:如图,连接PA 、PB 、OP ;则S 半圆O ==,S △ABP =AB•OP=×1×=,由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP )=4(﹣)=π﹣1,故答案为:π﹣1.【点评】该题主要考查了正方形的性质、圆的面积公式、三角形的面积公式等知识点及其应用问题;解题的关键是作辅助线,将阴影部分的面积转化为规则图形的面积和或差.三、解答题(本大题共7小题,各题分值见题号后,共80分,请解答在答题卡相应题号后,应写出必要的文字说明,证明过程或演算步骤)21.(8分)(2016•毕节市)计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.【解答】解:原式=1+﹣1﹣﹣2×+1=﹣﹣+1=1﹣.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.22.(8分)(2016•毕节市)已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.【分析】(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数x的值,代入计算即可求出A的值.【解答】解:(1)A=(x﹣3)•﹣1=﹣1==;(2),由①得:x<1,由②得:x>﹣1,∴不等式组的解集为﹣1<x<1,即整数x=0,则A=﹣.【点评】此题考查了分式的混合运算,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.23.(10分)(2016•毕节市)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【分析】(1)设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为8640×(1+0.2),再进行计算即可.【解答】解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.【点评】此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.24.(12分)(2016•毕节市)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)本次决赛共有50名学生参加;(2)直接写出表中a=16,b=0.28;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48%.【分析】(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数,可以求得a、b的值;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.【点评】本题考查频数分布直方图、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.25.(12分)(2016•毕节市)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【分析】(1)由旋转的性质得到三角形ABC与三角形ADE全等,以及AB=AC,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS得到三角形AEC与三角形ADB全等即可;(2)根据∠BAC=45°,四边形ADFC是菱形,得到∠DBA=∠BAC=45°,再由AB=AD,得到三角形ABD为等腰直角三角形,求出BD的长,由BD﹣DF求出BF的长即可.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.【点评】此题考查了旋转的性质,全等三角形的判定与性质,以及菱形的性质,熟练掌握旋转的性质是解本题的关键.26.(14分)(2016•毕节市)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.(1)由CD=CB,∠BCD=2∠ABD,可证得∠BCE=∠ABD,继而求得∠ABC=90°,【分析】则可证得AB是⊙O的切线;(2)由∠A=60°,DF=,可求得AF、BF的长,易证得△ADF∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵CD=CB,∴∠CBD=∠CDB,∵AB是⊙O的直径,∴∠CEB=90°,∴∠CBD+∠BCE=∠CDB+∠DCE,∴∠BCE=∠DCE,即∠BCD=2∠BCE,∵∠BCD=2∠ABD,∴∠ABD=∠BCE,∴∠CBD+∠ABD=∠CBD+∠BCE=90°,∴CB⊥AB,∵CB为直径,∴AB是⊙O的切线;(2)∵∠A=60°,DF=,∴在Rt△AFD中,AF===1,AD=2∵DF⊥AB,CB⊥AB,∴DF∥BC,∴∠ADF=∠ACB,∵∠A=∠A,∴△ADF∽△ACB,∴=,设BC=x,则=,解得x=4+6.∴BC=4+6.【点评】此题考查了切线的判定、等腰三角形的性质以及相似三角形的判定与性质.注意证得△ADF∽△ACB是解此题的关键.27.(16分)(2016•毕节市)如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.【分析】(1)把A点坐标代入直线方程可求得a的值,再代入抛物线可求得b 的值,可求得抛物线解析式;(2)联立抛物线和直线解析式可求得B点坐标,过A作AQ⊥x轴,交x轴于点Q,可知OC=AQ=4,可求得C点坐标,结合条件可知P点纵坐标,代入抛物线解析式可求得P点坐标,从而可求得PC的长;(3)根据矩形的性质可分别用m、n表示出C、P的坐标,根据DE=CP,可得到m、n的关系式.【解答】解:(1)∵A(a,8)是抛物线和直线的交点,∴A点在直线上,∴8=2a+4,解得a=2,∴A点坐标为(2,8),又A点在抛物线上,∴8=22+2b,解得b=2,∴抛物线解析式为y=x2+2x;(2)联立抛物线和直线解析式可得,解得,,∴B点坐标为(﹣2,0),如图,过A作AQ⊥x轴,交x轴于点Q,则AQ=8,OQ=OB=2,即O为BQ的中点,当C为AB中点时,则OC为△ABQ的中位线,即C点在y轴上,∴OC=AQ=4,∴C点坐标为(0,4),又PC∥x轴,∴P点纵坐标为4,∵P点在抛物线上,∴4=x2+2x,解得x=﹣1﹣或x=﹣1,∵P点在A、B之间的抛物线上,∴x=﹣1﹣不合题意,舍去,∴P点坐标为(﹣1,4),∴PC=﹣1﹣0=﹣1;(3)∵D(m,n),且四边形PCDE为矩形,∴C点横坐标为m,E点纵坐标为n,∵C、E都在直线y=2x+4上,∴C(m,2m+4),E(,n),∵PC∥x轴,∴P点纵坐标为2m+4,∵P点在抛物线上,∴2m+4=x2+2x,整理可得2m+5=(x+1)2,解得x=﹣1或x=﹣﹣1(舍去),∴P点坐标为(﹣1,2m+4),∴DE=﹣m,CP=﹣1﹣m,∵四边形PCDE为矩形,∴DE=CP,即﹣m=﹣1﹣m,整理可得n2﹣4n﹣8m﹣16=0,即m、n之间的关系式为n2﹣4n﹣8m﹣16=0.【点评】本题为二次函数的综合应用,涉及知识点有图象的交点、待定系数法、三角形中位线定理、矩形的性质等.在(1)中注意交点坐标的应用,在(2)中求出C点坐标是解题的关键,在(3)中用m、n表示出P点的坐标是解题的关键.本题知识点较多,计算量较大,难度适中.参与本试卷答题和审题的老师有:HJJ;gbl210;sks;sd2011;sjzx;知足长乐;caicl;tcm123;张其铎;家有儿女;三界无我;守拙;szl;ZJX;zcx;弯弯的小河;王学峰;lantin;zgm666;Ldt(排名不分先后)菁优网2017年3月1日。
2016年贵州省毕节地区中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.的算术平方根是()A.2 B.±2 C.D.2.2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为()A.89×103B.8.9×104C.8.9×103D.0.89×1053.下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.(a2)3=a5C.a3+4a=a3D.3a2•2a3=6a54.图中是一个少数名族手鼓的轮廓图,其主视图是()A.B.C.D.5.为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52 C.53 D.546.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点7.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间8.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85° B.60° C.50° D.35°9.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.10.如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.211.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形12.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100° B.72° C.64° D.36°13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.14.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.15.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.分解因式3m4﹣48=.17.若a2+5ab﹣b2=0,则的值为.18.掷两枚质地均匀的骰子,其点数之和大于10的概率为.19.在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD=.20.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为.三、解答题(本大题共7小题,各题分值见题号后,共80分,请解答在答题卡相应题号后,应写出必要的文字说明,证明过程或演算步骤)21.计算:.22.已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.23.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.24.为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决x50≤x100(1)本次决赛共有名学生参加;(2)直接写出表中a=,b=;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.26.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.27.如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.2016年贵州省毕节地区中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.的算术平方根是()A.2 B.±2 C.D.【考点】立方根;算术平方根.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.2.2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为()A.89×103B.8.9×104C.8.9×103D.0.89×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将89000用科学记数法表示为:8.9×104.故选:B.3.下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.(a2)3=a5C.a3+4a=a3D.3a2•2a3=6a5【考点】单项式乘单项式;合并同类项;去括号与添括号;幂的乘方与积的乘方.【分析】A、原式去括号得到结果,即可作出判断;B、原式利用幂的乘方运算法则计算得到结果,即可作出判断;C、原式不能合并,错误;D、原式利用单项式乘单项式法则计算得到结果,即可作出判断.【解答】解:A、原式=﹣2a﹣2b,错误;B、原式=a6,错误;C、原式不能合并,错误;D、原式=6a5,正确,故选D4.图中是一个少数名族手鼓的轮廓图,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】直接利用几何体的形状结合主视图的观察角度得出答案.【解答】解:由几何体可得:其主视图为:.故选:B.5.为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52 C.53 D.54【考点】众数.【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵数据中52和54均出现了2次,出现的次数最多,∴这组数据的众数是52和54,故选:A.6.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点【考点】线段垂直平分线的性质;角平分线的性质.【分析】根据线段的垂直平分线上的点到线段的两个端点的距离相等解答即可.【解答】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选:D.7.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【考点】估算无理数的大小.【分析】利用”夹逼法“得出的范围,继而也可得出的范围.【解答】解:∵2=<=3,∴3<<4,故选B.8.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85° B.60° C.50° D.35°【考点】平行线的性质.【分析】先利用三角形的外角定理求出∠4的度数,再利用平行线的性质得∠3=∠4=50°.【解答】解:在△ABC中,∵∠1=85°,∠2=35°,∴∠4=85°﹣35°=50°,∵a∥b,∴∠3=∠4=50°,故选C.9.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.【考点】二元一次方程的定义.【分析】利用二元一次方程的定义判断即可.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,故选A10.如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.2【考点】反比例函数系数k的几何意义.【分析】根据反比例函数系数k的几何意义:在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变,可计算出答案.【解答】解:△ABO的面积为:×|﹣4|=2,故选D.11.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形【考点】矩形的性质;全等三角形的判定;菱形的判定;轴对称图形.【分析】由菱形的判定方法得出选项A错误;由全等三角形的判定方法得出选项B错误;由矩形的性质得出选项C正确;由平行四边形的性质得出选项D错误;即可得出结论.【解答】解:∵对角线互相垂直的四边形不一定是菱形,∴选项A错误;∵有两边及一角对应相等的两个三角形不一定全等,∴选项B错误;∵矩形的对角线相等,∴选项C正确;∵平行四边形是中心对称图形,不一定是轴对称图形,∴选项D错误;故选:C.12.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100° B.72° C.64° D.36°【考点】圆周角定理.【分析】连接OA,根据等腰三角形的性质得到∠OAC=∠C=28°,根据等腰三角形的性质解答即可.【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=28°,∴∠OAB=64°,∵OA=OB,∴∠B=∠OAB=64°,故选:C.13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,根据:现在植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【解答】解:设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,根据题意,可列方程:=,故选:A.14.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c 的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,由直线可知,故本选项错误;B、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0故本选项错误.故选C.15.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【考点】正方形的性质;翻折变换(折叠问题).【分析】根据折叠的性质可得DH=EH,在直角△CEH中,若设CH=x,则DH=EH=9﹣x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:由题意设CH=xcm,则DH=EH=(9﹣x)cm,∵BE:EC=2:1,∴CE=BC=3cm∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4cm.故选(B)二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.分解因式3m4﹣48=3(m2+4)(m+2)(m﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再利用平方差公式把原式进行因式分解即可.【解答】解:3m4﹣48=3(m4﹣42)=3(m2+4)(m2﹣4)=3(m2+4)(m+2)(m﹣2).故答案为:3(m2+4)(m+2)(m﹣2).17.若a2+5ab﹣b2=0,则的值为5.【考点】分式的化简求值.【分析】先根据题意得出b2﹣a2=5ab,再由分式的减法法则把原式进行化简,进而可得出结论.【解答】解:∵a2+5ab﹣b2=0,∴﹣===5.故答案为:5.18.掷两枚质地均匀的骰子,其点数之和大于10的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其点数之和大于10的情况,再利用概率公式求解即可求得答案.况,∴点数之和大于10的概率为:.故答案为:.19.在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD=.【考点】相似三角形的判定与性质.【分析】证明△DCB≌△CAB,得=,由此即可解决问题.【解答】解:∵∠BCD=∠A,∠B=∠B,∴△DCB≌△CAB,∴=,∴=,∴BD=.故答案为.20.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为 π﹣1 .【考点】扇形面积的计算.【分析】如图,作辅助线;首先求出半圆O 的面积,其次求出△ABP 的面积;观察图形可以发现:阴影部分的面积=4(S 半圆O ﹣S △ABP ),求出值,即可解决问题. 【解答】解:如图,连接PA 、PB 、OP ;则S 半圆O ==,S △ABP =AB •OP=×1×=,由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP )=4(﹣)=π﹣1,故答案为:π﹣1.三、解答题(本大题共7小题,各题分值见题号后,共80分,请解答在答题卡相应题号后,应写出必要的文字说明,证明过程或演算步骤)21.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.【解答】解:原式=1+﹣1﹣﹣2×+1=﹣﹣+1=1﹣.22.已知(1)化简A ;(2)若x满足不等式组,且x为整数时,求A的值.【考点】分式的混合运算;一元一次不等式组的整数解.【分析】(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数x的值,代入计算即可求出A的值.【解答】解:(1)A=(x﹣3)•﹣1=﹣1==;(2),由①得:x<1,由②得:x>﹣1,∴不等式组的解集为﹣1<x<1,即整数x=0,则A=﹣.23.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【考点】一元二次方程的应用.【分析】(1)设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为8640×(1+0.2),再进行计算即可.【解答】解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x=0.2=20%,答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.24.为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决x50x100请根据表格提供的信息,解答以下问题:(1)本次决赛共有50名学生参加;(2)直接写出表中a=16,b=0.28;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48%.【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数,可以求得a、b的值;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【考点】旋转的性质;全等三角形的判定与性质;菱形的性质.【分析】(1)由旋转的性质得到三角形ABC与三角形ADE全等,以及AB=AC,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS得到三角形AEC 与三角形ADB全等即可;(2)根据∠BAC=45°,四边形ADFC是菱形,得到∠DBA=∠BAC=45°,再由AB=AD,得到三角形ABD为等腰直角三角形,求出BD的长,由BD﹣DF求出BF的长即可.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.26.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.【考点】切线的判定.【分析】(1)由CD=CB,∠BCD=2∠ABD,可证得∠BCE=∠ABD,继而求得∠ABC=90°,则可证得AB是⊙O的切线;(2)由∠A=60°,DF=,可求得AF、BF的长,易证得△ADF∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵CD=CB,∴∠CBD=∠CDB,∵AB是⊙O的直径,∴∠CBE=90°,∴∠CBD+∠BCE=∠CDB+∠DCE,∴∠BCE=∠DCE,即∠BCD=2∠BCE,∵∠BCD=2∠ABD,∴∠ABD=∠BCE,∴∠CBD+∠ABD=∠CBD+∠BCE=90°,∴CB⊥AB,∵CB为直径,∴AB是⊙O的切线;(2)∵∠A=60°,DF=,∴在Rt△AFD中,AF===1,在Rt△BFD中,BF=DF•tan60°=×=3,∵DF⊥AB,CB⊥AB,∴DF∥BC,∴∠ADF=∠ACB,∵∠A=∠A,∴△ADF∽△ACB,∴=,∴=,∴CB=4.27.如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.【考点】二次函数综合题.【分析】(1)把A点坐标代入直线方程可求得a的值,再代入抛物线可求得b的值,可求得抛物线解析式;(2)联立抛物线和直线解析式可求得B点坐标,过A作AQ⊥x轴,交x轴于点Q,可知OC=AQ=4,可求得C点坐标,结合条件可知P点纵坐标,代入抛物线解析式可求得P点坐标,从而可求得PC的长;(3)根据矩形的性质可分别用m、n表示出C、P的坐标,根据DE=CP,可得到m、n的关系式.【解答】解:(1)∵A(a,8)是抛物线和直线的交点,∴A点在直线上,∴8=2a+4,解得a=2,∴A点坐标为(2,8),又A点在抛物线上,∴8=22+2b,解得b=2,∴抛物线解析式为y=x2+2x;(2)联立抛物线和直线解析式可得,解得,,∴B点坐标为(﹣2,0),如图,过A作AQ⊥x轴,交x轴于点Q,则AQ=8,OQ=OB=2,即O为BQ的中点,当C为AB中点时,则OC为△ABQ的中位线,即C点在y轴上,∴OC=AQ=4,∴C点坐标为(0,4),又PC∥x轴,∴P点纵坐标为4,∵P点在抛物线线上,∴4=x2+2x,解得x=﹣1﹣或x=﹣1,∵P点在A、B之间的抛物线上,∴x=﹣1﹣不合题意,舍去,∴P点坐标为(﹣1,4),∴PC=﹣1﹣0=﹣1;(3)∵D(m,n),且四边形PCDE为矩形,∴C点横坐标为m,E点纵坐标为n,∵C、E都在直线y=2x+4上,∴C(m,2m+4),E(,n),∵PC∥x轴,∴P点纵坐标为2m+4,∵P点在抛物线上,∴2m+4=x2+2x,整理可得2m+5=(x+1)2,解得x=﹣1或x=﹣﹣1(舍去),∴P点坐标为(﹣1,2m+4),∴DE=﹣m,CP=﹣1﹣m,∵四边形PCDE为矩形,∴DE=CP,即﹣m=﹣1﹣m,整理可得n2﹣4n﹣8m﹣16=0,即m、n之间的关系式为n2﹣4n﹣8m﹣16=0.2016年7月7日。
2016年贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正题序一二三四五六七八总分得分确选项的字母框,每小题3分,共30分.1.(3分)(2016•贵阳)下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣2.(3分)(2016•贵阳)空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣13.(3分)(2016•贵阳)如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°4.(3分)(2016•贵阳)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.5.(3分)(2016•贵阳)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.6.(3分)(2016•贵阳)2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差7.(3分)(2016•贵阳)如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.68.(3分)(2016•贵阳)小颖同学在手工制作中,把一个边长为12cm 的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A .2cm B.4cm C.6cm D.8cm9.(3分)(2016•贵阳)星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.10.(3分)(2016•贵阳)若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<a<b<n B.a<m<n<b C.b<n<m<a D.n<b<a<m二、填空题:每小题4分,共20分11.(4分)(2016•贵阳)不等式组的解集为______.12.(4分)(2016•贵阳)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为______. 13.(4分)(2016•贵阳)已知点M (1,a )和点N (2,b )是一次函数y=﹣2x +1图象上的两点,则a 与b 的大小关系是______.14.(4分)(2016•贵阳)如图,已知⊙O 的半径为6cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP=2cm ,则tan ∠OPA 的值是______.15.(4分)(2016•贵阳)已知△ABC ,∠BAC=45°,AB=8,要使满足条件的△ABC 唯一确定,那么BC 边长度x 的取值范围为______.三、解答题:本大题10小题,共100分. 16.(8分)(2016•贵阳)先化简,再求值:﹣÷,其中a=.17.(10分)(2016•贵阳)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮). (1)将4个开关都闭合时,教室里所有灯都亮起的概率是______;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.(10分)(2016•贵阳)如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF=90°,连接CE 、CF . (1)求证:△ABF ≌△CBE ;(2)判断△CEF 的形状,并说明理由.19.(10分)(2016•贵阳)某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A 等级:135分﹣150分 B 等级:120分﹣135分,C 等级:90分﹣120分,D 等级:0分﹣90分) (1)此次抽查的学生人数为______;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.20.(10分)(2016•贵阳)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?21.(8分)(2016•贵阳)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC ,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)22.(10分)(2016•贵阳)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.(10分)(2016•贵阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)24.(12分)(2016•贵阳)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是______;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.25.(12分)(2016•贵阳)如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.2016年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分. 1.(3分)(2016•贵阳)下面的数中,与﹣6的和为0的数是( ) A .6B .﹣6C .D .﹣【分析】根据两个互为相反数的数相加得0,即可得出答案. 【解答】解:与﹣6的和为0的是﹣6的相反数6. 故选A .2.(3分)(2016•贵阳)空气的密度为0.00129g/cm 3,0.00129这个数用科学记数法可表示为( )A .0.129×10﹣2B .1.29×10﹣2C .1.29×10﹣3D .12.9×10﹣1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00129这个数用科学记数法可表示为1.29×10﹣3. 故选:C . 3.(3分)(2016•贵阳)如图,直线a ∥b ,点B 在直线a 上,AB ⊥BC ,若∠1=38°,则∠2的度数为( )A .38°B .52°C .76°D .142°【分析】由平角的定义求出∠MBC 的度数,再由平行线的性质得出∠2=∠MBC=52°即可. 【解答】解:如图所示: ∵AB ⊥BC ,∠1=38°,∴∠MBC=180°﹣90°﹣38°=52°, ∵a ∥b ,∴∠2=∠MBC=52°; 故选:B .4.(3分)(2016•贵阳)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( ) A .B .C .D .【分析】直接根据概率公式即可得出结论.【解答】解:∵共有200辆车,其中帕萨特60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率==.故选C .5.(3分)(2016•贵阳)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是( )A .B .C .D .【分析】找到从上面看所得到的图形即可.【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线, 故选:C . 6.(3分)(2016•贵阳)2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的( ) A .中位数 B .平均数 C .最高分 D .方差【分析】由于有45名同学参加全省中小学生器乐交流比赛,要取前23名获奖,故应考虑中位数的大小.【解答】解:共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.我们把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖. 故选:A .7.(3分)(2016•贵阳)如图,在△ABC中,DE ∥BC,=,BC=12,则DE 的长是( )A .3B .4C .5D .6【分析】根据DE ∥BC ,得到△ADE ∽△ABC ,得出对应边成比例,即可求DE 的长. 【解答】解:∵DE ∥BC , ∴△ADE ∽△ABC ,∴==,∵BC=12,∴DE=BC=4.故选:B.8.(3分)(2016•贵阳)小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm【分析】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程进行即可解决问题.【解答】解:过点A作BC边上的垂线交BC 于点D,过点B作AC边上的垂线交AD于点O,则O为圆心.设⊙O的半径为R,由等边三角形的性质知:∠OBC=30°,OB=R.∴BD=cos∠OBC×OB=R,BC=2BD=R.∵BC=12,∴R==4.故选B.9.(3分)(2016•贵阳)星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.10.(3分)(2016•贵阳)若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<a<b<n B.a<m<n<b C.b<n<m<a D.n<b<a<m【分析】利用图象法,画出抛物线y=(x﹣a)(x﹣b)与直线y=1,即可解决问题.【解答】解:如图抛物线y=(x﹣a)(x﹣b)与x轴交于点(a,0),(b,0),抛物线与直线y=1的交点为(n,1),(m,1),由图象可知,n<b<a<m.故选D.二、填空题:每小题4分,共20分11.(4分)(2016•贵阳)不等式组的解集为x<1.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x<2,故不等式组的解集为:x<1.故答案为:x<1.12.(4分)(2016•贵阳)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15.【分析】利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.【解答】解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15. 13.(4分)(2016•贵阳)已知点M (1,a )和点N (2,b )是一次函数y=﹣2x +1图象上的两点,则a 与b 的大小关系是 a >b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论. 【解答】解:∵一次函数y=﹣2x +1中k=﹣2, ∴该函数中y 随着x 的增大而减小, ∵1<2, ∴a >b .故答案为:a >b . 14.(4分)(2016•贵阳)如图,已知⊙O 的半径为6cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP=2cm ,则tan ∠OPA 的值是.【分析】作OM ⊥AB 于M ,由垂径定理得出AM=BM=AB=4cm ,由勾股定理求出OM ,再由三角函数的定义即可得出结果.【解答】解:作OM ⊥AB 于M ,如图所示: 则AM=BM=AB=4cm ,∴OM===2(cm ),∵PM=PB +BM=6cm , ∴tan ∠OPA===;故答案为:.15.(4分)(2016•贵阳)已知△ABC ,∠BAC=45°,AB=8,要使满足条件的△ABC 唯一确定,那么BC 边长度x 的取值范围为 x=4或x ≥8 .【分析】分析:过点B 作BD ⊥AC 于点D ,则△ABD 是等腰直角三角形;再延长AD 到E 点,使DE=AD ,再分别讨论点C 的位置即可.【解答】解:过B 点作BD ⊥AC 于D 点,则△ABD 是等腰三角形;再延长AD 到E ,使DE=AD ,①当点C 和点D 重合时,△ABC 是等腰直角三角形,BC=4,这个三角形是唯一确定的; ②当点C 和点E 重合时,△ABC 也是等腰三角形,BC=8,这个三角形也是唯一确定的;③当点C 在线段AE 的延长线上时,即x 大于BE ,也就是x >8,这时,△ABC 也是唯一确定的; 综上所述,∠BAC=45°,AB=8,要使△ABC 唯一确定,那么BC 的长度x 满足的条件是:x=4或x ≥8三、解答题:本大题10小题,共100分. 16.(8分)(2016•贵阳)先化简,再求值:﹣÷,其中a=.【分析】原式第二项利用除法法则变形,约分后两项利用同分母分式的减法法则计算得到最简结果,把a 的值代入计算即可求出值. 【解答】解:原式=﹣•=﹣=,当a=+1时,原式=.17.(10分)(2016•贵阳)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮). (1)将4个开关都闭合时,教室里所有灯都亮起的概率是 0 ;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率. 【分析】(1)由于控制第二排灯的开关已坏,所以所有灯都亮起为不可能事件;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图展示所有12种等可能的结果数,再找出关掉第一排与第三排灯的结果数,然后根据概率公式求解. 【解答】解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮,所以将4个开关都闭合时,所以教室里所有灯都亮起的概率是0; 故答案为0;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯, 画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2, 所以恰好关掉第一排与第三排灯的概率==.18.(10分)(2016•贵阳)如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF=90°,连接CE 、CF . (1)求证:△ABF ≌△CBE ;(2)判断△CEF 的形状,并说明理由.【分析】(1)由四边形ABCD 是正方形可得出AB=CB ,∠ABC=90°,再由△EBF 是等腰直角三角形可得出BE=BF ,通过角的计算可得出∠ABF=∠CBE ,利用全等三角形的判定定理SAS 即可证出△ABF ≌△CBE ;(2)根据△EBF 是等腰直角三角形可得出∠BFE=∠FEB ,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF 是直角三角形. 【解答】(1)证明:∵四边形ABCD 是正方形, ∴AB=CB ,∠ABC=90°,∵△EBF 是等腰直角三角形,其中∠EBF=90°, ∴BE=BF ,∴∠ABC ﹣∠CBF=∠EBF ﹣∠CBF , ∴∠ABF=∠CBE . 在△ABF 和△CBE 中,有,∴△ABF ≌△CBE (SAS ).(2)解:△CEF 是直角三角形.理由如下: ∵△EBF 是等腰直角三角形, ∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°, 又∵△ABF ≌△CBE , ∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB ﹣∠FEB=135°﹣45°=90°, ∴△CEF 是直角三角形.19.(10分)(2016•贵阳)某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A 等级:135分﹣150分 B 等级:120分﹣135分,C 等级:90分﹣120分,D 等级:0分﹣90分) (1)此次抽查的学生人数为 150 ;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【分析】(1)根据统计图可知,C 等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A 等级的学生数,B 等级和D 等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数. 【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人), 故答案为:150;(2)A 等级的学生数是:150×20%=30, B 等级占的百分比是:69÷150×100%=46%, D 等级占的百分比是:15÷150×100%=10%, 故补全的条形统计图和扇形统计图如右图所示, (3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.111120.(10分)(2016•贵阳)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元. (1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球? 【分析】(1)设一个足球的单价x 元、一个篮球的单价为y 元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m 个,则买蓝球(20﹣m )个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x 元、一个篮球的单价为y 元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m 个,则买蓝球(20﹣m )个,根据题意得: 103m +56(20﹣m )≤1550, 解得:m ≤9,∵m 为整数, ∴m 最大取9答:学校最多可以买9个足球. 21.(8分)(2016•贵阳)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B 点先乘坐缆车到达观景平台DE 观景,然后再沿着坡脚为29°的斜坡由E 点步行到达“蘑菇石”A 点,“蘑菇石”A 点到水平面BC 的垂直距离为1790m .如图,DE ∥BC ,BD=1700m ,∠DBC=80°,求斜坡AE 的长度.(结果精确到0.1m )【分析】首先过点D 作DF ⊥BC 于点F ,延长DE 交AC 于点M ,进而表示出AM ,DF 的长,再利用AE=,求出答案.【解答】解:过点D 作DF ⊥BC 于点F ,延长DE 交AC 于点M , 由题意可得:EM ⊥AC ,DF=MC ,∠AEM=29°, 在Rt △DFB 中,sin80°=,则DF=BD •sin80°,AM=AC ﹣CM=1790﹣1700•sin80°, 在Rt △AME 中,sin29°=,故AE==≈238.9(m ),答:斜坡AE 的长度约为238.9m .22.(10分)(2016•贵阳)如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴上,反比例函数y=(x >0)的图象经过菱形对角线的交点A ,且与边BC 交于点F ,点A 的坐标为(4,2). (1)求反比例函数的表达式; (2)求点F 的坐标.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和抛物线的交点坐标即可.【解答】解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x+,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).23.(10分)(2016•贵阳)如图,⊙O是△ABC的外接圆,AB 是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)【分析】(1)由角平分线的基本作图即可得出结果;(2)由等腰三角形的性质和圆周角定理得出∠CAD=∠B ,再由角平分线得出∠CAD=∠DAB=∠B,由圆周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,即可求出∠B的度数;(3)证出∠OEB=90°,在Rt△OEB中,求出OE=OB=2,由勾股定理求出BE,再由三角形的面积公式和扇形面积公式求出△OEB的面积=OE•BE=2,扇形BOD的面积═,所求图形的面积=扇形面积﹣△OEB的面积,即可得出结果.【解答】解:(1)如图1所示,AP即为所求的∠CAB的平分线;(2)如图2所示:∵AC=CD,∴∠CAD=∠ADC,又∵∠ADC=∠B,∴∠CAD=∠B,∵AD平分∠CAB,∴∠CAD=∠DAB=∠B,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90°,∴∠B=30°;(3)由(2)得:∠CAD=∠BAD,∠DAB=30°,又∵∠DOB=2∠DAB,∴∠BOD=60°,∴∠OEB=90°,在Rt△OEB中,OB=AB=4,∴OE=OB=2,∴BE===2, ∴△OEB 的面积=OE •BE=×2×2=2,扇形BOD 的面积==,∴线段ED ,BE ,所围成区域的面积=﹣2.24.(12分)(2016•贵阳)(1)阅读理解:如图①,在△ABC 中,若AB=10,AC=6,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE=AD ,再连接BE (或将△ACD 绕着点D 逆时针旋转180°得到△EBD ),把AB 、AC ,2AD 集中在△ABE 中,利用三角形三边的关系即可判断. 中线AD 的取值范围是 2<AD <8 ; (2)问题解决:如图②,在△ABC 中,D 是BC 边上的中点,DE ⊥DF 于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE +CF >EF ; (3)问题拓展:如图③,在四边形ABCD 中,∠B +∠D=180°,CB=CD ,∠BCD=140°,以C 为顶点作一个70°角,角的两边分别交AB ,AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并加以证明.【分析】(1)延长AD 至E ,使DE=AD ,由SAS 证明△ACD ≌△EBD ,得出BE=AC=6,在△ABE 中,由三角形的三边关系求出AE 的取值范围,即可得出AD 的取值范围;(2)延长FD 至点M ,使DM=DF,连接BM 、EM ,同(1)得△BMD ≌△CFD ,得出BM=CF ,由线段垂直平分线的性质得出EM=EF ,在△BME 中,由三角形的三边关系得出BE +BM >EM 即可得出结论;(3)延长AB 至点N ,使BN=DF ,连接CN ,证出∠NBC=∠D ,由SAS 证明△NBC ≌△FDC ,得出CN=CF ,∠NCB=∠FCD ,证出∠ECN=70°=∠ECF ,再由SAS 证明△NCE ≌△FCE ,得出EN=EF ,即可得出结论. 【解答】(1)解:延长AD 至E ,使DE=AD ,连接BE ,如图①所示: ∵AD 是BC 边上的中线, ∴BD=CD ,在△BDE 和△CDA 中,,∴△BDE ≌△CDA (SAS ), ∴BE=AC=6,在△ABE 中,由三角形的三边关系得:AB ﹣BE <AE <AB +BE , ∴10﹣6<AE <10+6,即4<AE <16, ∴2<AD <8;故答案为:2<AD <8;(2)证明:延长FD 至点M ,使DM=DF ,连接BM 、EM ,如图②所示: 同(1)得:△BMD ≌△CFD (SAS ), ∴BM=CF ,∵DE ⊥DF ,DM=DF , ∴EM=EF ,在△BME 中,由三角形的三边关系得:BE +BM >EM , ∴BE +CF >EF ;(3)解:BE +DF=EF ;理由如下:延长AB 至点N ,使BN=DF ,连接CN ,如图3所示: ∵∠ABC +∠D=180°,∠NBC +∠ABC=180°, ∴∠NBC=∠D , 在△NBC 和△FDC 中,,∴△NBC ≌△FDC (SAS ), ∴CN=CF ,∠NCB=∠FCD , ∵∠BCD=140°,∠ECF=70°, ∴∠BCE +∠FCD=70°, ∴∠ECN=70°=∠ECF , 在△NCE 和△FCE 中,, ∴△NCE ≌△FCE (SAS ), ∴EN=EF , ∵BE +BN=EN , ∴BE +DF=EF .25.(12分)(2016•贵阳)如图,直线y=5x +5交x 轴于点A ,交y 轴于点C ,过A ,C 两点的二次函数y=ax 2+4x +c的图象交x 轴于另一点B . (1)求二次函数的表达式;(2)连接BC ,点N 是线段BC 上的动点,作ND ⊥x 轴交二次函数的图象于点D ,求线段ND 长度的最大值; (3)若点H 为二次函数y=ax 2+4x +c 图象的顶点,点M (4,m )是该二次函数图象上一点,在x 轴、y 轴上分别找点F ,E ,使四边形HEFM 的周长最小,求出点F ,E 的坐标.温馨提示:在直角坐标系中,若点P ,Q 的坐标分别为P (x 1,y 1),Q (x 2,y 2), 当PQ 平行x 轴时,线段PQ 的长度可由公式PQ=|x 1﹣x 2|求出; 当PQ 平行y 轴时,线段PQ 的长度可由公式PQ=|y 1﹣y 2|求出.【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A ,C 两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B 点的坐标,根据待定系数法可求一次函数BC 的表达式,设ND 的长为d ,N 点的横坐标为n ,则N 点的纵坐标为﹣n +5,D 点的坐标为D (n ,﹣n 2+4n +5),根据两点间的距离公式和二次函数的最值计算可求线段ND 长度的最大值; (3)由题意可得二次函数的顶点坐标为H (2,9),点M 的坐标为M (4,5),作点H (2,9)关于y 轴的对称点H 1,可得点H 1的坐标,作点M (4,5)关于x 轴的对称点HM 1,可得点M 1的坐标连结H 1M 1分别交x 轴于点F ,y 轴于点E ,可得H 1M 1+HM 的长度是四边形HEFM 的最小周长,再根据待定系数法可求直线H 1M 1解析式,根据坐标轴上点的坐标特征可求点F 、E 的坐标. 【解答】解:(1)∵直线y=5x +5交x 轴于点A ,交y 轴于点C , ∴A (﹣1,0),C (0,5),∵二次函数y=ax 2+4x +c 的图象过A ,C 两点, ∴, 解得,∴二次函数的表达式为y=﹣x 2+4x +5; (2)如图1,∵点B 是二次函数的图象与x 轴的交点,∴由二次函数的表达式为y=﹣x 2+4x +5得,点B 的坐标B (5,0), 设直线BC 解析式为y=kx +b , ∵直线BC 过点B (5,0),C (0,5),∴, 解得,∴直线BC 解析式为y=﹣x +5,设ND 的长为d ,N 点的横坐标为n ,则N 点的纵坐标为﹣n +5,D 点的坐标为D (n ,﹣n 2+4n +5), 则d=|﹣n 2+4n +5﹣(﹣n +5)|, 由题意可知:﹣n 2+4n +5>﹣n +5,∴d=﹣n 2+4n +5﹣(﹣n +5)=﹣n 2+5n=﹣(n ﹣)2+,∴当n=时,线段ND 长度的最大值是;(3)由题意可得二次函数的顶点坐标为H (2,9),点M 的坐标为M (4,5), 作点H (2,9)关于y 轴的对称点H 1,则点H 1的坐标为H 1(﹣2,9), 作点M (4,5)关于x 轴的对称点HM 1,则点M 1的坐标为M 1(4,﹣5), 连结H 1M 1分别交x 轴于点F ,y 轴于点E ,所以H 1M 1+HM 的长度是四边形HEFM 的最小周长,则点F 、E 即为所求, 设直线H 1M 1解析式为y=k 1x +b 1, 直线H 1M 1过点M 1(4,﹣5),H 1(﹣2,9),。
2016年贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.(3分)(2016•贵阳)下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣2.(3分)(2016•贵阳)空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣13.(3分)(2016•贵阳)如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°4.(3分)(2016•贵阳)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.5.(3分)(2016•贵阳)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.6.(3分)(2016•贵阳)2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差7.(3分)(2016•贵阳)如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.68.(3分)(2016•贵阳)小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm9.(3分)(2016•贵阳)星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s (km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.10.(3分)(2016•贵阳)若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<a<b<n B.a<m<n<b C.b<n<m<a D.n<b<a<m二、填空题:每小题4分,共20分11.(4分)(2016•贵阳)不等式组的解集为______.12.(4分)(2016•贵阳)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为______.13.(4分)(2016•贵阳)已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是______.14.(4分)(2016•贵阳)如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是______.15.(4分)(2016•贵阳)已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为______.三、解答题:本大题10小题,共100分.16.(8分)(2016•贵阳)先化简,再求值:﹣÷,其中a=.17.(10分)(2016•贵阳)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是______;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.(10分)(2016•贵阳)如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.19.(10分)(2016•贵阳)某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分 B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为______;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.20.(10分)(2016•贵阳)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?21.(8分)(2016•贵阳)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)22.(10分)(2016•贵阳)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.(10分)(2016•贵阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)24.(12分)(2016•贵阳)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是______;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.25.(12分)(2016•贵阳)如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.2016年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.(3分)(2016•贵阳)下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣【分析】根据两个互为相反数的数相加得0,即可得出答案.【解答】解:与﹣6的和为0的是﹣6的相反数6.故选A.2.(3分)(2016•贵阳)空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00129这个数用科学记数法可表示为1.29×10﹣3.故选:C.3.(3分)(2016•贵阳)如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°【分析】由平角的定义求出∠MBC的度数,再由平行线的性质得出∠2=∠MBC=52°即可.【解答】解:如图所示:∵AB⊥BC,∠1=38°,∴∠MBC=180°﹣90°﹣38°=52°,∵a∥b,∴∠2=∠MBC=52°;故选:B.4.(3分)(2016•贵阳)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.【分析】直接根据概率公式即可得出结论.【解答】解:∵共有200辆车,其中帕萨特60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率==.故选C.5.(3分)(2016•贵阳)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线,故选:C.6.(3分)(2016•贵阳)2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差【分析】由于有45名同学参加全省中小学生器乐交流比赛,要取前23名获奖,故应考虑中位数的大小.【解答】解:共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.我们把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖.故选:A.7.(3分)(2016•贵阳)如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.6【分析】根据DE∥BC,得到△ADE∽△ABC,得出对应边成比例,即可求DE的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∵BC=12,∴DE=BC=4.故选:B.8.(3分)(2016•贵阳)小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm【分析】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程进行即可解决问题.【解答】解:过点A作BC边上的垂线交BC于点D,过点B作AC边上的垂线交AD于点O,则O为圆心.设⊙O的半径为R,由等边三角形的性质知:∠OBC=30°,OB=R.∴BD=cos∠OBC×OB=R,BC=2BD=R.∵BC=12,∴R==4.故选B.9.(3分)(2016•贵阳)星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.10.(3分)(2016•贵阳)若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<a<b<n B.a<m<n<b C.b<n<m<a D.n<b<a<m【分析】利用图象法,画出抛物线y=(x﹣a)(x﹣b)与直线y=1,即可解决问题.【解答】解:如图抛物线y=(x﹣a)(x﹣b)与x轴交于点(a,0),(b,0),抛物线与直线y=1的交点为(n,1),(m,1),由图象可知,n<b<a<m.故选D.二、填空题:每小题4分,共20分11.(4分)(2016•贵阳)不等式组的解集为x<1.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x<2,故不等式组的解集为:x<1.故答案为:x<1.12.(4分)(2016•贵阳)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15.【分析】利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.【解答】解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.13.(4分)(2016•贵阳)已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b.【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.14.(4分)(2016•贵阳)如图,已知⊙6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.【分析】作OM⊥AB于M,由垂径定理得出AM=BM=AB=4cm,由勾股定理求出OM,再由三角函数的定义即可得出结果.【解答】解:作OM⊥AB于M,如图所示:则AM=BM=AB=4cm,∴OM===2(cm),∵PM=PB+BM=6cm,∴tan∠OPA===;故答案为:.15.(4分)(2016•贵阳)已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为x=4或x≥8.【分析】分析:过点B作BD⊥AC于点D,则△ABD是等腰直角三角形;再延长AD到E 点,使DE=AD,再分别讨论点C的位置即可.【解答】解:过B点作BD⊥AC于D点,则△ABD是等腰三角形;再延长AD到E,使DE=AD,①当点C和点D重合时,△ABC是等腰直角三角形,BC=4,这个三角形是唯一确定的;②当点C和点E重合时,△ABC也是等腰三角形,BC=8,这个三角形也是唯一确定的;③当点C在线段AE的延长线上时,即x大于BE,也就是x>8,这时,△ABC也是唯一确定的;综上所述,∠BAC=45°,AB=8,要使△ABC唯一确定,那么BC的长度x满足的条件是:x=4或x≥8三、解答题:本大题10小题,共100分.16.(8分)(2016•贵阳)先化简,再求值:﹣÷,其中a=.【分析】原式第二项利用除法法则变形,约分后两项利用同分母分式的减法法则计算得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当a=+1时,原式=.17.(10分)(2016•贵阳)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是0;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.【分析】(1)由于控制第二排灯的开关已坏,所以所有灯都亮起为不可能事件;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图展示所有12种等可能的结果数,再找出关掉第一排与第三排灯的结果数,然后根据概率公式求解.【解答】解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮,所以将4个开关都闭合时,所以教室里所有灯都亮起的概率是0;故答案为0;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率==.18.(10分)(2016•贵阳)如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.19.(10分)(2016•贵阳)某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分 B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为150;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【分析】(1)根据统计图可知,C等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A等级的学生数,B等级和D等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人),故答案为:150;(2)A等级的学生数是:150×20%=30,B等级占的百分比是:69÷150×100%=46%,D等级占的百分比是:15÷150×100%=10%,故补全的条形统计图和扇形统计图如右图所示,(3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.111120.(10分)(2016•贵阳)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买蓝球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买蓝球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.21.(8分)(2016•贵阳)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)【分析】首先过点D作DF⊥BC于点F,延长DE交AC于点M,进而表示出AM,DF的长,再利用AE=,求出答案.【解答】解:过点D作DF⊥BC于点F,延长DE交AC于点M,由题意可得:EM⊥AC,DF=MC,∠AEM=29°,在Rt△DFB中,sin80°=,则DF=BD•sin80°,AM=AC﹣CM=1790﹣1700•sin80°,在Rt△AME中,sin29°=,故AE==≈238.9(m),答:斜坡AE的长度约为238.9m.22.(10分)(2016•贵阳)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和抛物线的交点坐标即可.【解答】解:(1)∵反比例函数y=A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x+,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).23.(10分)(2016•贵阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)【分析】(1)由角平分线的基本作图即可得出结果;(2)由等腰三角形的性质和圆周角定理得出∠CAD=∠B,再由角平分线得出∠CAD=∠DAB=∠B,由圆周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,即可求出∠B的度数;(3)证出∠OEB=90°,在Rt△OEB中,求出OE=OB=2,由勾股定理求出BE,再由三角形的面积公式和扇形面积公式求出△OEB的面积=OE•BE=2,扇形BOD的面积═,所求图形的面积=扇形面积﹣△OEB的面积,即可得出结果.【解答】解:(1)如图1所示,AP即为所求的∠CAB的平分线;(2)如图2所示:∵AC=CD,∴∠CAD=∠ADC,又∵∠ADC=∠B,∴∠CAD=∠B,∵AD平分∠CAB,∴∠CAD=∠DAB=∠B,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90°,∴∠B=30°;(3)由(2)得:∠CAD=∠BAD,∠DAB=30°,又∵∠DOB=2∠DAB,∴∠BOD=60°,∴∠OEB=90°,在Rt△OEB中,OB=AB=4,∴OE=OB=2,∴BE===2,∴△OEB的面积=OE•BE=×2×2=2,扇形BOD的面积==,∴线段ED,BE,所围成区域的面积=﹣2.24.(12分)(2016•贵阳)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是2<AD<8;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.25.(12分)(2016•贵阳)如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【解答】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(﹣1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=﹣x2+4x+5;(2)如图1,∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=﹣x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=﹣x+5,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),则d=|﹣n2+4n+5﹣(﹣n+5)|,由题意可知:﹣n2+4n+5>﹣n+5,∴d=﹣n2+4n+5﹣(﹣n+5)=﹣n2+5n=﹣(n﹣)2+,∴当n=时,线段ND长度的最大值是;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(﹣2,9),作点M(4,5)关于x轴的对称点HM1,则点M1的坐标为M1(4,﹣5),。
2016年贵州省毕节地区中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.的算术平方根是()A.2 B.±2 C.D.2.2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为()A.89×103B.8.9×104C.8.9×103D.0.89×1053.下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.(a2)3=a5C.a3+4a=a3D.3a2•2a3=6a54.图中是一个少数名族手鼓的轮廓图,其主视图是()A.B.C.D.5.为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52 C.53 D.546.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点7.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间8.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85° B.60° C.50° D.35°9.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.10.如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.211.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形12.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100° B.72° C.64° D.36°13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.14.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.15.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.分解因式3m4﹣48=.17.若a2+5ab﹣b2=0,则的值为.18.掷两枚质地均匀的骰子,其点数之和大于10的概率为.19.在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD=.20.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为.三、解答题(本大题共7小题,各题分值见题号后,共80分,请解答在答题卡相应题号后,应写出必要的文字说明,证明过程或演算步骤)21.计算:.22.已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.23.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.24.为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x 100(1)本次决赛共有名学生参加;(2)直接写出表中a=,b=;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.26.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D 作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.27.如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.2016年贵州省毕节地区中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.的算术平方根是()A.2 B.±2 C.D.【考点】立方根;算术平方根.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.2.2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为()A.89×103B.8.9×104C.8.9×103D.0.89×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将89000用科学记数法表示为:8.9×104.故选:B.3.下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.(a2)3=a5C.a3+4a=a3D.3a2•2a3=6a5【考点】单项式乘单项式;合并同类项;去括号与添括号;幂的乘方与积的乘方.【分析】A、原式去括号得到结果,即可作出判断;B、原式利用幂的乘方运算法则计算得到结果,即可作出判断;C、原式不能合并,错误;D、原式利用单项式乘单项式法则计算得到结果,即可作出判断.【解答】解:A、原式=﹣2a﹣2b,错误;B、原式=a6,错误;C、原式不能合并,错误;D、原式=6a5,正确,故选D4.图中是一个少数名族手鼓的轮廓图,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】直接利用几何体的形状结合主视图的观察角度得出答案.【解答】解:由几何体可得:其主视图为:.故选:B.5.为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52 C.53 D.54【考点】众数.【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵数据中52和54均出现了2次,出现的次数最多,∴这组数据的众数是52和54,故选:A.6.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点【考点】线段垂直平分线的性质;角平分线的性质.【分析】根据线段的垂直平分线上的点到线段的两个端点的距离相等解答即可.【解答】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选:D.7.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【考点】估算无理数的大小.【分析】利用”夹逼法“得出的范围,继而也可得出的范围.【解答】解:∵2=<=3,∴3<<4,故选B.8.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85° B.60° C.50° D.35°【考点】平行线的性质.【分析】先利用三角形的外角定理求出∠4的度数,再利用平行线的性质得∠3=∠4=50°.【解答】解:在△ABC中,∵∠1=85°,∠2=35°,∴∠4=85°﹣35°=50°,∵a∥b,∴∠3=∠4=50°,故选C.9.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.【考点】二元一次方程的定义.【分析】利用二元一次方程的定义判断即可.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,故选A10.如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.2【考点】反比例函数系数k的几何意义.【分析】根据反比例函数系数k的几何意义:在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变,可计算出答案.【解答】解:△ABO的面积为:×|﹣4|=2,故选D.11.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形【考点】矩形的性质;全等三角形的判定;菱形的判定;轴对称图形.【分析】由菱形的判定方法得出选项A错误;由全等三角形的判定方法得出选项B错误;由矩形的性质得出选项C正确;由平行四边形的性质得出选项D错误;即可得出结论.【解答】解:∵对角线互相垂直的四边形不一定是菱形,∴选项A错误;∵有两边及一角对应相等的两个三角形不一定全等,∴选项B错误;∵矩形的对角线相等,∴选项C正确;∵平行四边形是中心对称图形,不一定是轴对称图形,∴选项D错误;故选:C.12.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100° B.72° C.64° D.36°【考点】圆周角定理.【分析】连接OA,根据等腰三角形的性质得到∠OAC=∠C=28°,根据等腰三角形的性质解答即可.【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=28°,∴∠OAB=64°,∵OA=OB,∴∠B=∠OAB=64°,故选:C.13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,根据:现在植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【解答】解:设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,根据题意,可列方程:=,故选:A.14.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,由直线可知,故本选项错误;B、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0故本选项错误.故选C.15.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【考点】正方形的性质;翻折变换(折叠问题).【分析】根据折叠的性质可得DH=EH,在直角△CEH中,若设CH=x,则DH=EH=9﹣x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:由题意设CH=xcm,则DH=EH=(9﹣x)cm,∵BE:EC=2:1,∴CE=BC=3cm∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4cm.故选(B)二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.分解因式3m4﹣48=3(m2+4)(m+2)(m﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再利用平方差公式把原式进行因式分解即可.【解答】解:3m4﹣48=3(m4﹣42)=3(m2+4)(m2﹣4)=3(m2+4)(m+2)(m﹣2).故答案为:3(m2+4)(m+2)(m﹣2).17.若a2+5ab﹣b2=0,则的值为5.【考点】分式的化简求值.【分析】先根据题意得出b2﹣a2=5ab,再由分式的减法法则把原式进行化简,进而可得出结论.【解答】解:∵a2+5ab﹣b2=0,∴﹣===5.故答案为:5.18.掷两枚质地均匀的骰子,其点数之和大于10的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其点数之和大于10的情况,再利用概率公式求解即可求得答案.种情况,而和大于的只有:(,),(,),(,)三种情况,∴点数之和大于10的概率为:.故答案为:.19.在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD=.【考点】相似三角形的判定与性质.【分析】证明△DCB≌△CAB,得=,由此即可解决问题.【解答】解:∵∠BCD=∠A,∠B=∠B,∴△DCB≌△CAB,∴=,∴=,∴BD=.故答案为.20.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为π﹣1.【考点】扇形面积的计算.【分析】如图,作辅助线;首先求出半圆O的面积,其次求出△ABP的面积;观察图形可以发现:阴影部分﹣S△ABP),求出值,即可解决问题.的面积=4(S半圆O【解答】解:如图,连接PA、PB、OP;==,S△ABP=AB•OP=×1×=,则S半圆O﹣S△ABP)由题意得:图中阴影部分的面积=4(S半圆O=4(﹣)=π﹣1,故答案为:π﹣1.三、解答题(本大题共7小题,各题分值见题号后,共80分,请解答在答题卡相应题号后,应写出必要的文字说明,证明过程或演算步骤)21.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.【解答】解:原式=1+﹣1﹣﹣2×+1=﹣﹣+1=1﹣.22.已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.【考点】分式的混合运算;一元一次不等式组的整数解.【分析】(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数x的值,代入计算即可求出A的值.【解答】解:(1)A=(x﹣3)•﹣1=﹣1==;(2),由①得:x<1,由②得:x>﹣1,∴不等式组的解集为﹣1<x<1,即整数x=0,则A=﹣.23.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【考点】一元二次方程的应用.【分析】(1)设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为8640×(1+0.2),再进行计算即可.【解答】解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x=0.2=20%,答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.24.为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x 100(1)本次决赛共有50名学生参加;(2)直接写出表中a=16,b=0.28;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48%.【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数,可以求得a、b的值;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【考点】旋转的性质;全等三角形的判定与性质;菱形的性质.【分析】(1)由旋转的性质得到三角形ABC与三角形ADE全等,以及AB=AC,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS得到三角形AEC与三角形ADB全等即可;(2)根据∠BAC=45°,四边形ADFC是菱形,得到∠DBA=∠BAC=45°,再由AB=AD,得到三角形ABD为等腰直角三角形,求出BD的长,由BD﹣DF求出BF的长即可.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.26.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D 作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.【考点】切线的判定.【分析】(1)由CD=CB,∠BCD=2∠ABD,可证得∠BCE=∠ABD,继而求得∠ABC=90°,则可证得AB是⊙O的切线;(2)由∠A=60°,DF=,可求得AF、BF的长,易证得△ADF∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵CD=CB,∴∠CBD=∠CDB,∵AB是⊙O的直径,∴∠CBE=90°,∴∠CBD+∠BCE=∠CDB+∠DCE,∴∠BCE=∠DCE,即∠BCD=2∠BCE,∵∠BCD=2∠ABD,∴∠ABD=∠BCE,∴∠CBD+∠ABD=∠CBD+∠BCE=90°,∴CB⊥AB,∵CB为直径,∴AB是⊙O的切线;(2)∵∠A=60°,DF=,∴在Rt△AFD中,AF===1,在Rt△BFD中,BF=DF•tan60°=×=3,∵DF⊥AB,CB⊥AB,∴DF∥BC,∴∠ADF=∠ACB,∵∠A=∠A,∴△ADF∽△ACB,∴=,∴=,∴CB=4.27.如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.【考点】二次函数综合题.【分析】(1)把A点坐标代入直线方程可求得a的值,再代入抛物线可求得b的值,可求得抛物线解析式;(2)联立抛物线和直线解析式可求得B点坐标,过A作AQ⊥x轴,交x轴于点Q,可知OC=AQ=4,可求得C点坐标,结合条件可知P点纵坐标,代入抛物线解析式可求得P点坐标,从而可求得PC的长;(3)根据矩形的性质可分别用m、n表示出C、P的坐标,根据DE=CP,可得到m、n的关系式.【解答】解:(1)∵A(a,8)是抛物线和直线的交点,∴A点在直线上,∴8=2a+4,解得a=2,∴A点坐标为(2,8),又A点在抛物线上,∴8=22+2b,解得b=2,∴抛物线解析式为y=x2+2x;(2)联立抛物线和直线解析式可得,解得,,∴B点坐标为(﹣2,0),如图,过A作AQ⊥x轴,交x轴于点Q,则AQ=8,OQ=OB=2,即O为BQ的中点,当C为AB中点时,则OC为△ABQ的中位线,即C点在y轴上,∴OC=AQ=4,∴C点坐标为(0,4),又PC∥x轴,∴P点纵坐标为4,∵P点在抛物线线上,∴4=x2+2x,解得x=﹣1﹣或x=﹣1,∵P点在A、B之间的抛物线上,∴x=﹣1﹣不合题意,舍去,∴P点坐标为(﹣1,4),∴PC=﹣1﹣0=﹣1;(3)∵D(m,n),且四边形PCDE为矩形,∴C点横坐标为m,E点纵坐标为n,∵C、E都在直线y=2x+4上,∴C(m,2m+4),E(,n),∵PC∥x轴,∴P点纵坐标为2m+4,∵P点在抛物线上,∴2m+4=x2+2x,整理可得2m+5=(x+1)2,解得x=﹣1或x=﹣﹣1(舍去),∴P点坐标为(﹣1,2m+4),∴DE=﹣m,CP=﹣1﹣m,∵四边形PCDE为矩形,∴DE=CP,即﹣m=﹣1﹣m,整理可得n2﹣4n﹣8m﹣16=0,即m、n之间的关系式为n2﹣4n﹣8m﹣16=0.2016年7月7日。
2016年贵州省毕节地区中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.的算术平方根是()A.2 B.±2 C.D.2.2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为()A.89×103B.8.9×104C.8.9×103D.0.89×1053.下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.(a2)3=a5C.a3+4a=a3D.3a2•2a3=6a54.图中是一个少数名族手鼓的轮廓图,其主视图是()A.B.C.D.5.为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52 C.53 D.546.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点7.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间8.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85°B.60°C.50°D.35°9.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.10.如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.211.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形12.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100°B.72°C.64°D.36°13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.14.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.15.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.分解因式3m4﹣48= .17.若a2+5ab﹣b2=0,则的值为.18.掷两枚质地均匀的骰子,其点数之和大于10的概率为.19.在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD= .20.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为.三、解答题(本大题共7小题,各题分值见题号后,共80分,请解答在答题卡相应题号后,应写出必要的文字说明,证明过程或演算步骤)21.计算:.22.已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.23.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.24.为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a= ,b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.26.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.27.如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.2016年贵州省毕节地区中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.的算术平方根是()A.2 B.±2 C.D.【考点】立方根;算术平方根.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.2.2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为()A.89×103B.8.9×104C.8.9×103D.0.89×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将89000用科学记数法表示为:8.9×104.故选:B.3.下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.(a2)3=a5C.a3+4a=a3D.3a2•2a3=6a5【考点】单项式乘单项式;合并同类项;去括号与添括号;幂的乘方与积的乘方.【分析】A、原式去括号得到结果,即可作出判断;B、原式利用幂的乘方运算法则计算得到结果,即可作出判断;C、原式不能合并,错误;D、原式利用单项式乘单项式法则计算得到结果,即可作出判断.【解答】解:A、原式=﹣2a﹣2b,错误;B、原式=a6,错误;C、原式不能合并,错误;D、原式=6a5,正确,故选D4.图中是一个少数名族手鼓的轮廓图,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】直接利用几何体的形状结合主视图的观察角度得出答案.【解答】解:由几何体可得:其主视图为:.故选:B.5.为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52 C.53 D.54【考点】众数.【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵数据中52和54均出现了2次,出现的次数最多,∴这组数据的众数是52和54,故选:A.6.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点【考点】线段垂直平分线的性质;角平分线的性质.【分析】根据线段的垂直平分线上的点到线段的两个端点的距离相等解答即可.【解答】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选:D.7.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【考点】估算无理数的大小.【分析】利用”夹逼法“得出的范围,继而也可得出的范围.【解答】解:∵2=<=3,∴3<<4,故选B.8.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85°B.60°C.50°D.35°【考点】平行线的性质.【分析】先利用三角形的外角定理求出∠4的度数,再利用平行线的性质得∠3=∠4=50°.【解答】解:在△ABC中,∵∠1=85°,∠2=35°,∴∠4=85°﹣35°=50°,∵a∥b,∴∠3=∠4=50°,故选C.9.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.【考点】二元一次方程的定义.【分析】利用二元一次方程的定义判断即可.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,故选A10.如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.2【考点】反比例函数系数k的几何意义.【分析】根据反比例函数系数k的几何意义:在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变,可计算出答案.【解答】解:△ABO的面积为:×|﹣4|=2,故选D.11.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形【考点】矩形的性质;全等三角形的判定;菱形的判定;轴对称图形.【分析】由菱形的判定方法得出选项A错误;由全等三角形的判定方法得出选项B错误;由矩形的性质得出选项C正确;由平行四边形的性质得出选项D错误;即可得出结论.【解答】解:∵对角线互相垂直的四边形不一定是菱形,∴选项A错误;∵有两边及一角对应相等的两个三角形不一定全等,∴选项B错误;∵矩形的对角线相等,∴选项C正确;∵平行四边形是中心对称图形,不一定是轴对称图形,∴选项D错误;故选:C.12.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100°B.72°C.64°D.36°【考点】圆周角定理.【分析】连接OA,根据等腰三角形的性质得到∠OAC=∠C=28°,根据等腰三角形的性质解答即可.【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=28°,∴∠OAB=64°,∵OA=OB,∴∠B=∠OAB=64°,故选:C.13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,根据:现在植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【解答】解:设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,根据题意,可列方程:=,故选:A.14.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c 的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,由直线可知,故本选项错误;B、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0故本选项错误.故选C.15.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【考点】正方形的性质;翻折变换(折叠问题).【分析】根据折叠的性质可得DH=EH,在直角△CEH中,若设CH=x,则DH=EH=9﹣x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:由题意设CH=xcm,则DH=EH=(9﹣x)cm,∵BE:EC=2:1,∴CE=BC=3cm∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4cm.故选(B)二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.分解因式3m4﹣48= 3(m2+4)(m+2)(m﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再利用平方差公式把原式进行因式分解即可.【解答】解:3m4﹣48=3(m4﹣42)=3(m2+4)(m2﹣4)=3(m2+4)(m+2)(m﹣2).故答案为:3(m2+4)(m+2)(m﹣2).17.若a2+5ab﹣b2=0,则的值为 5 .【考点】分式的化简求值.【分析】先根据题意得出b2﹣a2=5ab,再由分式的减法法则把原式进行化简,进而可得出结论.【解答】解:∵a2+5ab﹣b2=0,∴﹣===5.故答案为:5.18.掷两枚质地均匀的骰子,其点数之和大于10的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其点数之和大于10的情况,再利用概率公式求解即可求得答案.【解答】解:列表如下:∵两次抛掷骰子总共有36种情况,而和大于10的只有:(5,6),(6,5),(6,6)三种情况,∴点数之和大于10的概率为:.故答案为:.19.在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD= .【考点】相似三角形的判定与性质.【分析】证明△DCB≌△CAB,得=,由此即可解决问题.【解答】解:∵∠BCD=∠A,∠B=∠B,∴△DCB≌△CAB,∴=,∴=,∴BD=.故答案为.20.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为π﹣1 .【考点】扇形面积的计算.【分析】如图,作辅助线;首先求出半圆O的面积,其次求出△ABP的面积;观察图形可以发现:阴影部分的面积=4(S半圆O﹣S△ABP),求出值,即可解决问题.【解答】解:如图,连接PA、PB、OP;则S半圆O==,S△ABP=AB•OP=×1×=,由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)=4(﹣)=π﹣1,故答案为:π﹣1.三、解答题(本大题共7小题,各题分值见题号后,共80分,请解答在答题卡相应题号后,应写出必要的文字说明,证明过程或演算步骤)21.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.【解答】解:原式=1+﹣1﹣﹣2×+1=﹣﹣+1=1﹣.22.已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.【考点】分式的混合运算;一元一次不等式组的整数解.【分析】(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数x的值,代入计算即可求出A的值.【解答】解:(1)A=(x﹣3)•﹣1=﹣1==;(2),由①得:x<1,由②得:x>﹣1,∴不等式组的解集为﹣1<x<1,即整数x=0,则A=﹣.23.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【考点】一元二次方程的应用.【分析】(1)设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为8640×(1+0.2),再进行计算即可.【解答】解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x=0.2=20%,答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.24.为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)本次决赛共有50 名学生参加;(2)直接写出表中a= 16 ,b= 0.28 ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48% .【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数,可以求得a、b的值;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【考点】旋转的性质;全等三角形的判定与性质;菱形的性质.【分析】(1)由旋转的性质得到三角形ABC与三角形ADE全等,以及AB=AC,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS得到三角形AEC 与三角形ADB全等即可;(2)根据∠BAC=45°,四边形ADFC是菱形,得到∠DBA=∠BAC=45°,再由AB=AD,得到三角形ABD为等腰直角三角形,求出BD的长,由BD﹣DF求出BF的长即可.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.26.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.【考点】切线的判定.【分析】(1)由CD=CB,∠BCD=2∠ABD,可证得∠BCE=∠ABD,继而求得∠ABC=90°,则可证得AB是⊙O的切线;(2)由∠A=60°,DF=,可求得AF、BF的长,易证得△ADF∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵CD=CB,∴∠CBD=∠CDB,∵AB是⊙O的直径,∴∠CBE=90°,∴∠CBD+∠BCE=∠CDB+∠DCE,∴∠BCE=∠DCE,即∠BCD=2∠BCE,∵∠BCD=2∠ABD,∴∠ABD=∠BCE,∴∠CBD+∠ABD=∠CBD+∠BCE=90°,∴CB⊥AB,∵CB为直径,∴AB是⊙O的切线;(2)∵∠A=60°,DF=,∴在Rt△AFD中,AF===1,在Rt△BFD中,BF=DF•tan60°=×=3,∵DF⊥AB,CB⊥AB,∴DF∥BC,∴∠ADF=∠ACB,∵∠A=∠A,∴△ADF∽△ACB,∴=,∴=,∴CB=4.27.如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.【考点】二次函数综合题.【分析】(1)把A点坐标代入直线方程可求得a的值,再代入抛物线可求得b的值,可求得抛物线解析式;(2)联立抛物线和直线解析式可求得B点坐标,过A作AQ⊥x轴,交x轴于点Q,可知OC=AQ=4,可求得C点坐标,结合条件可知P点纵坐标,代入抛物线解析式可求得P 点坐标,从而可求得PC的长;(3)根据矩形的性质可分别用m、n表示出C、P的坐标,根据DE=CP,可得到m、n的关系式.【解答】解:(1)∵A(a,8)是抛物线和直线的交点,∴A点在直线上,∴8=2a+4,解得a=2,∴A点坐标为(2,8),又A点在抛物线上,∴8=22+2b,解得b=2,∴抛物线解析式为y=x2+2x;(2)联立抛物线和直线解析式可得,解得,,∴B点坐标为(﹣2,0),如图,过A作AQ⊥x轴,交x轴于点Q,则AQ=8,OQ=OB=2,即O为BQ的中点,当C为AB中点时,则OC为△ABQ的中位线,即C点在y轴上,∴OC=AQ=4,∴C点坐标为(0,4),又PC∥x轴,∴P点纵坐标为4,∵P点在抛物线线上,∴4=x2+2x,解得x=﹣1﹣或x=﹣1,∵P点在A、B之间的抛物线上,∴x=﹣1﹣不合题意,舍去,∴P点坐标为(﹣1,4),∴PC=﹣1﹣0=﹣1;(3)∵D(m,n),且四边形PCDE为矩形,∴C点横坐标为m,E点纵坐标为n,∵C、E都在直线y=2x+4上,∴C(m,2m+4),E(,n),∵PC∥x轴,∴P点纵坐标为2m+4,∵P点在抛物线上,∴2m+4=x2+2x,整理可得2m+5=(x+1)2,解得x=﹣1或x=﹣﹣1(舍去),∴P点坐标为(﹣1,2m+4),∴DE=﹣m,CP=﹣1﹣m,∵四边形PCDE为矩形,∴DE=CP,即﹣m=﹣1﹣m,整理可得n2﹣4n﹣8m﹣16=0,即m、n之间的关系式为n2﹣4n﹣8m﹣16=0.2016年7月7日。
2016年贵州省贵阳市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.下面的数,与-6的和为0的数是( )A .6B .-6C .61D .-61 2.空气的密度为0.001 29g/cm 3,0.001 29这个数用科学记数法可表示为( )A .0.129×10﹣2B .1.29×10﹣2C .1.29×10﹣3D .12.9×10﹣1 3.如图,直线a ∥b ,点B 在直线a 上,AB ⊥BC ,若∠1=38°,则∠2的度数为( )(第3题图)A .38°B .52°C .76°D .142°4.2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A .101B .51C .103D .52 5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是( )(第5题图)A B C D6.2016年6月4日~5日贵州省第九届“贵青杯”——“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的( )A .中位数B .平均数C .最高分D .方差7.如图,在△ABC 中,DE ∥BC ,31=AB AD ,BC =12,则DE 的长是( )(第7题图)A .3B .4C .5D .68.小颖同学在手工制作中,把一个边长为12 cm 的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为( )A .23cmB .43cmC .63cmD .83cm9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60 min 后回家,图中的折线段OA -AB -BC 是她出发后所在位置离家的距离s (km )与行走时间t (min )之间的函数关系,则下列图形可以大致描述蕊蕊妈妈行走的路线是( )(第9题图)A B C D10.若m ,n (n <m )是关于x 的一元二次方程1-(x -a )(x -b )=0的两个根,且b <a ,则m ,n ,b ,a 的大小关系是( )A .m <a <b <nB .a <m <n <bC .b <n <m <aD .n <b <a <m二、填空题(本题共5小题,每小题4分,共20分)11.不等式组⎩⎨⎧<<-84123x x ,的解集为 .12.现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数为 . 13.若点M (1,a )和点N (2,b )是一次函数y =-2x +1图像上的两点,则a 与b 的大小关系是 .14.如图,若⊙O 的半径为6 cm ,弦AB 的长为8 cm ,P 是AB 延长线上一点,BP =2 cm ,则tan ∠OP A 的值是 .(第14题图) 15.已知△ABC ,∠BAC =45°,AB =8,要使满足条件的△ABC 唯一确定,那么BC 边长度x 的取值范围为 .三、解答题(本题共10小题,共100分)16.(8分)先化简,再求值:11121122-+÷+-+--a a a a a a ,其中a =2+1. 17.(10分)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是 .(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.(10分)如图,点E 是正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF =90°,连接CE ,CF .(1)求证:△ABF ≌△CBE .(2)判断△CEF 的形状,并说明理由.(第18题图) 19.(10分)某校为了了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分~150分,B等级:120分~135分,C等级:90分~120分,D等级:0分~90分)(1)此次抽查的学生人数为.(2)把条形统计图和扇形统计图补充完整.(3)若该校九年级有学生1 200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.(第19题图)20.(10分)为了加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价分别是多少元.(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1 550元,学校最多可以购买多少个足球?21.(8分)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1 790 m.如图,DE∥BC,BD=1 700 m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1 m)(第21题图)k 22.(10分)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=x (x>0)的图像经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).求:(1)反比例函数的表达式;(2)点F的坐标.(第22题图)23.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,BD所围成区域的面积.(其中BD表示劣弧,结果保留π和根号)(第23题图)24.(12分)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D 逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是.(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC 于点F,连接EF,求证:BE+CF>EF.(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.(第24题图)25.(12分)如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图像交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图像于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图像的顶点,点M(4,m)是该二次函数图像上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1-x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1-y2|求出.(第25题图)参考答案一、1.A 【分析】6与-6的和为0.故选A.2.C 【分析】0.001 29这个数用科学记数法可表示为1.29×10﹣3.故选C .3.B 【分析】如答图,∵AB ⊥BC ,∠1=38°,∴∠MBC =180°-90°-38°=52°.∵a ∥b , ∴∠2=∠MBC =52°.故选B .(第3题答图) 4.C 【分析】∵共有200辆车,其中帕萨特有60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率为20060=103.故选C . 5.C 【分析】从上面看时,圆柱是一个矩形,中间的木棒是虚线.故选C .6.A 【分析】共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖.故选A .7.B 【分析】∵DE ∥BC ,∴△ADE ∽△ABC ,∴AB AD BC DE =31.∵BC =12,∴DE =31BC =4. 故选B .8.B 【分析】如答图,过点A 作BC 边上的垂线交BC 于点D ,过点B 作AC 边上的垂线交AD 于点O ,则O 为圆心.设⊙O 的半径为R ,由等边三角形的性质知,∠OBC =30°,OB =R .∴BD =cos ∠OBC • OB =23R ,∴BC =2BD =3R .∵BC =12 cm ,∴R =312=43(cm ).故选B .(第8题答图)9.B 【分析】由s 关于t 的函数图像可知,在图像AB 段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,所以可以大致描述蕊蕊妈妈行走的路线是B .故 选B .10.D 【分析】如答图,抛物线y =(x -a )(x -b )与x 轴交于点(a ,0),(b ,0),抛物线与直线y =1的交点为(n ,1),(m ,1).由图像可知,n <b <a <m .故选D .(第10题答图)二、11.x <1 【分析】⎩⎨⎧<<-②.84①123x x , 由①,得x <1.由②,得x <2.故不等式组的解集为x <1. 12.15 【分析】因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3, 所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数为0.3×50=15.所以估计这些卡片中绘有孙悟空这个人物的卡片张数为15张.13.a >b 【分析】∵在一次函数y =-2x +1中,k =-2,∴该函数中y 随着x 的增大而减小. ∵1<2,∴a >b .14.35 【分析】如答图,过点O 作OM ⊥AB 于点M ,则AM =BM =21AB =4(cm ),∴OM = AM OA 22-=4622-=25(cm ).∵PM =PB +BM =6(cm ),∴tan ∠OP A =PM OM =652=35.(第14题答图)15.x =42或x ≥8 【分析】如答图,过点B 作BD ⊥AC 于点D ,则△ABD 是等腰三角形;再延长AD 到点E ,使DE =AD .①当点C 和点D 重合时,△ABC 是等腰直角三角形,BC = 42,这个三角形是唯一确定的;②当点C 和点E 重合时,△ABC 也是等腰三角形,BC =8,这个三角形也是唯一确定的;③当点C 在线段AE 的延长线上时,即x 大于BE ,也就是x >8,这时,△ABC 也是唯一确定的.综上所述,∠BAC =45°,AB =8,要使△ABC 唯一确定,那么BC 的长度x 满足的条件是x =42或x ≥8.(第15题答图)三、16.解:原式=11)1(1122+--+--•a a a a a =1112---a a =11-a . 当a =2+1时,原式=22. 17.解:(1)0. 因为控制第二排灯的开关已坏,闭合开关时灯也不亮,所以将4个开关都闭合时,教室里所有灯都亮起的概率是0.(2)用1,2,3,4分别表示第一排、第二排、第三排和第四排灯,画树状图如答图:(第17题答图) 共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率为122=61. 18.(1)证明:∵四边形ABCD 是正方形,∴AB =CB ,∠ABC =90°.∵△EBF 是等腰直角三角形,∠EBF =90°,∴BE =BF ,∴∠ABC -∠CBF =∠EBF -∠CBF ,∴∠ABF =∠CBE .在△ABF 和△CBE 中,⎪⎩⎪⎨⎧=∠=∠=,,,BE BF CBE ABF CB AB∴△ABF ≌△CBE (SAS ).(2)解:△CEF 是直角三角形.理由如下:∵△EBF 是等腰直角三角形,∴∠BFE =∠FEB =45°,∴∠AFB =180° -∠BFE =135°.又∵△ABF ≌△CBE ,∴∠CEB =∠AFB =135°,∴∠CEF =∠CEB -∠FEB =135° -45°=90°,∴△CEF 是直角三角形.19.解:(1)150.由题意可知,此次抽查的学生有36÷24%=150(人).(2)A 等级的学生人数是150×20%=30,B 等级所占的百分比是69÷150×100%=46%,D 等级所占的百分比是15÷150×100%=10%,故补全的条形统计图和扇形统计图如答图.(第19题答图)(3)1 200×(46%+20%)=792(人),答:估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.20.解:(1)设一个足球的单价为x 元,一个篮球的单价为y 元.根据题意,得⎩⎨⎧-==+,,92159y x y x 解得⎩⎨⎧==.56103y x , 答:一个足球的单价为103元,一个篮球的单价为56元.(2)设可购买足球m 个,则购买篮球(20 -m )个.根据题意,得103m +56(20 -m )≤1 550,解得m ≤9477. ∵m 为整数,∴m 最大取9.答:学校最多可以购买9个足球.21.解:如答图,过点D 作DF ⊥BC 于点F ,延长DE 交AC 于点M .由题意可知,EM ⊥AC ,DF =MC ,∠AEM =29°.在Rt △DFB 中,因为sin 80°=BDDF ,所以DF =BD • sin 80°. 所以AM =AC -CM =1 790 -1 700 • sin 80°.在Rt △AME 中,sin 29°=AE AM , 故AE =︒29sin AM =︒︒⨯-29sin 80sin 17001790≈238.9(m ). 答:斜坡AE 的长度约为238.9 m .(第21题答图)22.解:(1)∵反比例函数y =xk 的图像经过点A ,点A 的坐标为(4,2), ∴k =2×4=8,∴反比例函数的表达式为y =x 8. (2)如答图,过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N .由题意可知,CN =2AM =4,ON =2OM =8,∴点C 的坐标为(8,4).设OB =x ,则BC =x ,BN =8-x .在Rt △CNB 中,x 2 -(8 -x )2=42,解得x =5.∴点B 的坐标为(5,0).设直线BC 的函数表达式为y =ax +b .∵直线BC 过点B (5,0),C (8,4),∴⎩⎨⎧=+=+,,4805b a b a 解得⎪⎩⎪⎨⎧-==.32034b a , ∴直线BC 的函数表达式为y =34x -320. 根据题意,得方程组⎪⎩⎪⎨⎧=-=,,x y x y 832034解得⎩⎨⎧-=-=81y x ,或⎪⎩⎪⎨⎧==.346y x , ∵点F 在第一象限,∴点F 的坐标为(6,34).(第22题答图)23.解:(1)如答图①,AP 即为所求的∠CAB 的平分线.(2)如答图②.∵AC =CD ,∴∠CAD =∠ADC .又∵∠ADC =∠B ,∴∠CAD =∠B .∵AD 平分∠CAB ,∴∠CAD =∠DAB =∠B .∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAB +∠B =90°,∴3∠B =90°,∴∠B =30°.(3)由(2)知,∠CAD =∠BAD ,∠DAB =30°.又∵∠DOB =2∠DAB ,∴∠BOD =60°,∴∠OEB =90°.在Rt △OEB 中,OB =21AB =4,∴OE =21OB =2, ∴BE =OE OB 22-=2422-=23.∴△OEB 的面积为21OE • BE =21×2×23=23,扇形BOD 的面积为3604π602⨯=3π8. ∴线段ED ,BE ,BD 所围成区域的面积为3π8-23.① ②(第23题答图) 24.(1)2<AD <8.如答图①,延长AD 至点E ,使DE =AD ,连接BE .∵AD 是BC 边上的中线,∴BD =CD .在△BDE 和△CDA 中,⎪⎩⎪⎨⎧=∠=∠=,,,AD DE CDA BDE CD BD∴△BDE ≌△CDA (SAS ),∴BE =AC =6.在△ABE 中,由三角形的三边关系,得AB -BE <AE <AB +BE ,∴10-6<AE <10+6,即4<AE <16,∴2<AD <8.(2)证明:如答图②,延长FD 至点M ,使DM =DF ,连接BM ,EM .同(1)知,△BMD ≌△CFD (SAS ),∴BM =CF .∵DE ⊥DF ,DM =DF ,∴EM =EF .在△BME 中,由三角形的三边关系,得BE +BM >EM ,∴BE +CF >EF .(3)解:BE +DF =EF .理由如下:如答图③,延长AB 至点N ,使BN =DF ,连接CN .∵∠ABC +∠D =180°,∠NBC +∠ABC =180°,∴∠NBC =∠D .在△NBC 和△FDC 中,⎪⎩⎪⎨⎧=∠=∠=,,,DC BC D NBC DF BN∴△NBC ≌△FDC (SAS ),∴CN =CF ,∠NCB =∠FCD .∵∠BCD =140°,∠ECF =70°,∴∠BCE +∠FCD =70°,∴∠ECN =70°=∠ECF .在△NCE 和△FCE 中,⎪⎩⎪⎨⎧=∠=∠=,,,CE CE ECF ECN CF CN∴△NCE ≌△FCE (SAS ),∴EN =EF .∵BE +BN =EN ,∴BE +DF =EF .① ② ③(第24题答图)25.解:(1)∵直线y =5x +5交x 轴于点A ,交y 轴于点C ,∴A (-1,0),C (0,5).∵二次函数y =ax 2+4x +c 的图像过A ,C 两点,∴⎩⎨⎧=+-=,,540c c a 解得⎩⎨⎧=-=.51c a , ∴二次函数的表达式为y =-x 2+4x +5.(2)∵点B 是二次函数的图像与x 轴的交点,∴由二次函数的表达式为y =-x 2+4x +5,得点B 的坐标为(5,0).设直线BC 的表达式为y =kx +b .∵直线BC 过点B (5,0),C (0,5),∴⎩⎨⎧==+,,505b b k 解得⎩⎨⎧=-=.51b k , ∴直线BC 的表达式为y =-x +5.设ND 的长为d ,N 点的横坐标为n ,则N 点的纵坐标为-n +5,D 点的坐标为(n ,-n 2+4n +5).∴d =|-n 2+4n +5-(-n +5)|.由题意可知,-n 2+4n +5>-n +5,∴d =-n 2+4n +5-(-n +5)=-n 2+5n =-(n -25)2+425, ∴当n =25时,线段ND 长度的最大值是425. (3)由题意可知,二次函数的顶点坐标为H (2,9),点M 的坐标为(4,5). 如答图,作点H (2,9)关于y 轴的对称点H 1,则点H 1的坐标为(-2,9),作点M (4,5)关于x 轴的对称点M 1,则点M 1的坐标为(4,-5).连接H 1M 1分别交x 轴于点F ,y 轴于点E ,则H 1M 1+HM 的长度是四边形HEFM 的最小周长,则点F ,E 即为所求.设直线H 1M 1的表达式为y =k 1x +b 1.∵直线H 1M 1过点M 1(4,-5),H 1(-2,9),∴⎩⎨⎧+-=+=-,,b k b k 11112945 解得⎪⎩⎪⎨⎧=-=.3133711b k , ∴直线H 1M 1的表达式为y =-37x +313. ∴点F ,E 的坐标分别为(713,0)(0,313).(第25题答图)。
2016年贵州省毕节地区中考数学试卷及解析答案2016年贵州省毕节地区中考数学试卷一、选择题1.求(-2)²的算术平方根。
A。
2 B。
±2 C。
D.答案:22.XXX在贵阳举行,参加此次大会的人数约有人,将用科学记数法表示为:A。
89×10³ B。
8.9×10⁴ C。
8.9×10³ D。
0.89×10⁵答案:8.9×10⁴3.下列运算正确的是:A。
-2(a+b)=-2a+2b B。
(a²)³=a⁵ C。
a³+4a=a³ D。
3a²•2a³=6a⁵答案:-2(a+b)=-2a-2b4.下面是一个手鼓的轮廓图,请问它的主视图是哪个?A。
B。
C。
D.答案:B5.某校七年级8个班的班额人数抽查数据统计如下:52,49,56,54,52,51,55,54.这四组数据的众数是:A。
52和54 B。
52 C。
53 D。
54答案:546.到三角形三个顶点的距离都相等的点是这个三角形的:A。
三条高的交点 B。
三条角平分线的交点 C。
三条中线的交点 D。
三条边的垂直平分线的交点答案:三条角平分线的交点7.估计的值在2到3之间,3到4之间,4到5之间还是5到6之间?A。
2到3之间 B。
3到4之间 C。
4到5之间 D。
5到6之间答案:3到4之间8.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=:A。
85° B。
60° C。
50° D。
35°答案:50°9.已知关于x,y的方程x²m-n-2+4ym+n+1=6是二元一次方程,则m,n的值为:A。
m=1,n=-1 B。
m=-1,n=1 C。
D.答案:m=1,n=-110.如图,点A为反比例函数,△ABO的面积为:图象上一点,过A作AB⊥x轴于点B,连接OA,则A。
2016年贵州省毕节地区中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.(3分)的算术平方根是()A.2 B.±2 2 C C.D.2.(3分)2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为()A.89×103 B.8.9×104C.8.9×103D.0.89×1053.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.(a2)3=a5C.a3+4a=a3D.3a2•2a3=6a5 4.(3分)图中是一个少数名族手鼓的轮廓图,其主视图是()A.B.C.D.5.(3分)为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52 C.53 D.546.(3分)到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点 D.三条边的垂直平分线的交点7.(3分)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间8.(3分)如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A .85°B .60°C .50°D .35° 9.(3分)已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为(值为( )A .m=1,n=﹣1 B .m=﹣1,n=1 C .D .10.(3分)如图,点A 为反比例函数图象上一点,过A 作AB ⊥x 轴于点B ,连接OA ,则△ABO 的面积为(的面积为( )A .﹣4 4 B B .4 C .﹣2 2 D D .211.(3分)下列语句正确的是(分)下列语句正确的是( ) A .对角线互相垂直的四边形是菱形B .有两边及一角对应相等的两个三角形全等C .矩形的对角线相等D .平行四边形是轴对称图形12.(3分)如图,点A ,B ,C 在⊙O 上,∠A=36°,∠C=28°,则∠B=( )A .100°B .72°C .64°D .36°13.(3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x 棵,则列出的方程为(棵,则列出的方程为( ) A .B .C .D .14.(3分)一次函数y=ax +c (a ≠0)与二次函数y=ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是(直角坐标系中的图象可能是( )A.B.C.D.15.(3分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC的长是( )边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是(A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.(5分)分解因式3m4﹣48=.17.(5分)若a2+5ab﹣b2=0,则的值为的值为 .18.(5分)掷两枚质地均匀的骰子,其点数之和大于10的概率为的概率为 .19.(5分)在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD=.20.(5分)如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为 .影部分的面积为三、解答题(本大题共7小题,各题分值见题号后,共80分,请解答在答题卡相应题号后,应写出必要的文字说明,证明过程或演算步骤)21.(8分)计算:(π﹣3.14)0+|﹣1|﹣()﹣1﹣2sin45°+(﹣1)2016.22.(8分)已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.23.(10分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.24.(12分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<6020.04二60≤x<70100.2三70≤x<8014b四80≤x<90a0.32五90≤x<10080.16请根据表格提供的信息,解答以下问题:)本次决赛共有 名学生参加;(1)本次决赛共有(2)直接写出表中a=,b=;(3)请补全下面相应的频数分布直方图;分为优秀,则本次大赛的优秀率为 .(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为25.(12分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.26.(14分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.27.(16分)如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.2016年贵州省毕节地区中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.(3分)的算术平方根是(的算术平方根是( )A.2 B.±2 2 C C.D.【解答】解:=2,2的算术平方根是.故选:C.2.(3分)2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为(用科学记数法表示为( )A.89×103 B.8.9×104C.8.9×103D.0.89×105【解答】解:将89000用科学记数法表示为:8.9×104.故选:B.3.(3分)下列运算正确的是(分)下列运算正确的是( )A.﹣2(a+b)=﹣2a+2b B.(a2)3=a5C.a3+4a=a3D.3a2•2a3=6a5【解答】解:A、原式=﹣2a﹣2b,错误;B、原式=a6,错误;C、原式不能合并,错误;D、原式=6a5,正确,故选D4.(3分)图中是一个少数名族手鼓的轮廓图,其主视图是(分)图中是一个少数名族手鼓的轮廓图,其主视图是( )A.B.C.D.【解答】解:由几何体可得:其主视图为:.故选:B.5.(3分)为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是( )众数是(A.52和54 B.52 C.53 D.54【解答】解:∵数据中52和54均出现了2次,出现的次数最多,∴这组数据的众数是52和54,故选:A.6.(3分)到三角形三个顶点的距离都相等的点是这个三角形的(分)到三角形三个顶点的距离都相等的点是这个三角形的( )A.三条高的交点.三条高的交点 B.三条角平分线的交点C.三条中线的交点 D.三条边的垂直平分线的交点【解答】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选:D.7.(3分)估计的值在(的值在( )A.2到3之间之间 C.4到5之间之间 D.5到6之间之间 B.3到4之间【解答】解:∵2=<=3,∴3<<4,故选B.8.(3分)如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A .85°B .60°C .50°D .35° 【解答】解:在△ABC 中, ∵∠1=85°,∠2=35°, ∴∠4=85°﹣35°35°=50°=50°, ∵a ∥b , ∴∠3=∠4=50°, 故选C .9.(3分)已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为(值为( )A .m=1,n=﹣1 B .m=﹣1,n=1 C .D .【解答】解:∵方程x2m ﹣n ﹣2+4ym +n +1=6是二元一次方程,∴, 解得:,故选A10.(3分)如图,点A 为反比例函数图象上一点,过A 作AB ⊥x 轴于点B ,连接OA ,则△ABO 的面积为(的面积为( )A .﹣4 4 B B .4 C .﹣2 2 D D .2【解答】解:△ABO 的面积为:×|﹣4|=2,故选D.11.(3分)下列语句正确的是(分)下列语句正确的是( )A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形【解答】解:∵对角线互相垂直的四边形不一定是菱形,∴选项A错误;∵有两边及一角对应相等的两个三角形不一定全等,∴选项B错误;∵矩形的对角线相等,∴选项C正确;∵平行四边形是中心对称图形,不一定是轴对称图形,∴选项D错误;故选:C.12.(3分)如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100°B.72°C.64°D.36°【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=28°,∴∠OAB=64°,∵OA=OB,∴∠B=∠OAB=64°,故选:C.13.(3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x 棵,则列出的方程为(棵,则列出的方程为( )A .B .C .D . 【解答】解:设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵, 根据题意,可列方程:=,故选:A .14.(3分)一次函数y=ax +c (a ≠0)与二次函数y=ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是(直角坐标系中的图象可能是( )A .B .C .D .【解答】解:A 、一次函数y=ax +c 与y 轴交点应为(0,c ),二次函数y=ax 2+bx +c 与y 轴交点也应为(0,c ),图象不符合,故本选项错误;B 、由抛物线可知,a >0,由直线可知,a <0,a 的取值矛盾,故本选项错误;C 、由抛物线可知,a <0,由直线可知,a >0,a 的取值矛盾,故本选项错误;D 、由抛物线可知,a <0,由直线可知,a <0,且抛物线与直线与y 轴的交点相同,故本选项正确. 故选D .15.(3分)如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE :EC=2:1,则线段CH 的长是(的长是( )A .3 B .4 C .5 D .6【解答】解:设CH=x ,则DH=EH=9﹣x , ∵BE :EC=2:1,BC=9, ∴CE=BC=3,∴在Rt △ECH 中,EH 2=EC 2+CH 2, 即(9﹣x )2=32+x 2, 解得:x=4, 即CH=4. 故选(B ).二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.(5分)分解因式3m 4﹣48= 3(m 2+4)(m +2)(m ﹣2) . 【解答】解:3m 4﹣48=3(m 4﹣42) =3(m 2+4)(m 2﹣4) =3(m 2+4)(m +2)(m ﹣2). 故答案为:3(m 2+4)(m +2)(m ﹣2).17.(5分)若a 2+5ab ﹣b 2=0,则的值为的值为 5 .【解答】解:∵a 2+5ab ﹣b 2=0,∴b 2﹣a2=5ab,∴﹣===5.故答案为:5.18.(5分)掷两枚质地均匀的骰子,其点数之和大于10的概率为的概率为 .【解答】解:列表如下:123456123456723456783456789456789105678910116789101112∵两次抛掷骰子总共有36种情况,而和大于10的只有:(5,6),(6,5),(6,6)三种情况,∴点数之和大于10的概率为:.故答案为:.19.(5分)在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD=.【解答】解:∵∠BCD=∠A,∠B=∠B,∴△DCB~△CAB,∴=,∴=,∴BD=.故答案为.20.(5分)如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为影部分的面积为π﹣1 .【解答】解:如图,连接P A 、PB 、OP ;则S半圆O ==,S △ABP =AB•OP=×1×=,由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP ) =4(﹣)=π﹣1,故答案为:π﹣1.三、解答题(本大题共7小题,各题分值见题号后,共80分,请解答在答题卡相应题号后,应写出必要的文字说明,证明过程或演算步骤)21.(8分)计算:(π﹣3.14)0+|﹣1|﹣()﹣1﹣2sin45°+(﹣1)2016.【解答】解:原式=1+﹣1﹣﹣2×+1=﹣﹣+1=1﹣.22.(8分)已知(1)化简A ;(2)若x 满足不等式组,且x 为整数时,求A 的值.【解答】解:(1)A=(x ﹣3)•﹣1=﹣1==;(2),由①得:x<1,由②得:x>﹣1,∴不等式组的解集为﹣1<x<1,即整数x=0,则A=﹣.23.(10分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【解答】解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.24.(12分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<6020.04二60≤x<70100.2三70≤x<8014b四80≤x<90a0.32五90≤x<10080.16请根据表格提供的信息,解答以下问题:)本次决赛共有 50名学生参加;(1)本次决赛共有(2)直接写出表中a=16,b=0.28;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为分为优秀,则本次大赛的优秀率为 48%.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.25.(12分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD 2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.26.(14分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.【解答】(1)证明:∵CD=CB,∴∠CBD=∠CDB,∵AB是⊙O的直径,∴∠CEB=90°,∴∠CBD+∠BCE=∠CDB+∠DCE,∴∠BCE=∠DCE,即∠BCD=2∠BCE,∵∠BCD=2∠ABD,∴∠ABD=∠BCE,∴∠CBD+∠ABD=∠CBD+∠BCE=90°,∴CB⊥AB,∵CB为直径,∴AB是⊙O的切线;(2)∵∠A=60°,DF=,∴在Rt△AFD中,AF===1,AD=2∵DF⊥AB,CB⊥AB,∴DF∥BC,∴∠ADF=∠ACB,∵∠A=∠A,∴△ADF∽△ACB,∴=,设BC=x,则=,解得x=4+6.∴BC=4+6.27.(16分)如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.【解答】解:(1)∵A (a ,8)是抛物线和直线的交点, ∴A 点在直线上, ∴8=2a +4,解得a=2, ∴A 点坐标为(2,8), 又A 点在抛物线上, ∴8=22+2b ,解得b=2,∴抛物线解析式为y=x 2+2x ;(2)联立抛物线和直线解析式可得,解得,,∴B 点坐标为(﹣2,0),如图,过A 作AQ ⊥x 轴,交x 轴于点Q ,则AQ=8,OQ=OB=2,即O 为BQ 的中点,当C 为AB 中点时,则OC 为△ABQ 的中位线,即C 点在y 轴上, ∴OC=AQ=4,∴C 点坐标为(0,4), 又PC ∥x 轴,∴P点纵坐标为4,∵P点在抛物线上,∴4=x 2+2x,解得x=﹣1﹣或x=﹣1,∵P点在A、B之间的抛物线上,∴x=﹣1﹣不合题意,舍去,∴P点坐标为(﹣1,4),∴PC=﹣1﹣0=﹣1;(3)∵D(m,n),且四边形PCDE为矩形,∴C点横坐标为m,E点纵坐标为n,∵C、E都在直线y=2x+4上,∴C(m,2m+4),E(,n),∵PC∥x轴,∴P点纵坐标为2m+4,∵P点在抛物线上,∴2m+4=x 2+2x,整理可得2m+5=(x+1)2,解得x=﹣1或x=﹣﹣1(舍去),∴P点坐标为(﹣1,2m+4),∴DE=﹣m,CP=﹣1﹣m,∵四边形PCDE为矩形,∴DE=CP,即﹣m=﹣1﹣m,整理可得n 2﹣4n﹣8m﹣16=0,即m、n之间的关系式为n 2﹣4n﹣8m﹣16=0.。
2016年贵州黔东南州中考数学考试含答案————————————————————————————————作者:————————————————————————————————日期:绝密★启用前贵州省黔东南州2016年初中毕业升学统一考试数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2-的相反数是( )A .2B .2-C .12D .12-2.如图,直线a b ∥,若140∠=,255∠=,则3∠等于( )A .85B .95C .105D .1153.已知一元二次方程2210x x --=的两根分别为m ,n ,则m n +的值为( )A .2-B .1-C .1D .24.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,若2AB =,60ABC ∠=,则BD 的长为( )A .2B .3C .3D .235.小明在某商店购买商品A 、B 共两次,这两次购买商品A 、B 的数量和费用如下表.购买商品A 的数量(个) 购买商品B 的数量(个) 购买总费用(元) 第一次购物 4 393第二次购物6 6 162若小丽需要购买3个商品A 和2个商品B ,则她要花费( )A .64元B .65元C .66元D .67元6.已知一次函数1y ax c =+和反比例函数2by x=的图象如图所示,则二次函数23y ax bx c =++的大致图象是( )ABCD7.不等式组,3x a x >⎧⎨<⎩的整数解有三个,则a 的取值范围是( )A .10a -≤<B .10a -<≤C .10a -≤≤D .10a -<<8.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么2()a b +的值为( )毕业学校_____________姓名________________-------------在--------------------此--------------------卷A .13B .19C .25D .1699.将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为( ) A .2B .21+C .2D .110.如图,在等腰直角三角形ABC 中,90C ∠=,点O 是AB 的中点,且6AB =,将一块直角三角板的直角顶点放在点O 处,始终保持该直角三角板的两直角边分别与AC ,BC 相交,交点分别为D ,E ,则CD CE +等于( ) A .2B .3C .2D .6第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在题中的横线上) 11.tan60= .12.分解因式:3220x x x --= .13.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是 .14.如图,在ACB △中,50BAC ∠=,2AC =,3AB =,现将ACB △绕点A 逆时针旋转50得到11AC B △,则阴影部分的面积为 .15.如图,点A 是反比例函数11y x=(0)x >图象上一点,过点A 作x 轴的平行线,交反比例函数2ky x=(0)x >的图象于点B ,连接OA ,OB ,若OAB △的面积为2,则k 的值为 .16.如图,在平面直角坐标系xOy 中,矩形OABC 的边OA ,OC 分别在x 轴和y 轴上,3OC =,26OA =,D 是BC 的中点,将OCD △沿直线OD 折叠后得到OGD △,延长OG 交AB 于点E ,连接DE ,则点G 的坐标为 .三、解答题(本大题共8小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)计算:201()(π 3.14)|32|2cos302-+----.18.(本小题满分10分)先化简:22111()21x x x x x x x-+÷--+,然后x 在1-,0,1,2四个数中选一个你认为合适的数代入求值.19.(本小题满分8分)解方程:214111x x x ++=--.20.(本小题满分12分)黔东南州某中学为了解本校学生平均每天的课外学习时间情况,随机抽取部分学生进行问卷调查,并将调查结果分为A ,B ,C ,D 四个等级,设学习时间为t (小时),:1A t <,:1 1.5B t ≤<,:1.52C t ≤<,:2D t ≥,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整; (2)本次抽样调查中,学习时间的中位数落在哪个等级内? (3)表示B 等级的扇形圆心角α的度数是多少?(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或画树状图的方法求选出的2人来自不同班级的概率.21.(本小题满分10分)黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD )恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为30,在C 处测得电线杆顶端A 得仰角为45,斜坡与地面成60角,4m CD =,请你根据这些数据求电线杆的高()AB .(结果精确到1m ,参考数据:2 1.4≈,3 1.7≈).22.(本小题满分12分)如图,AB 是O 的直径,点P 在BA 的延长线上,弦CD AB ⊥,垂足为E ,且2PC PE PO =.(1)求证:PC 是O 的切线.(2)若12OE EA =::,6PA =,求O 的半径.23.(本小题满分12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的的全部计算器每只就降价0.1元,例如:某人18只计算器,于是每只只降价0.1(1810)0.8⨯-=(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.________________-------------在-------------(1)求一次至少购买多少只计算器,才能以最低价购买?(2)写出该文具店一次销售(0)x x >1只时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当1050x <≤时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?24.(本小题满分14分)如图,直线3y x =-+与x 轴、y 轴分别相交于点B ,C ,经过B ,C 两点的抛物线2y ax bx c =++与x 轴的另一个交点为A ,顶点为P ,且对称轴为直线2x =.(1)求该抛物线的解析式;(2)连接PB ,PC ,求PBC ∆的面积;(3)连接AC ,在x 轴上是否存在一点Q ,使得以点P ,B ,Q 为顶点的三角形与ABC △相似?若存在,求出点Q 的坐标;若不存在,请说明理由.贵州省黔东南州2016年初中毕业升学统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义,2-的相反数是2.选A.【提示】根据相反数的意义,只有符号不同的数为相反数,0的相反数是0. 【考点】相反数 2.【答案】B【解析】如下图,因为直线a b ∥,所以43∠=∠。
绝密★启用前贵州省贵阳市2016年初中毕业生学业考试数学本试卷满分150分,考试时间120分钟.第I卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的数中,与6-的和为0的数是()A.6B.6-C.16D.16-2.空气的密度为30.00129g/cm,0.00129这个数用科学记数法可表示为()A.20.12910-⨯B.21.2910-⨯C.31.2910-⨯D.112.910-⨯3.如图,直线a b∥,点B在直线a上,AB BC⊥.若1=38∠,则2∠的度数为 ( )A.38B.52C.76D.1424.2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神舟专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.110B.15C.310D.255.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是 ()A B C D6.2016年6月4—5日贵州省第九届“贵青杯”—“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖.某代表队已经知道了自己的成绩,他们想要知道自己是否获奖,只需再知道这45支队成绩的-()A.中位数B.平均数C.最高分D.方差7.如图,在ABC△中,DE BC∥,13ADAB=,12BC=.则DE的长是( )A.3B.4C.5D.68.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上.若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.23cmB.43cmC.63cmD.83cm9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回到家.图中的折线段OA AB BC——是她出发后所在位置离家的距离(km)s与行走时间(min)t之间的函数关系.则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A B C D10.若m,n()n m<是关于x的一元二次方程1()()0x a x b---=的两个根,且b a<,则m,n,b,a的大小关系是()A.m a b n<<<B.a m n b<<<C.b n m a<<<D.n b a m<<<毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共22页)数学试卷第2页(共22页)数学试卷 第3页(共22页) 数学试卷 第4页(共22页)第Ⅱ卷(非选择题 共120分)二、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上)11.不等式组321,48x x -⎧⎨⎩<<的解集为 .12.现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,估计这些卡片中绘有孙悟空这个人物的卡片张数约为 .13.已知点(1,)M a 和点(2,)N b 是一次函数21y x =-+图象上的两点,则a 与b 的大小关系是 .14.如图,已知O 的半径为6cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,=2cm BP ,则tan OPA ∠的值是 .15.已知ABC △,45BAC ∠=,8AB =要使满足条件的ABC △唯一确定,那么BC 边长度x 的取值范围为 .三、解答题(本大题共10小题,共100分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分) 先化简,再求值:22111211a a a a a a ++-÷--+-,其中21a .17.(本小题满分10分)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮). (1)将4个开关都闭合时,教室里所有灯都亮起的概率是 ;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.(本小题满分10分)如图,点E 是正方形ABCD 外一点,点F 是线段AE 上一点.EBF △是等腰直角三角形,其中90EBF =∠,连接CE ,CF . (1)求证:ABF CBE △≌△;(2)判断CEF △的形状,并说明理由.19.(本小题满分10分)某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图.请根据统计图中的信息解答下列问题:(说明:A 等级:135分~150分,B 等级:120分~135分,C 等级:90分~120分, D 等级:0分~90分)(1)此次抽查的学生人数为 ; (2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.20.(本小题满分10分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛.为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球的2倍少9元. (1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?21.(本小题满分8分) -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第6页(共22页)“蘑菇石”是贵州省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观平台DE观景,然后再沿着坡角为29的斜坡由E步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE BC∥,1700mBD=,80DBC=∠.求斜坡AE的长度.(结果精确到0.1m)22.(本小题满分10分)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数(0)ky xx=>的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.(本小题满分10分)如图,O是ABC△的外接圆,AB是O的直径,8AB=.(1)利用尺规,作CAB∠的平分线,交O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC CD=,求B∠的度数;(3)在(2)的条件下,OD交BC于点E.求由线段ED,BE,BD所围成区域的面积.(其中BD表示劣弧.结果保留π和根号)24.(本小题满分12分)(1)阅读理解:如图1,在ABC△中,若10AB=,6AC=,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE AD=,再连续BE(或将ACD△绕着点D逆时针旋转180得到EBD△).把AB,AC,2AD集中在ABE△中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)解决问题:如图2,在ABC△中,D是BC边上的中点,DE DF⊥于点D,DE交AB于点E,DF交AC于点F.求证:BE CF EF+>;(3)问题扩展:如图3,在四边形ABCD中,180B D+=∠∠,CB CD=,140BCD=∠,以C为顶点作一个70角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.图1图2图325.(本小题满分12分)如图,直线55y x=+交x轴于点A,交y轴于点C,过A,C两点的二次函数24y ax x c=++的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND x⊥轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数24y ax x c=++图象的顶点,点(4,)M m是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为11(,)P x y,22(,)Q x y,当PQ平行x轴时,线段PQ长度可由公式12||PQ x x=-求出;当PQ平行y轴时,线段PQ的长度可由公式12||PQ y y=-求出.毕业学校_____________姓名________________考生号_____________________________________________数学试卷第5页(共22页)b,∴2MBC52∠=∠=︒;故选B.数学试卷第7页(共22页)数学试卷第8页(共22页)数学试卷第9页(共22页) 数学试卷 第10页(共22页)【提示】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程进行即可解决问题. 【考点】三角形的外接圆与外心,等边三角形的性质 9.【答案】B【解析】观察s 关于t 的函数图象,发现:在图象AB 段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.【提示】根据给定s 关于t 的函数图象,分析AB 段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论. 【考点】函数的图象 10.【答案】D【解析】如图抛物线y (x a)(x b)=--与x 轴交于点(a,0),(b,0),抛物线与直线y 1=的交点为(n,1),(m,1),由图象可知,n b a m <<<;故选D.【提示】利用图象法,画出抛物线y (x a)(x b)=--与直线y 1=,即可解决问题. 【考点】抛物线与x 轴的交点第Ⅱ卷二、填空题 11.【答案】x 1<【解析】解第一个不等式得x 1<,解第二个不等式得x 2<;故不等式组的解集为:x 1<;【解析】作OM AB ⊥于M ,如图所示:1使△ABC唯一确定,那么BC的长度x满足的条件是:x42x8=≥或.2a12a1a-=+-==212(2)用A1、A2、A3、A4分别表示第一排、第二排、第三批、第四排日光灯,数学试卷第11页(共22页)数学试卷第12页(共22页)数学试卷 第13页(共22页) 数学试卷 第14页(共22页)∴ABF CBE ∠=∠.在△ABF 和△CBE 中,有AB CB ABF CBE BF BE =⎧⎪∠=∠⎨⎪=⎩,∴ABF CBE(SAS)△≌△.(2)解:△CEF 是直角三角形.理由如下:∵△EBF 是等腰直角三角形,∴BFE FEB 45∠=∠=︒,∴AFB 180BFE 135∠=︒-∠=︒, 又∵ABF CBE △≌△,∴CEB AFB 135∠=∠=︒,∴CEF CEB FEB 1354590∠=∠-∠=︒-︒=︒,∴△CEF 是直角三角形.【提示】(1)由四边形ABCD 是正方形可得出AB CB =,ABC 90∠=︒,再由△EBF 是等腰直角三角形可得出BE BF =,通过角的计算可得出ABF CBE ∠=∠,利用全等三角形的判定定理SAS 即可证出ABF CBE △≌△;(2)根据△EBF 是等腰直角三角形可得出BFE FEB ∠=∠,通过角的计算可得出AFB 135∠=︒,再根据全等三角形的性质可得出CEB AFB 135∠=∠=︒,通过角的计算即可得出CEF 90∠=︒,从而得出△CEF 是直角三角形. 【考点】正方形的性质,全等三角形的判定与性质,等腰直角三角形 19.【答案】(1)由题意可得,此次抽查的学生有:3624%150÷=(人), 故答案为:150; (2)如图所示:A 等级的学生数是:15020%30⨯=,B 等级占的百分比是:69150100%46%÷⨯=, D 等级占的百分比是:15150100%10%÷⨯=, 故补全的条形统计图和扇形统计图如右图所示, (3)1200(46%20%)792⨯+=(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人. 【提示】(1)根据统计图可知,C 等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A 等级的学生数,B 等级和D 等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【考点】条形统计图,用样本估计总体,扇形统计图20.【答案】(1)一个足球的单价103元,一个篮球的单价56元 (2)学校最多可以买9个足球【解析】(1)设一个足球的单价x 元、一个篮球的单价为y 元,根据题意得x y 159x 2y 9+=⎧⎨=-⎩,解得:x 103y 56=⎧⎨=⎩,答:一个足球的单价103元,一个篮球的单价56元;数学试卷 第15页(共22页) 数学试卷 第16页(共22页)BD sin80︒, 1700sin80︒,AE1700sin80238.9m 29︒≈︒答:斜坡AE 的长度约为238.9m .3数学试卷 第17页(共22页) 数学试卷 第18页(共22页)23.【答案】(1)如图所示,AP 即为所求的∠CAB 的平分线;∴B 30∠=︒;1OE BE 22=⨯2π48π3603=,OE BE 23=故答案为:2AD 8<<数学试卷 第19页(共22页) 数学试卷 第20页(共22页)(3)解:BE DF EF +=;理由如下:延长AB 至点N ,使BN DF =,连接CN ,如图所示:∵ABC D 180∠+∠=︒,NBC ABC 180∠+∠=︒,∴NBC D ∠=∠,在△NBC 和△FDC 中,BN DF NBC D BC DC =⎧⎪∠=∠⎨⎪=⎩,∴NBC FDC(SAS)△≌△,∴CN CF =,NCB FCD ∠=∠, ∵BCD 140∠=︒,ECF 70∠=︒,∴BCE FCD 70∠+∠=︒ , ∴ECN 70ECF ∠=︒=∠,在△NCE 和△FCE 中,CN CF ECN ECF CE CE =⎧⎪∠=∠⎨⎪=⎩,∴NCE FCE(SAS)△≌△,∴EN EF =, ∵BE BN EN +=,∴BE DF EF +=.【提示】(1)延长AD 至E ,使DE AD =,由SAS 证明ACD EBD △≌△,得出BE AC 6==,在△ABE 中,由三角形的三边关系求出AE 的取值范围,即可得出AD 的取值范围; (2)延长FD 至点M ,使DM DF =,连接BM 、EM ,同(1)得BMD CFD △≌△,得出BM CF =,由线段垂直平分线的性质得出EM EF =,在△BME 中,由三角形的数学试卷 第21页(共22页) 数学试卷 第22页(共22页)【考点】二次函数综合题。
2016年贵州省中考数学试卷一、选择题:每小题4分,共40分1.计算﹣42的结果等于()A.﹣8 B.﹣16 C.16 D.82.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠BOC的度数为()A.18°B.36°C.60°D.72°3.如图,AB∥CD,CB∥DE,若∠B=72°,则∠D的度数为()A.36°B.72°C.108°D.118°4.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC5.如图,在△ABC中,点D在AB上,BD=2AD,DE∥BC交AC于E,则下列结论不正确的是()A.BC=3DE B.=C.△ADE~△ABC D.S△ADE=S△ABC6.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.B.C.D.7.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()学生数(人) 5 8 14 19 4时间(小时) 6 7 8 9 10A.14,9 B.9,9 C.9,8 D.8,98.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是()A.B.C.D.9.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2 B.4 C.5 D.810.如图,矩形ABCD绕点B逆时针旋转30°后得到矩形A1BC1D1,C1D1与AD交于点M,延长DA交A1D1于F,若AB=1,BC=,则AF的长度为()A.2﹣B.C.D.﹣1二、填空题:每小题3分,共30分11.计算:(﹣2ab)2=.12.0.0000156用科学记数法表示为.13.分解因式:x3﹣4x=.14.一个多边形的内角和为1080°,则这个多边形的边数是.15.函数y=中,自变量x的取值范围为.16.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,若CD=6,BE=1,则⊙O的直径为.17.关于x的两个方程x2﹣x﹣6=0与=有一个解相同,则m=.18.已知⊙O1和⊙O2的半径分别为m、n,且m、n满足+(n﹣2)2=0,圆心距O1O2=,则两圆的位置关系为.19.如图,小明购买一种笔记本所付款金额y(元)与购买量x(本)之间的函数图象由线段OB 和射线BE组成,则一次购买8个笔记本比分8次购买每次购买1个可节省元.20.阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=.三、本题共12分21.(1)计算:|﹣|﹣2cos45°﹣()﹣1+(tan80°﹣)0+(2)化简:(﹣2)÷﹣2x,再代入一个合适的x求值.四.本题共12分22.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为2,求△ABC的面积.五.本题共14分23.2016年黔西南州教育局组织全州中小学生参加全省安全知识网络竞赛,在全州安全知识竞赛结束后,通过网上查询,某校一名班主任对本班成绩(成绩取整数,满分100分)作了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数分布表中a=,b=,c=(2)补全频数分布直方图(3)为了激励学生增强安全意识,班主任准备从超过90分的学生中选2人介绍学习经验,那么取得100分的小亮和小华同时被选上的概率是多少?请用列表法或画树状图加以说明,并列出所有等可能结果.频数分布表分组(分)频数频率50<x 60 2 0.0460<x 70 12 a70<x<80 b 0.3680<x 90 14 0.2890<x 100 c 0.08合计50 1六.本题共14分24.我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?七.阅读材料题.25.求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.八.本题共16分26.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.2016年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题:每小题4分,共40分1.计算﹣42的结果等于()A.﹣8 B.﹣16 C.16 D.8【考点】有理数的乘方.【分析】乘方就是求几个相同因数积的运算,﹣42=﹣(4×4)=16.【解答】解:﹣42=﹣16故选:B【点评】本题考查有理数乘方的法则.正数的任何次方都是正数;负数的奇次方为负,负数的偶次方为正;0的正整数次幂为0.2.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠BOC的度数为()A.18°B.36°C.60°D.72°【考点】圆周角定理.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案.【解答】解:由题意得∠BOC=2∠A=72°.故选D.【点评】本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.3.如图,AB∥CD,CB∥DE,若∠B=72°,则∠D的度数为()A.36°B.72°C.108°D.118°【考点】平行线的性质.【分析】由平行线的性质得出∠C=∠B=72°,∠D+∠C=180°,即可求出结果.【解答】解:∵AB∥CD,CB∥DE,∠B=72°,∴∠C=∠B=72°,∠D+∠C=180°,∴∠D=180°﹣72°=108°;故选:C.【点评】本题主要考查平行线的性质;熟练掌握平行线的性质是解决问题的关键.4.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC【考点】全等三角形的判定.【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选C.【点评】本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.5.如图,在△ABC中,点D在AB上,BD=2AD,DE∥BC交AC于E,则下列结论不正确的是()A.BC=3DE B.=C.△ADE~△ABC D.S△ADE=S△ABC【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理、相似三角形的性质解答即可.【解答】解:∵BD=2AD,∴AB=3AD,∵DE∥BC,∴==,∴BC=3DE,A结论正确;∵DE∥BC,∴=,B结论正确;∵DE∥BC,∴△ADE~△ABC,C结论正确;∵DE∥BC,AB=3AD,∴S△ADE=S△ABC,D结论错误,故选:D.【点评】本题考查的是平行线分线段成比例定理和相似三角形的性质,灵活运用平行线分线段成比例定理、掌握相似三角形的面积比等于相似比的平方是解题的关键.6.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有6种等可能的结果数,再找出甲站在中间的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率==.故选:B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.7.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()学生数(人) 5 8 14 19 4时间(小时) 6 7 8 9 10A.14,9 B.9,9 C.9,8 D.8,9【考点】众数;统计表;中位数.【分析】依据众数和中位数的定义求解即可.【解答】解:∵时间为9小时的人数最多为19人数,∴众数为9.∵将这组数据按照由大到小的顺序排列,第25个和第26个数据的均为8,∴中位数为8.故选:C.【点评】本题主要考查的是众数和中位数的定义,明确表格中数据的意义是解题的关键.8.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图从左到右说出每一行小正方形的个数和位置即可.【解答】解:左视图从左到右有三列,左边一列有2个正方体,中间一列三个,右边有一个正方体,故选D.【点评】此题主要考查了画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.9.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2 B.4 C.5 D.8【考点】反比例函数系数k的几何意义.【分析】由反比例函数的系数k的几何意义可知:OA•AD=2,然后可求得OA•AB的值,从而可求得矩形OABC的面积.【解答】解:∵y=,∴OA•OD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=4.故选:B.【点评】本题主要考查的是反比例函数k的几何意义,掌握反比例函数系数k的几何意义是解题的关键.10.如图,矩形ABCD绕点B逆时针旋转30°后得到矩形A1BC1D1,C1D1与AD交于点M,延长DA交A1D1于F,若AB=1,BC=,则AF的长度为()A.2﹣B.C.D.﹣1【考点】旋转的性质;矩形的性质.【分析】先求出∠CBD,根据旋转角,判断出点C1在矩形对角线BD上,求出BD,再求出∠DBF,从而判断出DF=BD,即可.【解答】解:连接BD,如图所示:在矩形ABCD中,∠C=90°,CD=AB=1,在Rt△BCD中,CD=1,BC=,∴tan∠CBD==,BD=2,∴∠CBD=30°,∠ABD=60°,由旋转得,∠CBC1=∠ABA1=30°,∴点C1在BD上,连接BF,由旋转得,AB=A1B,∵矩形A1BC1D1是矩形ABCD旋转所得,∴∠BA1F=∠BAF=90°,∵AF=AF,∴△A1BF≌△ABF,∴∠A1BF=∠ABF,∵∠ABA1=30°,∴∠ABF=∠ABA1=15°,∵∠ABD=60°,∴∠DBF=75°,∵AD∥BC,∴∠ADB=∠CBD=30°,∴∠BFD=75°,∴DF=BD=2,∴AF=DF﹣AD=2﹣,故选:A.【点评】本题考查了旋转的性质、矩形的性质、全等三角形的判定与性质、等腰三角形的判定、三角函数;熟练掌握旋转的性质和矩形的性质,并能进行推理计算是解决问题的关键.二、填空题:每小题3分,共30分11.计算:(﹣2ab)2=4a2b2.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则以及幂的乘方运算法则求出答案.【解答】解:(﹣2ab)2=4a2b2.故答案为:4a2b2.【点评】此题主要考查了积的乘方运算与幂的乘方运算,正确掌握运算法则是解题关键.12.0.0000156用科学记数法表示为1.56×10﹣5.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000156=1.56×10﹣5,故答案为:1.56×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.14.一个多边形的内角和为1080°,则这个多边形的边数是8.【考点】多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.15.函数y=中,自变量x的取值范围为x<1.【考点】函数自变量的取值范围.【分析】根据二次根式有意义的条件就是被开方数大于或等于0,分式有意义的条件是分母不为0;可得关系式1﹣x>0,解不等式即可.【解答】解:根据题意得:1﹣x>0,解可得x<1;故答案为x<1.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.16.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,若CD=6,BE=1,则⊙O的直径为10.【考点】垂径定理.【专题】计算题;推理填空题.【分析】首先连接OD,并设OD=x,然后在△ODE中,由勾股定理,求出OD的长,即可求出⊙O 的直径为多少.【解答】解:如图,,∵AB是⊙O的直径,而且CD⊥AB于E,∴DE=CE=12÷2=6,在Rt△ODE中,x2=(x﹣1)2+32,解得x=5,∵5×2=10,∴⊙O的直径为10.故答案为:10.【点评】此题主要考查了垂径定理以及勾股定理的应用,要熟练掌握,解答此题的关键是求出OD 的长度是多少.17.关于x的两个方程x2﹣x﹣6=0与=有一个解相同,则m=﹣8.【考点】分式方程的解;解一元二次方程-因式分解法.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;先解方程x2﹣x﹣6=0,将它的根分别代入方程=,去掉不符合题意的根,求出m的值.【解答】解:解方程x2﹣x﹣6=0得:x=﹣2或3;把x=﹣2或3分别代入方程=,当x=﹣2时,得到=,解得m=﹣8.故答案为:﹣8.【点评】本题考查的是一元二次方程的根即方程的解的定义;本题注意分式方程中分母不为0.18.已知⊙O1和⊙O2的半径分别为m、n,且m、n满足+(n﹣2)2=0,圆心距O1O2=,则两圆的位置关系为相交.【考点】圆与圆的位置关系;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】直接利用偶次方的性质以及二次根式的性质得出m,n的值,再利用圆与圆的位置关系判断方法得出答案.【解答】解:∵⊙O1和⊙O2的半径分别为m、n,且m、n满足+(n﹣2)2=0,∴m﹣1=0,n﹣2=0,解得:m=1,n=2,∴m+n=3,∵圆心距O1O2=,∴两圆的位置关系为:相交.故答案为:相交.【点评】此题主要考查了偶次方的性质以及二次根式的性质以及圆与圆的位置关系,正确把握两圆位置关系判断方法是解题关键.19.如图,小明购买一种笔记本所付款金额y(元)与购买量x(本)之间的函数图象由线段OB 和射线BE组成,则一次购买8个笔记本比分8次购买每次购买1个可节省4元.【考点】一次函数的应用.【分析】根据函数图象,分别求出线段OB和射线EB的函数解析式,然后可求出一次购买8个笔记本的价钱和分8次购买每次购买1个的花费,进而可得答案.【解答】解:由线段OB的图象可知,当0<x<时,y=5x,1千克苹果的价钱为:y=5,设射线EB的解析式为y=kx+b(x≥2),把(4,20),(10,44)代入得,解得:,∴射线EB的解析式为y=4x+4,当x=8时,y=4×8+4=36,5×8﹣36=4(元),故答案为:4.【点评】本题考查了一次函数的应用,解决本题的关键是掌握待定系数法求一次函数解析式.20.阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=.【考点】规律型:数字的变化类.【分析】令s=1+3+32+33+…+32015,然后再等式的两边同时乘以2,接下来,依据材料中的方程进行计算即可.【解答】解:令s=1+3+32+33+ (32015)等式两边同时乘以3得:3s=3+32+33+ (32016)两式相减得:2s=32016﹣1.所以S=.【点评】本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、本题共12分21.(1)计算:|﹣|﹣2cos45°﹣()﹣1+(tan80°﹣)0+(2)化简:(﹣2)÷﹣2x,再代入一个合适的x求值.【考点】分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】(1)根据特殊角的三角函数值、负整数整数幂和零指数幂的意义计算.(2)先把括号内通分,再把除法运算化为乘法运算,然后约分后合并得到原式=2﹣x,再根据分式有意义的条件把x=10代入计算即可.【解答】解:(1)原式=﹣2×﹣2+1+2=2﹣1;(2)原式=•﹣2x=•﹣2x=x+2﹣2x=2﹣x,当x=10时,原式=2﹣10=﹣8.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四.本题共12分22.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为2,求△ABC的面积.【考点】切线的判定.【分析】(1)连接OC,根据等腰三角形的性质:等边对等角,以及直径所对的圆周角是直角,利用等量代换证得∠ACO=90°,据此即可证得;(2)易证∠A=∠B=∠1=∠2=30°,即可求得AC的长,作CE⊥AB于点E,求得CE的长,利用三角形面积公式求解.【解答】解:(1)连接OC.∵AC=BC,AD=CD,OB=OC,∴∠A=∠B=∠1=∠2.∵∠ACO=∠DCO+∠2,∴∠ACO=∠DCO+∠1=∠BCD,又∵BD是直径,∴∠BCD=90°,∴∠ACO=90°,又C在⊙O上,∴AC是⊙O的切线;(2)由题意可得△DCO是等腰三角形,∵∠CDO=∠A+∠2,∠DOC=∠B+∠1,∴∠CDO=∠DOC,即△DCO是等边三角形.∴∠A=∠B=∠1=∠2=30°,CD=AD=2,在直角△BCD中,BC===2.又AC=BC,∴AC=2.作CE⊥AB于点E.在直角△BEC中,∠B=30°,∴CE=BC=,∴S△ABC=AB•CE=×6×=3.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.五.本题共14分23.2016年黔西南州教育局组织全州中小学生参加全省安全知识网络竞赛,在全州安全知识竞赛结束后,通过网上查询,某校一名班主任对本班成绩(成绩取整数,满分100分)作了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数分布表中a=0.24,b=18,c=4(2)补全频数分布直方图(3)为了激励学生增强安全意识,班主任准备从超过90分的学生中选2人介绍学习经验,那么取得100分的小亮和小华同时被选上的概率是多少?请用列表法或画树状图加以说明,并列出所有等可能结果.频数分布表分组(分)频数频率50<x 60 2 0.0460<x 70 12 a70<x<80 b 0.3680<x 90 14 0.2890<x 100 c 0.08合计50 1【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图.【分析】(1)根据频数、频率和样本容量的关系可分别求得a、b、c;(2)由(1)中求得的b、c的值可补全图形;(3)由题可知超过90分的学生人数有4人,再利用树状图可求得概率.【解答】解:(1)a==0.24,∵=0.36,=0.08,∴b=50×0.36=18,c=50×0.08=4,故答案为:0.24;18;4;(2)由(1)可知70~80的人数为18人,90~100的人数为4人,则可补全图形如图1;(3)由(1)可知超过90分的学生人数有4人,用A、B、C、D分别表示小亮、小华及另外两名同学,树状图如图2,所有可能出现的结果是:(A,B),(A,C),(A,D),(B,A),(B,C),(B,D),(C,A),(C,B),(C,D),(D,A),(D,B),(D,C),由树状图可知,从超过90分的四人中选出2人共有12种可能,而小亮和小华同时被选上的有两种可能,∴P(恰好同时选上小亮、小华)==.【点评】本题主要考查列表法或树状图法求概率以及条形统计图的知识,用到的知识点为:概率=所求情况数与总情况数之比.六.本题共14分24.我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设购买甲种鱼苗x条,乙种鱼苗y条,根据“购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元”即可列出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设购买乙种鱼苗m条,则购买甲种鱼苗(600﹣m)条,根据“甲、乙两种鱼苗的成活率为80%,90%,要使这批鱼苗的总成活率不低于85%”即可列出关于m的一元一次不等式,解不等式即可得出m的取值范围;(3)设购买鱼苗的总费用为w元,根据“总费用=甲种鱼苗的单价×购买数量+乙种鱼苗的单价×购买数量”即可得出w关于m的函数关系式,根据一次函数的性质结合m的取值范围,即可解决最值问题.【解答】解:(1)设购买甲种鱼苗x条,乙种鱼苗y条,根据题意得:,解得:,答:购买甲种鱼苗350条,乙种鱼苗250条.(2)设购买乙种鱼苗m条,则购买甲种鱼苗(600﹣m)条,根据题意得:90%m+80%(600﹣m)≥85%×600,解得:m≥300,答:购买乙种鱼苗至少300条.(3)设购买鱼苗的总费用为w元,则w=20m+16(600﹣m)=4m+9600,∵4>0,∴w随m的增大而增大,又∵m≥300,=4×300+9600=10800(元).∴当m=300时,w取最小值,w最小值答:当购买甲种鱼苗300条,乙种鱼苗300条时,总费用最低,最低费用为10800元.【点评】本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的性质以及一次函数的性质,解题的关键是:(1)根据数量关系得出关于x、y的二元一次方程组;(2)根据数量关系得出关于m的一元一次不等式;(3)根据数量关系得出w关于m的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系得出不等式(方程组或函数关系式)是关键.七.阅读材料题.25.求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.【考点】有理数的混合运算.【分析】(1)根据题目,首先弄懂题意,然后根据例子写出答案即可;(2)可以先求出104与78的最大公约数为26,再利用辗转相除法,我们可以求出26 与143的最大公约数为13,进而得到答案.【解答】解:(1)108﹣45=63,63﹣45=18,27﹣18=9,18﹣9=9,所以108与45的最大公约数是9;(2)先求104与78的最大公约数,104﹣78=26,78﹣26=52,52﹣26=26,所以104与78的最大公约数是26;再求26与143的最大公约数,143﹣26=117,117﹣26=91,91﹣26=65,65﹣26=39,39﹣26=13,26﹣13=13,所以,26与143的最大公约数是13,∴78、104、143的最大公约数是13.【点评】本题考查的知识点是辗转相除法与更相减损术,求三个或三个以上数的最大公约数,可以先求前两个数的最大公约数,再求所得最大公约数与第三个数的最大公约数最后得到答案.八.本题共16分26.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;(3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.【解答】解:(1)将B(4,0)代入y=﹣x2+3x+m,解得,m=4,∴二次函数解析式为y=﹣x2+3x+4,令x=0,得y=4,∴C(0,4),(2)存在,理由:∵B(4,0),C(0,4),∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,∴,∴x2﹣4x+b=0,∴△=14﹣4b=0,∴b=4,∴,∴M(2,6),(3)①如图,∵点P在抛物线上,∴设P(m,﹣m2+3m+4),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4)∴线段BC的垂直平分线的解析式为y=x,∴m=﹣m2+3m+4,∴m=1±,∴P(1+,1+)或P(1﹣,1﹣),②如图,设点P(t,﹣t2+3t+4),过点P作y轴的平行线l,过点C作l的垂线,∵点D在直线BC上,∴D(t,﹣t+4),∵PD=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,BE+CF=4,=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=﹣4t2+16t,∴S四边形PBQC∵0<t<4,=16∴当t=2时,S四边形PBQC最大【点评】此题是二次函数综合题,主要考查了待定系数法,极值的确定,对称性,面积的确定,解本题的关键是确定出△MBC面积最大时,点P的坐标.。